
N95-19629

THE DESIGN AND IMPLEMENTATION OF EPL: AN EVENT

PATrERN LANGUAGE FOR ACTIVE DATABASES*

G. Giuffrida and C. Zaniolo

Computer Science Department
The University of California

Los Angeles, California 90024
giovanni@cs.ucla.edu

82--

/

Abstract

The growing demand for intelligent information systems requires closer
coupling of rule-based reasoning engines, such as CLIPS, with advanced Data
Base Management Systems (DBMS). For instance, several commercial DBMS
now support the notion of triggers that monitor events and transactions

occurring in the database and fire induced actions, which perform a variety of
critical functions, including safeguarding the integrity of data, monitoring
access, and recording volatile information needed by administrators, analysts
and expert systems to perform assorted tasks; examples of these tasks include

security enforcement, market studies, knowledge discovery and link analysis.
At UCLA, we designed and implemented the Event Pattern Language (EPL)
which is capable of detecting and acting upon complex patterns of events which
are temporally related to each other. For instance, a plant manager should be
notified when a certain pattern o£ overheating repeats itself over time in a
chemical process; likewise, proper notification is required when a suspicious
sequence of bank transactions is executed within a certain time limit.
The EPL prototype is built in CLIPS to operate on top of Sybase, a commercial
relational DBMS, where actions can be triggered by events such as simple
database updates, insertions and deletions. The rule-based syntax of EPL
allows the sequences of goals in rules to be interpreted as sequences of
temporal events; each goal can correspond to either (i) a simple event, or (ii) a
(possibly negated) event/condition predicate, or (iii) a complex event defined as
the disjunction and repetition of other events. Various extensions have been

added to CLIPS in order to tailor the interface with Sybase and its open
client/server architecture.

INTRODUCTION

A growing demand for information systems that support enterprise integration, scientific

and multimedia applications has produced a need for more advanced database systems

and environments. In particular, active rule-based environments are needed to support

operations such as data acquisition, validation, ingestion, distribution, auditing and
management --both for raw data and derivative products. The commercial DBMS world

has sensed this trend and the more aggressive vendors are moving to provide useful
extensions such as triggers and open servers. These extensions, however, remain limited

with respect to functionality, usability and portability; thus, there remains a need for an

enterprise to procure a database environment that is (1) more complete and powerful, and

• This wonk was done under contract with Hughes Aircraft Corporation, Los Angeles, California.

PJqJ_I4N34_ PAGE 6L,_,NK _K)T FH.MY_O

21

thus supports those facilities not provided by vendors, and (2) is more independent from

specific vendor products and their releases and helps the enterprise to manage their IMS

and cope with multiple vendors, data heterogeneity and distribution.

A particularly severe drawback of current DBMS is their inability of detecting patterns of

events, where an event is any of the possible database operation allowed by the system;

typically they are: insertion, deletion and updating. Depending on the application,

sequences of events temporally related to each other, might be of interest for the user. In
addition to basic database events, management of long transactions and deferred actions

may be involved in such patterns. Practical examples of such meaningful patterns of

events are:

• Temperature which goes down for three consecutive days;

• 2 day delayed deposit for out-of-state checks;

• 30 days of inactivity on a bank account;

• IBM shares increased value consecutively within the last week;

• Big withdrawal from a certain account followed by a deposit for the same amount on

another account.

These and similar situations may require either a certain action to take place (e.g.: buy

IBM shares) or a warning message to be issued (e.g.: huge transfer of money is taking

place.) EPL gives the user the ability to handle such situations.

The purpose of this paper is to propose a rule-based language and system architecture for

data ingestion. The first part of this paper describes the language, then the system

architecture is discussed.

EPL DESCRIPTION

An EPL program consists of several named modules; modules can be compiled, and

enabled independently. The head of each such module defines an universe of basic

events of interest, which will be monitored by the EPL module. The basic events being

monitored can be of the following three types:

insert (Rname), delete (Rname), update (Rname)

where Rname is the name of a database relation.

A module body consists of one or more rules having the basic form:

event-condition-list

action-list

The left hand side of the rule describes a certain pattern of events. When such a pattern

successfuUy matches with events taking place in the database the set of actions listed in

the right hand side are executed.

22

For instance,assumethat we havea databaserelationdescribingbank accountswhose
schemais: ACC(Accno,Balance). We want to monitor the deposits of funds in excess of

more than $100,000 into account 00201. In EPL, this can be done as follows:

begin AccountMonitor

monitor update (ACC), delete (ACC), insert (ACC) ;

end

update(ACC(X)),

X.old Accno = 00201,
X.new--Accno = 00201,

X.old--Balance - X.new Balance > I00000
->

write("suspect withdraw at %s", X.evtime)
AccontMonitor.

The lines "begin AccountMonitor" and "end AccountMonitor" delimit the module.

Several rules may be defined within a module (also refereed as "monitor".) The second

line in the example define the universe for the module, in this case any update, delete and

insert on the ACC table will be monitored by this module. Then the rule definition

comes. Basically this rule will be fired by an update on the ACC table, The variable X

denotes the tuple being updated. The EPL system makes available to the programmer

both the new and the old attribute values of X, these are respectively refereed by means

of prefixes "new_" and "old__". An additional attribute, namely "evtime", is available.
This contains the time when the specific event occurred.

In the previous rule, the event-condition list consists of one event and three conditions.

The action list contains a single write statements. In general one or more actions are

allowed, these actions are printing statements, execution of SQL statements, and
operating system calls.

The previous rule can also be written in a form that combines an event and its qualifying
conditions, that is:

update (ACC (X),

X.old Accno = 00201,

X.new--Accno = 00201,

X.old_Balance - X.new_balance > i00000)
->

write ("suspect withdraw at %s", X.evtime)

In this second version, the extent of parentheses stresses the fact that conditions can be

viewed as part of the qualification of an event. A basic event followed by some
conditions will be called a qualified event.

The primitives to monitor sequences of events provided by EPL are significantly more

powerful than those provided by current database systems. Thus, monitoring transfers

from account 00201 to another account, say 00222, can be expressed in a EPL module as
follows:

23

update(ACC(X), X.old Accno -- 00201,
X.old Balance--- X.new_Balance > 100000)

update(ACC (_), Y.old Accno = 00222,
X.old Balance -- X.new_Balance = Y.new_Balance - Y.old_Balance)

->

write ("suspect transfer")

Thus, the succession of two events, one taking a sum of money larger than $I00.000 out

of account 00201 and the other depositing the same sum into 00222, triggers the printing

of a warning message:

For this two-event rule to ftre, the deposit event must follow immediately the withdraw

event. (Using the concept of composite events described later, it will also be possible to

specify events that need not immediately follow each other.)

The notion of immediate following is defined with respect to the universe of events being

monitored in the module. Monitored events are arranged in a temporal sequence (a

history). The notion of universe is also needed to define the negation of b, written !b,
where b stands for a basic event pattern. An event el satisfies !b if el satisfies some

basic event that is not b.

We now turn to the second kind of event patterns supported by EPL: clock events. Each

clock event is viewed as occurring immediately following the event with the time-stamp

closest to it. But a clock event occurring at the same time as a basic event is considered

to follow that basic event. For example, say that our bank make funds available only after

two days from the deposit of a check. This might be accomplished as follows:

insert (deposit (Y), Y.type = "check"),

clock(Y.evtime + 2D)

... action to update balance ...
write("credit %d to account # %d" Y amount, Y.account).

In this rule the "clock" event makes the rule waiting for two days after the check deposit

took place.

The EPL system assumes that there is some internal representation of time, and makes

available to the user a way to represent constant values expressing time. In particular, any

constant number can be followed by one of the following characters: 'S', 'M', 'H', _D',

which stand, respectively, for seconds, minutes, hours and days. In the previous example

the constant 2D stands for two days. A value for time is built as the sum of functions that

map days, hours, minutes and seconds to an internal representation. Thus 2D+24H+61M

will map to the same value of time as 3D+IH+IM. Thus, EPL rules are not dependent

on the internal clock representation chosen by the system. Observe that a clock can only

take a constant argument --i.e., a constant, or an expression which evaluates to a

constant of type time.

Patterns specifying (i) basic events, (ii) qualified events, (iii) the negations of these, and

(iv) clock events are called simple event patterns. Simple patterns can always be decided

being true or false on the basis of a single event. Composite event patterns are instead

those that can be only satisfied by two or more events. Composite event patterns are

24

inductivelydefinedasfollows.Let {p, p_ p j, n>l be event patterns (either composite
or simple.) Then the following are also composite event patterns:

1. (p_, P2 P2 : a sequence consisting of p, immediately followed by P2 ,
immediately followed by p_.

2. n.'pl : a sequence of n>0 c " 'onsecutave p_ s.

3. *:p_ • a sequence of zero or more consecutive p_'s.

4. [p,,p_ PJ:(pl, *:!P2, P2.... , *:!p,,p,).

5. {p, P2..... p,} denotes that at least one of thep, must be satisfied for (1 < i < n).

Using the composite patterns we can model complex patterns of events. For instance, we

can be interested to "the first sunny day after at least three consecutive raining days."

Assuming that we have a "weather" table which is updated every day (the "type"
attribute contains the weather type for the specific day.) Our rule will be:

[(3:insert(weather(X), X.type = _rain')),
insert(weather(Y), Y.type = _sun')]

->

write ("hurrah, eventually sun on %d\n", Y.evtime).

This rule fires even though between the three raining days and the sunny one there are
days whose weather type is different from "rain". In case We are interested to "the first

sunny day immediately following three or more raining days," we should rewrite the rule
as:

(3:insert(weather(X), X.type = _rain'),
*:insert(weather(Z), Z.type = _rain'),
insert(weather(Y), Y.type = _sun'))

->

write ("hurrah, eventually sun on %d\n", Y.evtime) .

Note the different use of the relaxed sequence operator "[...]" in the first case and the

immediate sequence one "(...)" in the second rule. By combination of the available

composite operators, EPL can express very complex patterns of events.

EPL ARCHITECTURE

EPL's architecture combines CLIPS with a DBMS that supports the active rule

paradigm. The current prototype runs on Sybase [SYBASE] and Postgres [POST] -- but
porting to other active RDBMS [K90][MS93] is rather straightforward.

Sybase rule system presents some drawbacks like:

- Only one trigger is allowed on each table for each possible event;

. The trigger fires immediately after the data modification takes place;

• Trigger execution is set oriented, which means the triggers are executed only once
regardless the number of tuples involved in the transaction;

• Only SQL statements are allowed as actions.

25

EPL tries to both overcome to such limitations and allow the user to model patterns of

meaningful events.

Event Monitoring Mechanism

For each event which needs to be monitored by an EPL rule a trigger and a table (also

referred as Event monitor Relation, ER) have to be created on Sybase. The trigger fn'es

on the event which can be either an insert, delete or, update. This u-igger will copy the

modified tuple(s) into the corresponding ER.

As an example, say that we want to monitor the insertion on the ACC relation previously

defined. As soon as the EPL monitor is loaded into the system the fact (universe

ace mon i ace), will be asserted into the CLIPS working memory. This new fact triggers

a CLIPS rule which creates a new Sybase relation called "ERacc ins" having the

following schema: (int accno, int balance, int evtime). Moreover, a Sybase trigger is

created by sending the following command from CLIPS to Sybase:

create trigger ETacc_ins on acc for insert as

begin
declare @d int
select @d- datediff(second, ,16:00:00:000 12/31/19_9', getdate())

insert ERacc ins select distinct *, @d from inserted

end

The event time is computed as the number of seconds since the 4pm of 12/31/1969. This

is a standard way to represent time on UNIX systems. Any ER name starts with the

prefix "ER" followed by both the monitored table name and the type of event. The

correspondent trigger has "ET" as prefix.

As later explained, the module EPL-Querler performs the communication between

CLIPS and Sybase.

EPL rules as finite-state machines

As previously discussed, anY EPL rule is modeled by a finite state automaton which is

implemented by a set of CLIPS rules. Transitions between automaton states take place

when the following conditions occur:

• a new incoming event satisfies the current pattern;

• a pending clock request reaches its time;

• a predicate is satisfied.

On a transition the automaton can take one of the following actions:

• Move to the next Acceptance state where it will wait for the next event;

• Move to a Fail state. Here, the automaton instantiation, with relative information, is

removed from the memory;

• Move to a Success state. Here, the actions specified in the right hand side of the rule

are executed.

26

EachEPL rule is transformedto a setof CLIPSrules which implementits finite state
machine.Severalinstantiationsof thesameEPLrulecanbeactiveatthesametime.

Architecture overview

EPL is basically built on top of CLIPS in two ways: 1) Some new functions,

implemented in C, have been added to CLIPS in order to support EPL; 2) CLIPS

programs have been written to implement the EPL rule execution system. Figure 1

depicts the entire EPL system.

EPL

I EPL]

I Querier I

co sQL / _" n_s

i_ /CLIPS /

i Fa s /
I EPL I /

! I EPL Demons

EPL

Compiler _----

S rules

User

Interface I

[.. •

EPL

source

code

User

Figure i. EPL Architecture

EPL-Compiler is a rule translator, it takes an EPL program as input and produces a set

of CLIPS rules which implement the EPL program. EPL-PolIing, at regular intervals,

transfers the ERs from Sybase to the CLIPS working memory. This process requires

some data type conversion in order to accommodate Sybase tuples as CLIPS facts. The

EPL-Querier sends SQL commands to Sybase server when either (1) Sybase triggers or

ERs have to be created (or removed) or when (2) an SQL command is invoked on the

action side of an EPL rule. The EPL-User-Interface accepts commands from the user

and produces output to either the screen or a file. At low level, EPL commands are

executed by asserting a fact in the CLIPS working memory. Such an assertion triggers a
rule which executes the desired command. This loose coupling allows an easy design of

the user interface whose only task is to insert a new fact depending on the user action.

EPL-Demons is a CLIPS program which implements the EPL rule execution system.

Basically this set of CLIPS rules monitors the entire EPL execution. The EPL demons,

together with the CLIPS rules produced by the EPL-compiler, form the entire CLIPS

program under normal execution time. The CLIPS facts on which these rules work are

those periodically produced by the EPL-Polling, and those asserted by the EPL user

interface as a consequence of user actions.

27

Conclusions

This document has described the design and the architecture of EPL, a system which

provides sophisticate event pattern monitoring and triggering facilities on top of

commercial active databases, such as SYBASE. EPL implementation is based on CLIPS

and the design of an interface between SYBASE and CLIPS represented one of the most

critical tasks in building EPL. EPL rules are translated into a set of CLIPS rules which

implement the finite state machine needed to execute such EPL rules.

This paper provided an overview of the language definition and a brief description of the

system implementation neglecting various implementation details for lack of space.

Future work is required to provide language extensions and interfacing with other active

database systems.

Acknowledgments. This report builds upon a previous one authored by S. Lau, R.

Muntz and C. Zaniolo. The authors would also like to thank Roger Barker for several

discussions on EPL.

REFERENCES

[Iso]

[COLE]

[SYBASE]

[Fo82]

[CLIPS]

[K90]

[LMM86]

!

ISO-ANSI Working Draft of SQL-3.

R. Coleman. "Pulling the Right Strings"; Database Programming and Design,

Sept. 1992, pp. 42-49.

Sybase Inc. Sybase's Reference Manual.

C.L.Forgy. "RETE: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem" on Artificial Intelligence 19, 1982.

"CLIPS User's Guide", Artificial Intelligence Section.

G.Koch, "Oracle: the Complete Reference," Berkeley, Osborne, McGraw-

Hill, 1990.

J.L Lassez, M.I. Maher, K. Marriot. "Unification Revisited", Lecture Notes

in Computer Science vol.306, Springer-Verlag, 1986.

[MS93] J.Mehon, A.R.Simon. "Understanding the new SQL: A Complete Guide,"

San Mateo, California, Morgan Kaufmann Publishers, San Francisco,

California, 1993.

[NT89]

[POST]

[St87]

[St92]

S.Naqvi, S.Tsur "A Logical Language for Data and Knowledge Bases,"

Computer Science Press, New York, 1989.

J. Rhein, G. Kemnitz, POSTGRES User Group, The POSTGRES User

Manual, University of California, Berkeley.

M. Stonebraker, The POSTGRES Storage System, Proc. 1987 VLDB

Conference, Brighton, England, Sept. 1987.

M. Stonebraker, The integration of rule systems and database systems IEEE

Transactions on Knowledge and Data Engineering, October 1992.

28

