
CLIPS++: Embedding CLIPS into C++ *

N95- 19630

Lance Obermeyer

Tactical Simulation Division

Applied Research Laboratories

The University of Texas at Austin

Austin, TX 78713

lanceo@arlut.utexas.edu

and Daniel P. Miranker

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712
miranker@cs.utexas.edu

Abstract

This paper describes a set of C++ extensions
to the CLIPS language and their embodyment in
CLIPS++. These extensions and the implemen-
tation approach of CLIPS++ provide a new level
of embeddability with C and C++. These exten-
sions are a C++ include statement and a defcon-

tainer construct;(include <c++-header-file.h>)
and (defcontainer <c++-¢ype>).

The includeconstructallowsC++ functionsto be
embedded inboththeLHS and RIISofCLIPS rules.

The headerfileinan includeconstructisthe same

headerfiletheprogrammer usesforhis/herown C++
code,independentof CLIPS. The defcontainercon-

tructallowsthe inferenceengineto treatC++ class

instancesas CLIPS deftemplatefacts.Consequently,
existingC++ classlibrariesmay be transparentlyim-

portedintoCLIPS. These C++ typesmay use ad-

vancedfeatureslikeinheritance,virtualfunctions,and
templates.

The implementationhas been testedwith sev-

eralclasslibraries,includingRogue Wave Software's
Tools.h++,GNU's libg++,and USL'sC++ Standard

Components. The executionspeedofCLIPS++ has
been determinedtobe 5 to 700 timestheexecution

speedof CLIPS 6.0(10to 20 x typical).

1 Introduction

CLIPS++ is a reimplementation of NASA's CLIPS
6.0 [3] that has been tailored to support applications

"This effort was funded in part by the State of Texas Ad-
vanced TechnologyProgram, the Applied ResearchLaboratories
Internal Research and Development Program DABT63-92-0042.

with large data and performance requirements or ap-
plications that must coexist with C++. This reimple-
mentation has the following features

* Rules may directly access C++ objects. No need
to reformat C++ objects to CLIPS representa-
tions or vica versa 1.

* Simple integration with'existing C++ code.

• Compatible with C++ development tools.

• Execution time is reduced from 5 to 700 times (10
to 20x typical).

• Scalabile with respect to data and throughput re-
quirements. See Section 3.2.

• Matching technology that eliminates the prob-
lems of volatile match time; resolving a critical
problem for real-time applications.

CLIPS++ is compatible with NASA CLIPS 6.0 ex-

cept that the COOL object system has been replaced
with C++ objects, and only a single LEX-like con-
flict resolution strategy is supported. Nearly all pub-
lically available CLIPS programs available on the In-
ternet have been compiled and correctly executed by
CLIPS++.

2 Language

The CLIPS++ system includes minor language ex-
tensions that allow CLIPS rules to operate transpar-
ently on C++ object instances. These extensions com-
prise just two new constructs and a semantic extension

to the use of deftemplate.

ICLIPS++ is a true integration with C++, not a simple
wrapper like RETE++

29

CLIPS 6.0Data Size
16 3

32 64

256

CLIPS++

<1

<1

Speed-Up
>3.00

>64.00

64 271 9 3 906.33

128 n.a 12
n.a 66

Table 1: Execution Time of Manners, (seconds),

CLIPS 6.0 vs. CLIPS++

2.1 Declarations

2.1.1 include

; salary, clp
(include "decls.h")

The include construct is equivalent to a C/C++

#include. It makes all declarations in a legal C/C++
header file visible to CLIPS++. For example, as-

sume the C++ header file decls.h declares a type

employee_type. That file may in turn include defi-
nitions from third party class libraries. The Rogue

Wave string and date classes are used in the running

example in this paper.

Consequently, listing the include statement (above)
at the beginning of a CLIPS++ source file makes dec-
larations inthe filedecls.h,includingemployee_type,

visibleto the CLIPS++ program.

3{X}O,

2500

3 is0o

TCO0

126 2_ $12

Pr_=lem g=e

Figure 1: Relative Performance of Manners, CLIPS
6.0 vs. CLIPS++

2.1.2 defcontainer

; salary.clp
(defcontainer employee (type employee_type))

#include<rw/cstring.h>
#include<rw/rwdate.h>

class last_raise_type {

public:
RNDate

);

class employee_type {

public:

date;

RNCString name;

RNCString_ get_department(void)
{return dept;}

last_raise_type last_raise;

private:

RWCString

);

dept;

The defcontainer construct is the primary language

addition. Defcontainer is equivalent to the CLIPS

deftemplate, except that it is used to declare that a
C++ type can be referenced in a rule's LHS. Note
that the slots of a defcontainer are precisely the slots

of the C++ object defined in the include file. Thus,

the arguments to defcontainer are limited to the con-
tainers name and the C++ type that is stored in that

container.

Any C++ type can be used provided that the type

overloads the operators == and > in the obvious way.
Advanced C++ features like inheritance, multiple in-

heritance, virtual functions, and templates may be

used. Most notably the C++ data type need not

inherit from a CLIPS++ provided base class. This

allows application developers great flexibility in de-

signing class hierarchies, and reusing existing code.

3O

2.2 Rule Syntax

There is no real change between CLIPS++ rule

syntax and CLIPS rule syntax. There is a semantic
extension to the meaning of the slot names for un-

ordered facts. When the compiler recognizes that a

template name is C++ container name, declared by
defcontainer, rather than a template name declared by

deftemplate, then the slot identifiers are allowed to be

any legal C++ expression that returns a value from an
object. The expressions may include the C++ dot (.)

and dereference (-/,) operators. As a result LHS's can
be formulated to traverse complex object structures.

For example, the following is a legal CLIPS++ rule

that operates on the class defined above. The compiler
recognizes employee as the name of a container of in-

stances of the C++ class employee_type. The slot

defined by the accessor function (get_department ())
returns values from the instances. The slot defined

by the expression (last_r_tise.date) returns a value

from a nested object instance.

; give a raise to everyone in r&d who has not
; had a raise since the beginning of 1994

(defrule give-a-raise-to-rkd

?e <- (employee
(get_department () "r&d")
(name ?name))

(last_raise. date ?d
&:(< ?d (RWDate 1 1 1994)))

=>

In the RHS, member functions may be called for

objects that are matched in the LHS. In both the RHS

and LHS, arbitrary C/C++ objects may be accessed
or called.

The tight integration with C++ has performance

benefits as well. C/C++ functions are directly called.
CLIPS introduces a level of indirection by activating C

functions through a name to address mapping scheme.

,_¢00

_00

_0

2000

1500

1000

f_00.

12 25 37 r_

Prd:_emS_e

Figure. 2: Relative Performance of Waltz, CLIPS 6.0
vs. CLIPS++

The system includes a debugger capable of mon-

itoring system execution and inspecting data, and a
profiler capable of guiding the user through the pro-

gram optimization sequence.

3.2 Performance and Matching Technol-

ogy

The CLIPS++ system employs both published and

unpublished optimization techniques developed over

: the last 12 years[7, 6, 4, 1, 5, 2]. The CLIPS++ sys-
tem features the LEAPS matching technique asymp-

totically better than RETE or TREAT. Consequently

the performance of CLIPS++ scales with problem size

3 Architecture and Environment

3.1 Development Environment

The CLIPS++ system is based on an optimizing

compiler that accepts CLIPS or CLIPS++ programs

as input and outputs C++. Output code is compiled
by the host system's C++ compiler, and linked with

a runtime library of CLIPS++ support routines.

data size CLIPS 6.0 CLIPS ++ Speed-Up

12 269 19 14.16

25 116 1 63 18.43

37 253 6 130 19.51

50 462 0 240 19.25

Table 2: Execution Time of Waltz, (seconds), CLIPS
6.0 vs. CLIPS++

31

asmeasuredbydataandthroughputrequirements 2.

Rather than computing an entire conflict set and

then applying a conflict resolution strategy to deter-

mine a single rule instantiation to fire, LEAPS folds
the conflict resolution strategy into the matcher such

that the first instantiation that it discovers on each cy-
cle is the same instantiation that a RETE or TREAT

implementation would fire. LEAPS has been formally

proven to produce the same execution sequences as
the RETE match.

Real-time applications benefit substantially. Since

it is much faster, and more predictable to com-

pute only the fired instantiation, CLIPS++ eliminates
much of the volatility in match times developers have

come to expect from rule systems. The combination

of the improved algorithm and the optimization tech-

niques often result in provably optimal code.

3.3 Integration with C-F+ Class Libraries

Integration with C++ class libraries is a simple
matter of including the correct header files and link-

ing with the correct libraries. CLIPS++ can inference
over class library objects if they are declared using

a defcontainer construct. CLIPS++ can call library
functions wherever a standard CLIPS function would

be used.

In the above example, the line

(last_raise.date ?d &:(< ?d (R_/Date 1 1

1994)))

uses RWDate objects, which are the date objects

from Rogue Wave's Tools.h++ class library. The
statement binds an object of type RWDate to the vari-

able ?d, constructs a temporary object with the date

1/1/94, and compares the bound object with the tem-

porary object. The comparison will automatically call

the Rogue Wave supplied function

operator <(const R_/Date& dl, const RWDate_

d2)

Nearly all of the complexities of C++ class libraries

are hidden from the programmer.

The CLIPS++ system has been tested with sev-

eral class libraries, including the Tools.h++ library

from Rogue Wave Software, the C++ Standard Com-

ponents from USL, and the libg++ library from GNU.

4 $ 16

I=_t_lam _e

Figure 3: Relative Performance of Waltzdb, CLIPS
6.0 vs. CLIPS++

4 Benchmark Results

We detail the performance of 4 of the 5 programs in

the Texas Benchmark suite, Waltz, Waltzdb, Manners

and ARP[1] s Performance results are for CLIPS++
vs. CLIPS 6.0 on standard benchmark programs. All

times reported are user + system cpu seconds. The

test platform was a Sun Sparcstation 2 running SunOS

4.1.3. Both the test programs and the baseline CLIPS

6.0 were compiled using GNU's gcc version 2.5.8, with

highest optimization.

We clearly demonstrate both absolute improve-

ments in speed and very substantial improvement in
scalability with respect to data size size. The asymp-

totic improvement due to the LEAPS match reveals

important speed improvement for small data set sizes
in the range of 3 to 7. As data set sizes increase, in-

creases in speed are measured by orders of magnitude

(i.e. lOx, lOOx even lO00x).

2Nearly all claims of scalable performance are based on in-
creasing the size of the rule base, not by increasing the size of
the working memory

3Available by ftp from anonymousQcs.utexas.edu, connect

to pub/opsS-benchmark-suite. CLIPS versions are also there.

32

data size CLIPS 6.0 CLIPS++ Speed-Up
4 95 13 7.31

8 38 1 29 13.14

16 151 9 72 21.10

Table 3: Execution Time of Waltzdb, (seconds),
CLIPS 6.0 vs. CLIPS++

!aoo

16oo

14oo

12Do

..B

,_ 1000¸

8100.

600,

40O

2O0

0

15 "

J

J

I I I

Figure 4: Relative Performance of ARP, CLIPS 6.0
vs. CLIPS++

Data size CLIPS 6.0 CLIPS++ Speed-Up
15 349 71 4.92

20 853 146 5.84
25 1332

30 1967
209 6.37

289 6.81

Table 4: Execution Time of ARP, (seconds), CLIPS
6.0 vs. CLIPS++

5 Conclusion

The CLIPS++ system is an advanced production

system that successfully integrates declarative CLIPS
rules with object oriented C++ data types. This in-

tegration extends from simple user defined types to
complicated class libraries from commercial vendors.

Additionally, the CLIPS++ system is based on the

LEAPS algorithm, and contains many published and
unpublished performance optimizations. The combi-

nation of the asymptotically superior LEAPS algo-
rithm and the optimizations results in a production
system of unprecedented performance.

[3]

[4]

(s]

[6]

References

[1] b.A. Brant, T. Grose, B. Lofaso, and D.P. Mi-
ranker. Effects of Database Size on Rule System Per-
formance:Five Case Studies. _n Proceedings o/the 17th
International Conference on Very Large Data Bases
(VLDB), 1991.

(2] D.A Brant and D.P. Miranker. Index Support for Rule
Activation. In Proceedings o.t the 1993 ACM SIGMOD
International Con.terence on the Management o] Data,
1993.

J.C. Giarratano. CLIPS User's Guide, Version 6.0. Ar-
tificial Intelligence Section, Lyndon B. Johnson Space
Center, 1994.

D. P. Miranker, D. Brant, B.J. Lofaso, and D. Gadbois.
On the Performance of Lazy Matching in Production
Systems. In Proceedings o.t the 1990 National Con]er-
enee on Artificial Intelligence, pages 685--692. AAAI,
July 1990.

D. P. Miranker, F.H. Burke, J. J. Steele, J. Kolts, and
D. R. Haug. The C++ Embeddable Rule System.
Int. Journal on Artificial Intelligence Tools, 2(1):33-
46, 1993. Also in the Proc. of the 1991 Int. Conf. on
Tools for Artificial Intelligence.

D. P. Miranker, B.J. Lofaso, G. Farmer, A. Chandra,
and D. Brant. On a TREAT Based Production Sys-
tem Compiler. In Proceedings o.t the l Oth International
Con/erence on Expert System, Avignon, France, pages
617-630, June 1990.

D.P. Miranker and B. J. Lofaso. The Organization
and Performance of a TREAT Based Production Sys-
tem Compiler. IEEE Trans. on Knowledge and Dot,
Engineering, pages 3-10, March 1991.

[7]

33

