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Abstract

This paper describes a CLIPS-based fuzzy expert system development
environment called FCLIPS and illustrates its application to the simulated
cart-pole balancing problem. FCLIPS is a straightforward extension of
CLIPS without any alteration to the CLIPS internal structures. It makes use
of the object-oriented and module features in CLIPS version 6.0 for the

implementation of fuzzy logic concepts. Systems of varying degrees of
mixed Boolean and fuzzy rules can be implemented in FCLIPS. Design and
implementation issues of FCLIPS will also be discussed.

I. Introduction

Production systems, better known as data-driven rule-based expert systems, attempt to
encode human problem-solving knowledge. The architecture of production systems
originated from research in cognitive psychology which observed that human behavior

tends to be modularized and reactive in nature [1]. Consequently, the production system
architecture was designed to allow for modularized and independent pieces of knowledge to
be encoded in the form of if-then rules or production rules. One of the first

implementations of a production system language is OPS5 (Official Production Systems)
which is based on LISP. The Software Technologies Group of NASA at Houston, Texas

later reimplemented a similar language called CLIPS (C-Language Integrated Production
System) in C mainly to increase speed and portability. Because of CLIPS flexibility and
source code availability, it quickly became popular among expert system developers. Since
its introduction several years ago, its has been frequently enhanced to embrace the latest
advances in software technology.

Fuzzy systems, based on fuzzy set theory, also seek to encode human problem-solving
knowledge. One of the most important contribution of fuzzy logic to the field of heuristic

systems is the introduction of the concept of linguistic variables [5]. Linguistic variables
are linguistic terms that are used to represent qualities of objects or concepts as in natural
languages. In fuzzy systems, linguistic variables are represented by a mathematical
function from which a value can be derived to indicate the similarity of an object to the ideal
form. The implication is rather significant: instead of modeling the real world asa discrete
world, linguistic variables allow a whole spectrum of continuous possibility to be modeled.

For example, instead of speaking about a world of discrete terms such as circles, squares,
and triangles, one can use linguistic variables to describe a larger set of the objects in terms
of the degree to which an object is similar to circles, squares or triangles. In addition to

linguistic variables, there is a set of operations in a fuzzy system. In the last few years,
fuzzy systems have proven their effectiveness in solving difficult problems, particularly in
the area of control [5]. Several commercial hardware and software tools have been
intrO'duced recently to build fuzzy systems.
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The similar and complementary nature of fuzzy systems and expert systems have naturally

suggested the idea of fuzzy expert systems in which the traditional Boolean production-
system architecture is extended to include the concepts of fuzzy systems. By combining

• S v
the proven techniques of production systems with the fuzzy system representation and
manipulation power, we believe the resulting system can effectively address even more
challenging AI problems. Since the CLIPS source code is available at almost no cost, there
have been attempts to extend CLIPS to a fuzzy expert system development environment.
The most notable examples are the FuzzyCLIPS from the Knowledge Systems Laboratory
of the National Research Council of Canada [6], and, also using the same name, the

FuzzyCLIPS by Togai Infralogics Inc. [7]. In this paper, we will focus on our own
implementation• The similarities and differences of these CLIPS-based systems will be
discussed at a later time. An important quality of FCLIPS is the simplicity of its design,
while still maintaining the ability to support a wide range of fuzzy expert systems.

In the following sections, we will describe the architecture of a typical Boolean production
system exemplified by CLIPS, the architecture of a fuzzy system, the design and
implementation issues of FCLIPS, the FCLIPS application to the cart-pole balancing

problem, and future FCLIPS extensions•

II. Production Systems

Production systems are based on the principles of modularity and contextual dependent
reaction in human behavior. A typical production system has three distinct modules, a

production memory for containing production rules, a working memory for facts, and an
inference engine for execution [1]. The production memory contains rules which have the
form of:

if <antecedent> then <consequent>

An example of a CLIPS rule is as follows:

(defrule My_House
(the house number is 123)
(the street name is Pennsylvania)

-->

(printout t "It is my house"))

Antecedent, also called therule's left hand side (LHS), contains Boolean predicates that
state the conditions for the actions to take place as specified in the consequent, or the right

hand side (RHS). A rule becomes a candidate for execution if its antecedent is satisfied by
facts in the working memory.

The working memory contains facts which describe the current state of a situation or a

problem• The set of facts in the working memory is often changed as new data arrives or
as the result of a rule being executed at each inference cycle.

The inference engine decides which rule is to be executed given the current set of facts in

the working memory. It first performs matching between rules and existing facts• In
CLIPS this matching is implemented using Rete net [2], known as the best pattern

matching algorithm. After matching, there may be more than one matched rule. The set of
matched rules is called the conflict set. Only one rule from the conflict set will be selected
to be executed via the process called conflict resolution. Once a rule is selected, its RHS is
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executedwhichoftenaffectstheworkingmemoryby adding,modifyingor deletingfacts
from theworking memory. As theresultof theworkingmemorybeingchanged,a new
conflict set is produced. The cycle goeson until the conflict set is empty or a haltinstructionisencountered.

Thecurrentversionof CLIPSprovidesseveralpowerfulfeaturesto thebasicarchitecture
of productionsystems.It hasabuilt-in object-orientedsystemwhichgreatly enhancesits
representationcapability. Insteadof usingattribute-valuepredicatesasin OPS5to model
problems,onecannow useclassesandobjects,whicharemorenaturalandexpressive.

Another important feature of CLIPS is modularity [8]. Rules that share some commonality
can be grouped into a module. Modules allow the implementation of context-switching. At
any time, only one module can be active and only its rules participate in the matching and
selection process. The concept of modularity allows more efficient organization of the
production memory and improves the scalability of a production system in terms of its
scope and speed [3].

In general, production systems are quite effective in providing heuristic solutions to

problems. They have been used in many real-world problems [5]. But while object-
orientation greatly improved the representation capability of production systems, the rule
predicates are still constrained to only Boolean statements which are not always natural to
model real-world problems. This is an area where fuzzy systems offer an attractivealternative.

III. Fuzzy Systems

Fuzzy systems are based on fuzzy set theory [4]. They are similar to Boolean production
systems in their use of if-then rules. However, they are different in two major aspects.
First, the LHS and RHS predicates of a fuzzy rule are fuzzy statements, not Boolean

statements. Secondly, fuzzy rules whose RHS have linguistic variables describing the
same subject, are all executed and collectively contribute to the final conclusion. In a

Boolean production system, rules compete to be solely executed. Example 1 shows fuzzyexpert system rules:

Rule_l: if Temperature is Hot

Pressure is High
then

Rule 2: if

then

set Change to Large

Temperature is Cold
Pressure is Medium

set Change to Small

Example 1: Fuzzy rules for a fuzzy system

The terms "Hot", "Cold", "High", "Medium", "Large" and "Small" are linguistic
variables. A linguistic variable describes tlie quality of a concept or an object in term of
degree of truth. The degree of truth is defined by a membership function that maps the

domain of a concept into a degree of truth between 0 and 1. Figure 1 shows examples of
membership functions of Temperature linguistic variables.
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Figure 1: Membership functions for Temperature, Pressure and Change

Given a temperature value of 70, and a pressure Value Of 20, the statement "Temperature is
Hot" in Rule 1 is evaluated to a truth value of .6. Similarly, "Temperature is Cold" is
evaluated to .3, "Pressure is High" to .5, and "Pressure is Medium" to .8.

The typical method of evaluating a rule is by taking the minimum of the truth values of the
LHS of the rule and applying an alpha-cut [5] to its RHS. The evaluations of Rule 1 and
Rule 2 are shown in Figure 2. The results from both rules are combined using the
maximum envelop operation and then defuzzified to give the final answer. There are
several methods for defuzzification such as the centroid or the mean-of-max methods [5].

Figure 2 shows the defuzzification of the variable Change using the centroid method.
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Figure 2: MIN-MAX operation and defuzzification using centroid method

As new values of Temperature and Pressure become available, the evaluation cycle repeats
and a new value for Change is generated.

Fuzzy system technology has been applied successfully to many difficult control problems.
It offers a straightforward way to encode human experience of solving real control

roblems into mach'_ne automation The features of linguistic variables and rulep
contribution from fuzzy systems have proven to be very effective in modeling and solving

many problems for which the continuity of variables involved is critical.
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There have been several commercial tools developed to facilitate the implementation of
fuzzy systems. However, they often allow only rules of common consequent and
therefore, small in number. This small and monolithic characteristic of current_fuzzy

system implementations prevents them from addressing problems that require deep
reasoning such as those in the areas of diagnosis, planning, or design.

Combining the best features of fuzzy systems and Boolean production systems will create
a general system that can address more effectively a greater range of problem domains.
Such systems are called fuzzy expert systems. In the following sections we will describe
our fuzzy system extensions to CLIPS, including design and implementation issues.

IV. Implementation of Fuzzy Expert Systems in CLIPS

Our goal is to simply extend CLIPS to allow linguistic variables to be used in rules and to
provide the necessary fuzzy operations to support them. The addition of support for
linguistic variables in CLIPS is straightforward and does not pose any conflict with the
original philosophy of production systems. However, the conflicting approaches of rule
competition in Boolean production systems and rule cooperation in fuzzy systems needs to
be resolved in a way that does not violate the original philosophies of either technique. Our
approach to the CLIPS extensions is to preserve the integrity of CLIPS as much as possible
and to only introduce new constructs when necessary.

Linguistic Variable and Operations

A linguistic variable is defined by a membership function. We implement a membership
function as a CLIPS class called MFunc. A membership function can then be defined as an
object instance of the class MFunc. Its value is specified as a piece-wise linear function
which is a sequence of (x,y) coordinate pairs in the form (xl yl x2 y2 .... xn yn). For
example, the Hot function is specified as follows:

(make-instance Hot of MFunc (Func 0 0 10 1 50 0))

Once the linguistic variable is defined, a value, for example, 8, can be tested against the
membership function to give the corresponding degree of truth, or truth value, using the
function "deg".

(deg 8 Hot)

The above statement will return a truth value of .8. Another very useful function is the
Boolean function "is" which checks out if a value is within the domain of a membership
function. It returns true if the value is within the domain and false otherwise. For

examples,

(is 8 Hot) returns true, and (is -100 Hot) returns false.

In addition to the class MFunc, a fuzzy variable is represented by the class FVar. For
example, "Change", an object instance of the class FVar, is first defined as follows:

(make-instance Change of FVar)
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A fuzzyvariablecanhaveavalueof nil or of apiece-wiselinear function. Thisvaluecan
becombinedin theMIN-MAX fashionwith anotherlinearpiece-wisefunctionto yield a
newvalue.

Usingthefunction"is" in theLHS,thefuzzyrule Rule 1in sectionIII canberewrittenin
theCLIPSdefruleconstructasfollows:

(defruleRule 1
(Temperature?x&:(is?xHot))
(Pressure?y&:(is?yHigh))

=>

(bind ?m (fmin ?x Hot ?y High))
(set Change Large ?m))

Since the LHS only contains Boolean predicates, it fits into the CLIPS defrule construct.
Truth values of Temperature and Pressure are not evaluated until the rule is executed. This

is designed to avoid unnecessary evaluations during the rule matching stage. If the rule is
chosen for execution, the MIN-MAX operation is performed as specified in the RHS.

The function "fmin" returns the minimum value of the truth values in the LHS. The

function "set" then uses this value to perform an alpha-cut on the membership function
Large, which is then combined with the current value of the fuzzy variable Change using
the maximum envelop operation.

With a few new classes and functions, a fuzzy rule can now be written in CLIPS format.
The next section discusses issues related to the interaction of multiple fuzzy rules.

Fuzzy Processing

When multiple fuzzy rules exist in the production memory, a fuzzy cycle has to be
implemented so that the contributing results to fuzzy variables from each rule can be
integrated into a single value. We achieve this goal in FCLIPS by having a fuzzy inference
rule of lower priority or salience value which is executed at the end of each fuzzy cycle.
The set of fuzzy rules in section III can be rewritten as follows:

(defmodule FuzzyModule

(defrule Rule 1

(Temperature ?x&:(is ?x Hot))
(Pressure ?y&:(is ?y High))

=>

(bind ?m (fmin ?x Hot ?y High))
(set Change Large ?m))

(defrule Rule 2

(Temperature ?x&:(is ?x Cold))
(Pressure ?y&:(is ?y Medium))

=>

(bind ?m (fmin ?x Cold ?y Medium))
(set Change Small ?m))

(defrule Fuzzy_Engine
(declare (salience -10))
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.->

?fl <- (Temperature ?x)
?f2 <- (Pressure ?y)

(retract ?fl ?f2)
(<check stopping condition> ?x ?y)
(<defuzzify, apply and reset> Change)
(<get new values for Temperature & Pressure>))

Example 2: A CLIPS-based fuzzy module

During a fuzzy cycle, the fuzzy variable Change accumulates the results from rules

executed. At the end of the cycle, the Fuzzy_Engine rule is executed. Change is typically
defuzzified and the result is asserted into the working memory or sent to an external
environment.

To avoid potential interference from other rules in the production memory, this set of rules
can be conveniently grouped into a CLIPS module. With a few extra fuzzy related classes
and functions, CLIPS is now capable of supporting traditional fuzzy systems as described
in section III. There are no changes necessary to the conflict resolution or rule matching
modules of CLIPS. Yet, a new kind of mixed systems is also now possible. In these
systems, not only can the LHS of a rule have any number of mixed Boolean or fuzzy
predicates, but the RHS can also. This is a major improvement from traditional fuzzy
systems whose rules' RHS have to be about the same subject.

Of course, due to the differences in the nature of production systems and fuzzy systems,
there are several issues that need to be addressed for systems that allow mixed rules: (1)
how to prioritize mixed rules in conflict resolution, (2) how to group fuzzy rules of
different RHS' into fuzzy modules, (3) how to differentiate fuzzy cycles and Boolean
cycles, and (4) how to propagate fuzzy conclusiens. To illustrate these issues more
clearly, we will use the examples of the following rules. The assumed truth values of
antecedents are given on the right.

truth values

rule 1: if (A > 10) 1
(B is Small) .3

then

(set C to Large)
(set D to Medium)

rule 2: if (A is Large) .7
(D is Small) .3

then

(set c to Medium)
(set E to Small)

rule 3: if (A > 25) 1
(x > 25) 1

then

(set E to Large)

Example 3: Mixed rules with different truth values
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Forthefirst issue,basedon thetruthvaluesalone,how shouldtheserulesbeprioritized?
Wearguethattheyall shouldhavethesameprioritydespitethefactthatthetruthvaluesfor
somefuzzy predicatesarelessthanothers. Thefuzzy statement"B is Small" with truth
valueof .3is no lesssignificantthan"A is Large"with truthvalue.7,becausetruthvalues
in fuzzylogic arenot thesameasuncertaintyvalueswhichhavebeenusedasacriteriafor
conflict resolutionin somesystems."B isSmall" with truthvalue.3 is adescriptionwith
completecertaintyof howsmallB is,whichis indicatedbythetruthvalueof .3. Besides,
in traditionalfuzzysystems,asmalltruthvalueof afuzzypredicatein aruledoesnotaffect
therule'sconclusionvalidity, butonlytheactualvalueof theconclusion.Consequentlyas
long asa fuzzy predicatehasa truthvalueof greaterthan0 in FCLIPS,it is considered
equivalent to a Boolean statementof value true. This interpretationis particularly
significant in that it doesnot requireextraprocessingfor mixed rules during the rule
matchingstage.

The secondissuepoints to thefact that traditionalfuzzy systemsonly allow rulesthat
addressthesamesubjecton theirRHS. In theexampleabove,thereis noobviousway to
groupthesethreerulesinto fuzzymodulessincetheirRHS'arenotexactlyaboutthesame
subjects.Rule l's RHS is aboutC andD, rule 2 C andE, andrule 3 E. It turnsout that
wedon'thaveto groupthem,asthefollowing discussionwill show.

Thethirdissueconcernstheinterpretationof thesignificanceof afuzzyrule,aBooleanrule
andamixedrule. This interpretationis importantfor determininghow conflictresolution
shouldbechanged.Therearetwo interpretationsfor thesignificanceof fuzzy rulesand
fuzzy modulesversusa Booleanrule. In the first interpretation,a fuzzy module is
consideredequivalentto aBooleanrulein aBooleanproductionsystem,sinceall therules
in a fuzzy modulecanbe thoughtof asbeingexecutedin parallelandcontributingto a
singleconclusion. This interpretationisvalid andin commonuse[7]. It canalreadybe
implementedin FCLIPSby usingtheexistingdefmoduleconstructto groupfuzzyrulesof
thesamemodule,asshownin Example2.

In the secondinterpretation,all threekinds of rules areequivalentand competefor
executionon thesamegrounds.This interpretationis intuitive andlessrestrictive,but it
posesa questionaboutwhenafuzzycyclestartsandstops,i. e.whenis afuzzyvariable
defuzzified? In FCLIPS, thisquestionof fuzzy cycle is resolvedby introducingrulesof
highersaliencevaluespecifyingdefuzzifyingconditionsfor eachfuzzyvariablementioned
in therules'RHS. An exampleof adefuzzifyingrulefor thefuzzyvariableCin Example3
is asfollows:

RuleDefuzzifyingC:
if

then

(dectare(salience10))
(TimeStamp> 10)
(Cnotequalnil)

(<defuzzifying,applyandreset>C)

Therearesimilardefuzzificationrulesfor D andE. Thesecondissueconcerninghow to
grouprules into fuzzy modulesis no longeran issue,becausethereis no fuzzymodule,
only defuzzifyingconditionsfor fuzzyvariablesinaruleconsequent.Both interpretations
areimplementableunderFCLIPS. Thefirst is moretraditionalandof commonuse.The
secondis moregeneralandinteresting.

And finally, the fourth issueconcernsthe multiple-stepreasoningwhereconclusions
reachedremain in fuzzy form to matchtherules in thefollowing cycles. By avoiding
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defuzzification in intermediate reasoning steps, less information will be lost. Given the

following two rules,

Rule 1: if (A is Small)
then (B is Large)

Rule 2: if (B is Small)
then (C is Medium)

assume that Rule 1 is executed and generates a fuzzy value X for "B is large". The truth
value for "B is Small" in rule 2 will then be calculated as [15]:

truth value - 1 - MeanSquareError (X, Small)

This operation is not yet (but will be soon) implemented in FCLIPS. Currently, B has to
be defuzzified after rule i execution before being matched into rule 2 antecedent.

In summary, FCLIPS is an extension to CLIPS to provide a fuzzy expert system
development environment. Despite its simplicity, it is capable of supporting a wide range
of fuzzy expert systems. An FCLIPS implementation has been fully p rototyped and
successfully tested in CLIPS code. It is currently being ported to C. In addition, a
ToolTalk interprocess communication facility was added to FCLIPS to communicate with
external processes. In the next section, an example using FCLIPS is described.

V. Example: The Cart-Pole Balancing Problem

The Cart-Pole Balancing problem, also called the Inverted-Pendulum problem, is a popular
test case for fuzzy systems. In this section, we describe the structure and key components
of a FCLIPS program that solves this problem. The problem is stated as follows:

A cart is moveable along 1 dimension with a pole on top as shown in Figure 3. Its state
variables, which include the pole angle, the pole angular velocity, the current position and
velocity of the cart, are known. Calculate the appropriate force to apply to the cart to keep

the pole balanced.

Angle _ Angular Velocity

I _ _- Velocity

Position

Figure 3: Cart-Pole Balancing problem
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First, a function called "model" that simulates the dynamics of the cart-pole system is
defined. It takes the applied force and the current state variables as arguments and generatesa new set of state variables.

(deffunction model (?force ?polePosition ?poleVelocity

?cartPosition ?cartVelocity)...)

Six membership functions for the pole angle or pole position, A NegMed, A NegSmaI1,
A_Zero, A_PosSmall, A PosMed, and A_VerySmall, are defined-

(make-instance A NegMed of MFunc (Func -50 0 -20 1 -15 1 -10 0))
(make-instance A-NegSmall of MFunc (Func -20 0 -10 1 0 0))
•.. (more make-inStance's)

And similarly, for Angular Velocity: Av NegSmall, Av Zero, Av PosSmaI1, and

Av VerySmall; for Distance: D Neg, D Zero, D Pos, D VerySmall; for Velocity: V Neg,
V_.-Zero, V Pos, D VeryS'-mall; _nd fo_ Force: F NegMed, F NegSTnall,
F_NegVerySnaall, F_Zero, FPosVerySmall, F_PosSmall, and FPosMed. -

The initial configuration of the cart-pole system is defined in the startup rule. The values
can be changed for testing purposes.

(defrule startup
=>

(assert (PolePosition 5))
(assert (PoleVelocity 0))
(assert (Position 0))
(assert ('Velocity 0)))

There are 9 rules devised to balance the pole position:

(defrule Rulel

(PolePosition ?x&:(is ?x A PosMed))
(PoleVelocity ?y&:(is ?y A_ Zero))

.-->

(bind ?m (fmin ?x A PosMed ?y Av Zero))
(set Force F. PosMed" ?m))

(defrule Rule2

(PolePosition ?x&:(is ?x A PosSmall))
(PoleVelocity ?y&:(is ?y A__PosSmall))

=>

(bind ?m (fmin ?x A PosSmall ?y Av PosSmall))
(set Force F_PosSmffil ?m))

•.. ( more defrules' )

And one deffuzzification rule:

(defrule engine

(declare (salience -10))
?fl <- (PolePosition ?x)
?f2 <- (PoleVelocity ?y)
?f3 <- (Position ?z)

90



=>

?f4 <- (Velocity ?w)

(retract ?fl ?f2 ?f3 ?f4)
(bind ?torq (cent-;-,Nd (send [Force] get-Val)))
(bind ?vals (model ?to N ?x ?y ?x ?w))
(assert (PolePosition (nth$1 ?vals)))
(assert (PoleVelocity (nth$ 2 ?vals)))
(assert (Position (nth$ 3 ?vals)))
(assert ('Velocity (nth$ 4 ?vals))))

; delete old facts
; defuzzification
; new values
; create new facts

The function "centroid" performs defuzzification using the centroid method [5]. The new
values can be sent to graphs, files or simulation. In our testing, the results were sent via
ToolTalk to a separate graphic simulation process for displaying the cart-pole system
behavior. After some tuning of the membership functions, the system was able to balance
the pole.

Conclusions

FCLIPS is a simple and straight-forward implementation of a fuzzy expert system
development environment based on CLIPS. The CLIPS object-oriented and modularity
features were exploited to implement fuzzy logic concepts into CLIPS. Despite the
simplicity of FCLIPS, it can be used to develop systems containing a wide range of mixed
Boolean and fuzzy rules. With FCLIPS, fuzzy expert system solutions can be introduced
to problems which typically require deep reasoning such as those in the areas of diagnosis,
planning, or design.
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