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ABSTRACT

Many dynamic systems operate in select operating regions, each

exhibiting characteristic modes of behavior. It is traditional to

employ standard adjustable gain PID loops in such systems where

no apriori model information is available. However, for control-

ling inlet pressure for rocket engine testing, problems in fine

tuning, disturbance accommodation, and control gains for new

profile operating regions (for R&D) are typically encountered

[2]. Because of the capability of capturing i/o peculiarities,

using NETS, a back propagation trained neural network controller

is specified. For select operating regions, the neural network
controller is simulated to be as robust as the PID controller.

For a comparative analysis, the Higher Order Moment Neural Array

(HOMNA) method [i] is used to specify a second neural controller

by extracting critical exemplars from the i/o data set.

Furthermore, using the critical exemplars from the HOMNA method,

a third neural controller is developed using NETS back

propagation algorithm. All controllers are benchmarked against

each other.

I. INTRODUCTION

An actual propellant run tank pressurization system is shown in

Figure i.i for liquid oxygen (LOX). The plant is the 23000 gallon

LOX run tank. The primary controlling element is an electro-

hydraulic (servo) valve labeled as EHV-1024. The minor loop is

represented by a valve position feedback transducer (LVDT). The

major or outer loop is represented by a pressure transducer (0-

200 psig). The current controller is a standard PID servo

controller. The reference pressure setpoint is provided by a G.E.

Programmable Logic Controller. The linearized state equations for

the system are shown below:

Xl=X2- (0.8kg+c) x 1

x2=5kg au-(0.8kg c+d) Xl+X3

(1.1)

(1.2)

x3=5abkg u-(0.8kg d+f)xl+x 4 (1.3)

x4=-0.8kg fx I (1.4)

where kg=l, servo valve minimum gain. Based on previous SSME

test firings, the average operating values for each state
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variable are determined to be

Xl = PB:0-76 psig

x2 = Tu :150-300 R°

where PB = bottom tank pressure

Tu = ullage temperature

Vu = ullage volume

L = valve stem stroke length

using those ranges, the

algebraically determined:

a = 120.05

b = 89.19

following

d = 5995.44

f = 14.70

c = 214.30

x3 = Vu :250-350 ft3

x4 = L:0-1 inch

average coefficients are

II. Methodology

I. using a developed PID-system routine from [2], an i/o

histogram is established in the required format per [i] for a

select cardinality of 300. Figure 2.1 portrays the scheme. A

ramp control setpoint signal (from 0-120 psig) served as the

reference trajectory. The input portion of the histogram is

selected to be a five dimensional (300x5) matrix, four

successive delayed samples and the current sample. The output

portion is a one dimensional (300xl) vector. Therefore, the

i/o histogram is simply represented by a 300x6 matrix.

2. using the captured i/o data set and NETS back propagation

algorithm, a neural network is next established with a 5-10-
i0-I architecture. The trained network is next simulated as

the controller for the system. Figure 2.2 illustrates the

simulation scheme.

3. Using a developed HOMNA (KERNELS) algorithm [i], a reduced

training i/o set is specified. The input portion of the set,

"S", will provide the mapping of real time system inputs to

the neural net controller (NNC). The output segment of the

set is represented by the last column vector of the i/o set.

4. After configuring the reduced i/o set into the needed

formats, using MATLAB, the gain equation (2.1) is executed.
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Figure 2.1 Scheme For Building i/o Histogram and Training Set

K = yG-I = Y_}_(SS*) (2.1)

where K = neural gains (row vector) for single neural layer

Y = NNC controller output signature row vector

S = established matrix set of step 3

= any (decoupled) operation: exponential, etc.

For this project, • was identical with that used in the

literature of [i], namely the exponential function. "K" serves

as a mapping function of the input, by way of "S", to the NNC

output, u(j). Here, u(j) serves as control input to the system
and is determined by equation (2.2) [i].

u(j) = KUr'(Sx(j)) (2.2)

where x(j) is the vector input. In accordance with the dimensions

of the i/o histogram, a five dimensional input is used and is

accomplished using successive delays. Namely, a typical input for

any given sample is represented by

[x(j) x(j-l) x(j-2) x(j-3) x(j-4)]

The overall HOMNA scheme is embedded in the neural controller

block of Figure 2.2 as a 5-5-1 architecture (single hidden

layer).
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Figure 2.2. Simulation Scheme for NNC and System

5. For select cases to be presented, integral control for the

HOMNA system was presented according to the following scheme

of [i].

= _lZ[y(J)- (2 3)
N

where

t

N = window (sampling) size

y(j) = current system output

y(j) = desired output, or command setpoint, sp

6. Using the training i/o set of part 3, a separate neural

network controller is established, again using NETS. The

simulation scheme is similar to that of part 2.

7. PID system response plots are generated for a further

comparitive analysis.
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llI. RESULT8

Table I.

Cas_

Case Summary

5
6
7
8

i0
ii
12

System

Neural
HOMNA
HOMNA

PID
Neural
HOMNA

PID
Neural
HOMNA
HOMNA

PID
Neural

Setpoint
Command

Ramp
Ramp
Ramp
Ramp
Ramp
Ramp
Ramp

Profile

Noise

no
no None
no None
no

yes
yes
yes
no

Integral
Control

n/a

Present
n/a

Present
Present

n/a
Profile no None
Profile no Present
Profile
Profile

yes
yes

yes

yes

no

Present

n/a

None
Present

Ramp

13 HOMNA profile
14 HOMNA Profile

15 Neural n/a
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Figure 3.1 Case 1, 3, and 4 Simulation Results
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Figure 3.9 Case 12 and 14 Simulation Results

101



SETPOINT PRESSURE CONTROL

O

40.0

.35.0

50.0

25.0

20.0

"15.0

70.0

5.0

0.0

-- 5. 8

/

,,i

','7/ i

/

2.5' ' o.0
SECONDS

Figure 3.10 Case 13 Simulation Results

qD

120

Ic©

80

6(

4(

2O

SETPOINT PRESSURE CONTROL

..S
.11,I_y

I._ i
_.i- ......... i......

f

17

.-i/

.... I...... _---

SECONDS
_.0
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IV. DISCUSSION AND CONCLUSIONS

From Table 3.1 and the presented simulation results, the back-

propagation trained and the HOMNA neural systems are proven to

track varying command setpoints within the bounds of the training

i/o histogram. Without incorporation of the integration scheme of

[i], the HOMNA system still proved its tracking ability, though

with varying levels of offsets. The proportional-integral-

derivative (PID) system results exhibited no offsets due to the

inherent integral scheme of the PID controller. From the

simulation results, it is concluded that the integration scheme

of [i] was simple to employ with equally satisfying results. Both

back-prop trained, HOMNA, and PID systems proved their ability to

accommodate for the varying levels of random noise injection.

In the use of NETS for the back propagation trained neural net-

work, the ability to adjust the learning rate, momentum term, and

the scaling factor (globally or locally) allowed for various con-

figurations for starting conditions in the training. For the this

project, the default global momentum was used, 0.09. A global

learning rate of 0.5 through 1 was used for all cases. A scaling

factor of 0.I was used for all cases.

For the HOMNA trained system, larger i/o histogram Sets were at-

tempted with no significant difference in performance for select
cases. With more effort or other techniques, it is believed that

the difference could be corrected. In this project it was

discovered that stripping the first few exemplar vectors from the

i/o histogram (or the established training set) made a signifi-

cant difference in the performance. For some cases, without

stripping the first few inherent exemplar state vectors resulted
in erroneous results ranging from wide dispersion (between set-

point and system state) to complete instability. The justifica-

tion for stripping the first few exemplars stems from the scheme

of [i]. That is, for the first few exemplars there is always in-

herent membership in the training set kernel. For select cases,

the effects of stripping the exemplars before or after the Ker-

nels algorithm software routine had no indicative difference.

For the neural controller of step 6 (i/o training set generated

by the Kernels algorithm), Figure 3.11 illustrates that the con-
troller can still track the command setpoint; however, the amount

of offset, unseen in other backprop cases where the training set

was the full i/o histogram (300 samples), is obviously due to the

reduced size of the training set (40 samples). This was expected

since the purpose of the Kernels algorithm is to select critical

exemplars from a large data set. It is these critical exemplars

that best represents the set (or population) as a whole. The

choice of a back-prop trained or a HOMNA based neural controller

to serve as a standalone or parallel backup to an existing PID

controller is certainly realizable.
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