
N95- 19638

CLIPS TEMPLATE SYSTEM FOR PROGRAM

UNDERSTANDING

Ronald B. Finkbine, PhD.

Department of Computer Science

Southeastern Oklahoma State University

Durant, OK 74701

finkb ine@bab bage.sosu, edu

ABSTRACT

Program Understanding is a subfield of sol, rare re-engineering and attempts to

recognize the run-time behavior of source code. To this point, the success in this area

has been limited to very small code segments. An expert system, HLAR (High-Level

Algorithm Recognizer),has been written in CLIPS and recognizes three sorting

algorithms, Selection Sort, Quicksort and Heapsort. This paper describes the HLAR

system in general and, in depth, the CLIPS templates used for program representation

and understanding.

INTRODUCTION

Sottware re-engineering is a field of Computer Science that has developed inconsistently since the

beginning of computer programming. Certain aspects of what is now sottware re-engineering have

been known by many names: maintenance, conversion, rehosting, reprogramming, code beautifying,

restructuring, and rewriting. Regardless of the name, these efforts have been concerned with porting

system fimetionality and/or increasing system conformity with programming standards in an efficient

and timely manner. The practice of soil:ware re-engineering has been constrained by the supposition

that algorithms written in outdated languages cannot be re-engineered into robust applications with
or without automation.

It is believed by this author that existing sottware can be analyzed, data structures and algorithms

recognized, and programs optimized at the source code level with expert systems technology using

some form of intermediate representation. This intermediate form will provide a foundation for

common tool development allowing intelligent recognition and manipulation. This paper describes

a portion of the HLAR (High-Level Algorithm Recognition) system 1

The Levels of understanding in the sotS, are re-engineering and Computer Science fields is displayed

105



in Figure 1 2. The lowest of these, text, is

realized in the simple me operations;

opening, reading,

writing and closing. The next level is token

understanding and occurs in compilers

within their scanner subsystem.

Understanding at the next level, statement,

and higher generally does not occur in most

[7] Program

[6] Plan

[5] Semantic

[4] Compound Statement

[3] Statement

[2] Token

[i] Text

Figure i: Levels of Understanding

compilers, which tend to break statements

into portions and correctly translate each portion, and, therefore, the entire statement. One exception

is the semantic level which some compilers perform when searching for syntactically correct but

logically incorrect segments such as while (3 < 4) do S.

Sofivcare re-engineering requires that higher- l (assign I

level understanding take place and the act of l I

understanding should be performed on an Figure 2: Assignment Statement

intermediate form. The representation method

used in this research project is the language ALICE, a very small language with a Lisp-like syntax.

It is intended that programs in existing high-level languages be translated into ALICE for recognition

and manipulation. This language has only five executable statements, ass-/gn,/f, loop, call and goto.

All syntactic sugar is removed, replaced with parentheses. Figure 2 displays a.simple assignment

statement. The goto statement is used for translating unstructured programs and the goal is to

transform all unstructured programs into structured ones.

FACT REPRESENTATION

Prior to initiation of the HLAR system, programs in the ALICE intermediate form are translated into

a set of CLIPS facts which activate (be input to and fulfill the conditions of) the low-level rules. Facts

come in different types called templates (records) which are equivalent to frames and are" asserted"

and placed into the CLIPS facts list. Slots

(fields) hold values of specified types (integer,

float, string, symbol) and have default values.

As a rule fires and a fact, or group of facts, is

recognized, a new fact containing the

knowledge found will have its slots filled and

asserted. Continuation of this process will

recognize a larger group of facts and, hopefully,

one of the common algorithms.

The ass/gn statement fi'om the previous Figure

is translated into the equivalent list of facts in

Figure 2. This is a much more complicated

representation, and not a good one for

programmers, but much more suitable for an

(general node (number I)

(sibling 0)
(address "2.10.5")

(node type assign_node))

(assignZnode (number I)
(lhs node 1)(rhs_node i)

(gene_alnode_parent I))
(identifler_node (number

(operand 2)(name "x"))

(expression_node (number
(operand 1 2))

(integer iTteral node
(numbe? I) -

(operand 2)(value I))

z)

i)

Figure 3: Facts List

I06



expert system.

The code of this Figure displays a number of different templates. The general_node is used to keep

all statements in the proper order within a program and the node_type slot describes the type of

statement associated with the node. The template ass/gn_node with its appropriate number slot, its

lhs__slot slot points to the number one operandnode, which is also pointed to by the operand slot
in the number one identifier_node. The rhs_node slot of the assignment points to the number one

expression_node and its operand_l slot points to the number two operandnode which is also

pointed to by the operand slot in the number one integer_literal_node.

This is a more complex representationof a program than ks ALICE form, but it is in a form that eases

construct recognition. An ALICE program expressed in a series of CLIPS facts is a list and requires

no recursion for parsing. Each type of node (i.e. general, assign, identifier, integerliteral, operand,
expression) are numbered from one and referenced by that number. Once the ALICE program is
converted into a facts list, low-level processing can begin.

TEMPLATE REPRESENTATION

Templates in CLIPS are similar to records or frames in other languages. In the HLAR system,

templates are used in a number of different areas including general token, p/an and knowledge

representation. A properly formed template has the general form of the keyword deflemplate
followed by the name of the template, an optional comment enclosed in double quotes and a number

offieldlocafions identifying attributes of the template. Each attribute must be of the simple types in

the CLIPS system: integer, string, real, boolean or symbol (equivalent to a Pascal enumerated type)
and default values of all attributes can be specified.

Currently there are three types of template recognition;
general templates are used to represent the statement
sequence that constitute the original program., object
templates are used to represent the clauses, statements

and algorithms that are recognized, and control
templates are used to contain the recognition process.

GENERAL TEMPLATES

The names of all the general templates are listed in

Figure 4. These are the templates that are required to
represent a program in a list of facts having been

translated from its original language which is similar to
a compiler derivation tree.

The general_node referenced in this Figure is used to

organize the order of the statements in the program.
Prior to the HLAR system being initialized, a utility

general node
argument node
assign n_de
call n_de

define routine node

define-variable node

define-structure node
evaluation node -

expressionZnode
if node

lo_p_node
parameter node

program node
identifYer node

integer literal node
struc ref node -

struc len node

Figure 4: General Templates

107



program parses the ALICE program depth-first and generates the facts list needed for analysis. The

generalnode template is utilized to represent the order of the statements and contains no pointers

to statement nodes. The statement-type nodes identified in the next section contain all pointers

necessary to maintain program structure. Each token-type has its own templates for representation

within an ALICE program. Included are node typos for routine definitions, the various types of

compound and simple statements, and the attributes of each of these statements. The various types

of simple statement nodes contain pointers back to the general_node to keep track of statement

order. These statement node templates contain the attributes necessary to syntactically and

semantically reproduce the statements as specified in the original language program, prior to

translation into ALICE.

In an effort to reduce recognition complexity, which

is the intent of this research, specialty templates

for each item of interest within a program have been

created. An earlier version of this system had different

templates for each form, instead of one template with

a symbol-type field for specification. This refinement

has reduced the number of templates required, thus

reducing the amount of HLAR code and the

programmer conceptual-difficulty level. The specialty

templates are listed in Figure 5.

spec_call

spec_parameter

spec_exp.
spec asslgn

loop_-algorithm

spec_eval
mlnimum algorithm
swap algorithm

if_aTgorithm

sort_algorithm

Figure 5: Special Templates

OBJECT TEMPLATES

Expressions are the lowest-common denominator of program understanding. They can occur in

nearly all statements within an ALICE program. To reduce the complexity of program

understmnting, each expression for which we search is designated as a special expression with a

specified symbol-type identifier. Expressions and structure references present a particular

problem since they are mutually recursive as expressions can contain structure references and

structure references can contain expressions. This problem came to light as the HLAR system became

too large to run on the chosen architecture (out of memory) with the number of templates, rules and

facts present at one time. Separation of the rules into several passes required that expressions and

structure references be detected within the same rule group. Examples a[i] and a[i+l] > a[i]

represent these concepts.

108



Figure 6 contains the specialty

template for expressions. This

template contains a number of

fields for specific values, but most

of interest is the field type exp.

Identifiers that represent specific

expressions are listed as the

allowed symbols. Complexity is

reduced in this representation

since multiple versions of the

same statement can be represented

by the same symbol. An example
is two versions of a variable

increment statement; x = x + 1
andx = 1 +x.

Recognition of various forms of

the assign statement occurs within

the variable rules of HLA1L

Common statements such as

increments and decrements are

recognized, as well as very

specific statements such as x -- y /
2+1.

Variable analysis is performed

from one or more assign
statements. The intent is to

classify variables according to

their usage, thus determining

(deftemplate spec_exp

(field type_exp (type SYMBOL)
(default exp none)

(allowed-symbols exp none

exp 0 exp 1 exp iN exp first
exp-div_i_ 2 exp_plus id 1
exp mlnus [d 1 exp plus Td 2

exp-minus-id-2 exp-mul t-id-2

exp_plus _iv-id 2 1
exp minus di_ iN _ 1

exp-div pl-us l_d l_d-2

exp-ge [d id-exp g_ const id

exp_-gt-id-id exp-gt-id cO_st

exp-gt-id-minus i'd Y

exp_-i t-id-minu s-id-i

exp_gt-st_ucid _tr_cid

exp_l t strucid-strucid

exp it-strucid-struc_plus id
exp gt strucid-id

exp,ne-id true-

exp_or_gt-id min id 1 ne id t
exp or gt-id-id _e Td-t

exp-s t_ucTirst )T

(field id-i (type INTEGER)
(default-0) )

(field id 2 (type INTEGER)

(default 0))

(field id 3 (type INTEGER)
(default-0) )

(field exp nr (type INTEGER)
(default O) ))

Figure 6: ExpressionTemplate

knowledge about the program derived from programmer intent and not directly indicated within the

encoding of the program. An example would be saving the contents of one specific location of an

array into a second variable such as small = a[O].

Next come the multiple or compound statements such as the/./'or loop statements. These statements

are the first of the two-phase rules to fire a potential rule and an actual rule. The potential rule

checks for algorithm form as is defined against by the standard algorithm. The actual rule verifies that

the proper statement containment and ordering is present. This allows for smaller rules, detection

of somewhat buggy source code and elimination of false positive algorithm recognition.

The loop and/./'statements are the first compound statements that are handled within HLAR. Both

have an eval clause tested for exiting the loop or for choosing the boolean path of the/f. Both of

these statements require a field to maintain the limits of the control of the statement. Generally, a loop

or ijr statement will contain statements of importance within them and the concept of statement

109



containment will be required to be properly accounted for.

Higher-level algorithms, such as a swap, minimization, or sort, require that subplans be recogr_zed

first. This restriction is due to the size of the Clips rules. The more conditional elements in a rule, the

more difficult and unwieldy for the programmer to develop and maintain.

Control templates are listed in Figure 7. These are

used to control the recognition cycle within Clips.

Control templates are necessary after pre'lmainary

recognition of ap/an by a potential rule to allow for

detection of any intervening and interfering statements

prior to the firing of the corresponding actual rule.

not fire
ass_rt nots scalar

asserts not-struc

Figure 7: Control Templates

Figure 8 is a hierarchical display of the facts from the previous Figure. It expresses the relationships

among the nodes and shows utilization of the integer pointers used in this representation.

geuend_node 1

i
ass|gn_nod¢ 1
/ \

opema_._x_ 1 extn_on_node 1

i I
iden "ttfiet_nodc 1 opcrsnd_no_ 2

value "x" I

integer Hteralnode 1
value F

Figure 8: Derivation Tree

STATEMENT RECOGNITION

Tlais section will describe the recognition process of a [(assign x (plus x 1)) [

simple variable increment as displayed in Figure I I

9 as an example of the recognition process. The first Figure 9 : Variable Increment

rule firing will recognize a special expression, an

identifier plus the integer constant one. The second rule firing will recognize a variable being assigned

a special expression and a third rule will recognize that the identifier on the right hand side of the
statement and the variable on the left hand side are the same, thus signifying an incrementing

assignment statement.

These three rule firings process one statement and further rule conditional dements will attempt to

group this statement with related statements to recognize multi-statement constructs. An example

would have this assign statement within a loop statement, and both preceded by an x -- 0

110



initialization statement. This would indicate that the variable x is an index of the loop statement.

SUMMARY AND FUTURE RESEARCH

This research has lead to the development of a template hierarchy for program understanding and

a general procedure for developing rules to recognize program plans. This method has been

performed by the researcher, but will be automated in future versions of this system.

There are currently three algorithm p/arts recognized including the selection sort (SSA), quicksort

(QSA) and heapsort (lISA). The SSA requires 50 rule firings, the QSA requires 90 firings, and the

HSA, the longest of the algorithms at approximately 50 lines of code and taking over 60 seconds on

a Inte1486-class machine requires 150 firings. The complete HLAR recognition system contains 31

templates, 4 functions, and 135 rules.

The research team intends to concentrate on algorithms common to the numerical community. The

first version of the HLAR system has been successful at recognizing small algorithms (less than 50

lines of code). Expansion of HLAR into a robust tool requires: rehosting the system into a

networking environment for distributing the recognition task among multiple CPUs, automating the

generation of recognition rules for improved utility, attaching a database for consistent information

and system-wide (multiple program) information, and a graphical user-interface.

AUTHOR INFORMATION

The author has: a B.S. in Computer Science, Wright State University, 1985; an M. S. in Computer

Sdence, Wright State University, 1990; and a Ph.D. in Computer Science, New Mexico Institute of

Mining and Technology, 1994. He is currently an Assistant Professor of Computer Science at

Southeastern Oklahoma State University.

REFERENCES

' R B. Finkbine, Ph.D.
1. 'High-Level Algorithm Recognition, •
Dissertation, New Mexico Institute of Mining and Technology,

1994.

' M. T Harandi
2. 'Pat: A Knowledge-based Program Analysis Tool,
and J. Q. Ning. In 1988 IEEE Conference of Software Maintenance,

IEEE CSP, 1988.

111



AN IMPLEMENTATION OF FUZZY CLIPS AND ITS APPLICATIONS UNCERTAINTY

REASONING IN MICROPROCESSOR SYSTEMS USING FUZZY CLIPS

Yuen & Lam

Abstract unavailable at time of publication.

112


