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ABSTRACT

This paper describes the development of a prototype expert system for the intelligent selection of
robots for manufacturing operations. The paper first develops a comprehensive, three-stage pro-
cess to model the robot selection problem. The decisions involved in this model easily lend them-
selves to an expert system application. A rule-based system, based on the selection model, is
developed using the CLIPS expert system shell. Data about actual robots is used to test the perfor-
mance of the prototype system. Further extensions to the rule-based system for data handling and
interfacing capabilities are suggested.

INTRODUCTION

Many aspects of today's manufacturing activities are increasingly being automated in a feverish
pursuit of quality, productivity, and competitiveness. Robotics has contributed significantly to
these efforts; more specifically, industrial robots are playing an increasingly vital role in improving
the production and manufacturing processes of many industries [6].

The decision to acquire a robot, however, is a nontrivial one, not only because it involves a large
capital outlay that has to be justified, but also because it is largely complicated by a very wide range
of robot models from numerous vendors [6]. A non-computer-assisted (manual) robot selection
entails a number of risks, one of which is that the selected robot might not meet the task require-
ments; even if it does, it might not be the optimal or the most economical one. Mathematical model-

ing techniques, such as integer programming, are rather awkward and inflexible in tackling this
problem. The reason for this is that the robot selection process is an ill-structured and complex
one, involving not only production and engineering analysis, but als6 cosffbenefit analysis and
even vendor analysis. Its ill-structured nature does not readily lend itself to tractable mathematical
modeling. Therefore, nontraditional approaches, such as expert systems (ES) or artificial neural
networks (ANN), seem intuitively appealing tools in these circumstances.

When the decision maker (DM) is charged with making the selection decision, he or she is being
called upon to play three roles at the same time, namely (1) financial analyst, (2) robotics expert,
and (3) production manager. In other words, the decision maker would need to make three differ-
ent (albeit related) decisions: (1) choosing the best robots that match the task requirements at hand,
(2) choosing the most cost effective one(s) from those that meet the requirements, and (3) deciding
from which vendor to order the robot(s). We shall call these decisions technical, economic, and
acquisitional, respectively. Clearly, these are very complex decisions all to be made by the same
decision maker. Supporting these decisions (e.g., by a knowledge-based system) should alleviate
the burden from the decision maker and bring some consistency and confidence in the overall
selection process. The success of the ES technology in a wide range of application domains and
problem areas has inspired its use as a vehicle for automating decisions in production and opera-
tions management [1, 19], as well as the robot selection decision [16, 17].
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In this paper, a three-stage model is presented for the robot selection process. The model is
comprehensive enough to include the major and critical aspects of the selection decision. It is
implemented in a CLIPS-based prototype expert system. The rest of the paper is organized as fol-
lows. In the following section, we review previous work and, in the third section, we present our
three-stage model to robot selection. In the fourth section, the implementation of the prototype
expert system is discussed. Limitations of, and extensions to the prototype expert system with
database management (DBMS) capabilities are provided in section five. We conclude the paper in
section six.

MOTIVATION AND RELATED WORK

The application of knowledge-based systems in production and operations management has been
investigated by a number of researchers [1]. In particular, the application of ES in quality control
[3], in job shop scheduling [ 18, 19], and industrial equipment selection [11, 20] has been reported
in the literature. The robot selection problem is prominent in this line of research [8, 15, 17].

In an earlier paper by Knott and Getto [9], an economic model was presented for evaluating alter-
native robot systems under uncertainty. The authors used the present value concept to determine
the relative worthiness of alternative robot configurations. Offodile, et al. [14, 15] discuss the

development of a computer-aided robot selection system. The authors developed a coding and
classification scheme for coding and storing robot characteristics in a database. The classification

system would then aid the selection of the robot(s) that can perform the desired task. Economic
modeling can then be used to choose the most cost-effective of those selected robots. Other related
work includes Offodile et aI. [16], Pham and Tacgin [17], and Wang, et al. [21].

A review of the above literature indicates that these models are deficient in at least one of the fol-

lowing measures:
• Completeness: We suggested earlier that the robot selection problem involves three related

decisions. The models presented in the literature deal invariably with at most two of these
decisions. The other aspects of the selection decision are thus implicitly assumedto be

unimportant for the robot selection problem. Experience suggests that this is not the case,
however.

• Generality: the models presented are restricted to specific production functions, e.g.,
assembly. Many of today's production functions are not monolithic but rather a collection
of integrated functions, i.e., welding, assembly, painting, etc. In particular, industrial
robots are by design multi-functional and a selection model should be robust enough to
evaluate them for several tasks.

• Focus: The focus in the literature is often more on robot characteristics (robot-centered

approach) than on the task the robot is supposed to perform (task-centered approach). We
posit that task characteristics should be the primary focus in determining which robot to
choose, not the converse.

We propose a three-stage model that captures the overall robot selection process, with primary
emphasis being given to the characteristics and requirements of the task at hand. The proposed
task-centered model is comprehensive in the sense that it covers the robot selection problem from
the task identification, through robot selection, to vendor selection and, possibly, order placement.
The model is also general in the sense that it applies to a wider range of industrial robot applica-
tions. While this selection model is different from previous approaches, it incorporates in a sys-
tematic manner all the critical decisions in any sound robot selection process. The sequential order
of these decisions, and the related phases, is important from a logical as well as an efficiency

standpoints. We cannot, for example, separate the technical decision from the economic decision,
for a robot that is technically well suited to do the job might not be economical; and vice versa. We
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shallpresentourmodelin thefollowing sectionandin thesubsequentsectionsdiscussits imple-
mentationin aknowledge-basedsystem.

A THREE-STAGE MODEL FOR ROBOT SELECTION

Figure 1 depicts the three-stage robot section scheme proposed in this paper. We present a general
discussion of the scheme in the subsequent subsections.

• Technical decision: This is the fast and the most critical decision to be made. It is the formal

selection of one or more candidate robots that satisfy the minimum requirements and char-
acteristics of the task to be performed. It is technical in the sense that it would normally be
made by the production or process engineer upon a careful analysis of the technical charac-
teristics of both the task and the robot. This decision is the most difficult of the three. A
thorough analysis is required to arrive at the initial set of feasible robots.

• Economic decision: This is a decision involving the economic merit of the robot. More

specifically, it is a decision about the most cost-effective robot alternative(s) considering
both initial cost (purchase price) and operating costs. The purpose of the initial and operat-
ing costs is twofold: (1) to allow for a rough justification for the robot, and (2) to allow for
a choice to be made among rival robots. Suppose, for example, that we had a choice of two
robots from Stage One (to be described shortly)---one which is adequate for the task and
costs within reasonable range; the other is more technologically advanced but costs well
beyond what is considered economical for the task in question. Clearly the estimated cost
of the latter would force us to choose the former robot.

• Acquisitional decision: This is simply deciding which vendor to acquire the robot(s) from.
The choice of a vendor is based not only on purchase price, but also on service and quality.

The following three stages implement the above decisions in a systematic manner.

Stage One: Technical Decision

The purpose of this first stage is to determine a (possibly set of) robot(s) that most closely matches
the task requirements. The starting point is the application area, or more specifically, the task itself
for which the robot is needed. Thus, we need to determine in this stage the following:

1. The application area, e.g., assembly, welding, painting, etc.
2. The task within the application area, e.g., small parts assembly.
3. The task requirements, e.g., precision, speed, load.
4. The robots that most fully satisfy these requirements.
5. Whether human workers can perform the task.
6. Whether to go with robots or humans, if 5 above is true.

Identifying Application:

There is a wide range of applications, across various industries, for which industrial robots may be
engaged. Both the application area and the narrow task within that application area should be iden-

tified. Thus, within welding, for example, we would identify spot welding and arc welding.

Identifying Task Characteristics:

This phase requires identification of all the task characteristics that influence the decision to employ
humans or robots, and the selection among alternative, technically feasible robots. These character-
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istics will include, for example, the required degree of precision and accuracy; whether it is too

hazardous, dangerous, or difficult for humans; and whether significant increases in productivity

and/or cost savings would result.
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Figure 1: Three-Stage Robot Selection Model

A precise task definition might also require a task classification scheme, more fine-tuned than the
one suggested by Ayres and Miller [2]. Since the desired robot is a function of the complexities of
the task in question, we suggest the development of a taskJrobot grid (TRG) to associate specific
task characteristics with relevant robot attributes. Let Cij denote valuej of task characteristic i, and

Aij denote value j of robot attribute i, i=1, 2 ..... m;j=l, 2 ..... n. Here Cij is said to be compatible

with Aij, for particular values of i and j, if Aij satisfies Cij. For brevity, we denote this relationship
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by Cij e Aij. Thus specifying task characteristic Cij would automatically call for a robot attribute

Aij such that Aij at least satisfies the task requirement Cij, _ i,j.

Stage Two: Economic Decision

This stage can be called a cost justification stage. It utilizes the output from the fu'st stage, which is
one or more robots suited to the task at hand. The primary role of this stage is the identification of

those robots that make economic sense to invest in; a present value approach is followed by the
knowledge-based system to exclude all robots with net present value (NPV) less than their net cost

(i.e., purchase price and operating costs). A ranking on the basis of the cost factor is then applied
to the remaining robots, if any, i.e., to those passing the economic viability test. Thus, net present
value analysis is used to determine whether it is profitable to employ any robot, given its net cost

and the economic benefits (e.g., incremental cash flows) expected to accrue as a result of employ-
ing the robot to perform the task.

By the end of Stage Two we will have identified a subset of robots that are the most favorable in

terms of performance as well as cost. Since a large number of vendors may be available, it is
mportant to be able to get the "best," deal possible. This implies not 0nly a good competitive price,
ut also acceptable quality, warranties, and a promise of support services.

Stage Three: Acquisitional Decision

In Stage three we have to rank, for every vendor, every robot that meets the choice criteria in

Stages 1 and 2. The factors that are involved in these rankings are many. For example, Hunt [6]
indicates that a certain study revealed the following factors as critical in the purchasing decisions of
robots: design, performance, cost, maintenance, warranties, financial terms, and delivery terms.
These can conveniently be grouped into four categories: (1) cost (purchase price and operating
costs), (2) warranties, (3) quality (performance and design), and (4) service (support, financial and
delivery terms). Maintenance is part of operating cost which is accounted for in Stage Two.
Quality, services, warranties, and purchase price are the relevant factors in vendor selection.

Purchase price has also played a role in the economic decision to determine the viability of each
robot. Here, prices are used to compare vendors and rank robots accordingly. Therefore, for each
vendor we rank the relevant robots on the basis of purchase price and the other three criteria
(quality, warranties, services) and choose the most favorable vendor/robot combination.

THE KNOWLEDGE-BASED SYSTEM

We implemented the prototype knowledge-based system using the CLIPS expert system tool [12].
CLIPS is a forward-chaining rule-based language that resembles OPS5 and ART, two other widely
known expert system tools [5]. Developed by NASA, CLIPS has shown an increasing popularity
and acceptance by end users [10]. The two main components of this prototype, the knowledge
base and the database, are discussed below.

The Knowledge Base

The primary focus of the selection model is the task characteristics, since it is these characteristics

that determine what type of robot is needed. This emphasis is reflected in the knowledge base (KB)
(or rule base) which captures the knowledge about different task requirements that are needed to
justify the use of robots or humans and to specify a particular matching robot or robots. Thus,
given certain task characteristics or requirements, the expert system will specify the most suitable
robot configurations for performing the task.
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TheKB alsoincludesknowledgeaboutrobotcostsandhow to manipulatethesecoststo justify
(economically)theuseof therespectiverobotsandrankthoserobotsthatareconsideredjustifiable.
Thus,givenoperatingandpurchasecostsfor eachrobot, the expertsystemranksthemon the
combinedcost criterion. Finally, the KB also includesknowledgeto help vendorselection.
Subjectivemultiplecriteriaareusedto comparevendorswithassociatedrobotsof interest.

As a rule-basedshell,CLIPSstorestheknowledgein rules,which arelogic-basedstructures,as
shownin Figure2. Figure3 is anaturalEnglishcounterpartof therule inFigure2.

;Rule No 29.

(Defrule find-robots-3rd-pass "Technical Features"

?f <- (robot-2 ?robot)

(Features (Accuracy ?vll)

(Repeat ?v12)

(Velocity ?v13)

(Payload ?v14)

)
(Robot (ID ?robot)

(Accuracy ?v21&:(<= ?v21 ?vll))

(Repeat ?v22&:( <= ?v22 ?v12))

(Velocity ?v23&:( <= ?v23 ?v13))

(Payload ?v24&:( _= ?v24 ?v14))

)
=>

(retract ?f)

(assert (robot-3 ?robot)

Figure 2: Example Rule in CLIPS

Rule No 29: Finds robots matching given technical

features.

IF There is a robot for the application with the

required grippers,

AND This robot meets (at a minimum) the following

technical features: Accuracy, Repeatability,

Velocity, and Payload as specified by user

THEN Add this robot to the set of currently feasible

robots.

Figure 3: Example Rule in Natural English

The Database

The database is a critical resource for the ES; all details for robot configurations are contained in the

database. The type of information stored for each robot includes:

• Robot class or model
• Performance characteristics

• Physical attributes

136



• Power characteristics

A full-fledged system would include the following additional information to permit proper compar-
isons among competing robots.

• Environment requirements
• General characteristics

• Operating costs

Figure 4 shows the information stored in the database for a typical robot using CLIPS syntax. As
the figure indicates, each robot has a set of physical and performance characteristics (e.g., type of
end effectors, number of axes, repeatability, etc.) and a set of application tasks within its capabil-
ity. All of this information (and more) is supplied by robot vendors.

(Robot (ID RT001)

(Control $2)

(Power E)

(Axes 6)

(Accuracy .2)

(Repeat .05)

(Velocity 145)

(Payload 6)

(Effectors adjust-jaw)

(Jobs ML PT SA EA IN)

(Vendor _IBM Corp.")

(Vendor (IDVD001)

(Name "IBM Corp.")

(Robot-lnfo RT001 28500)

(Service .95)

(Warranty .8)

(Quality .83)

Figure 4: "Facts" Stored as Frames in a CLIPS Database

Also contained in the database are vendor attributes such as service record, warranties, quality,
robots carded and purchase prices (see Figure 3). The first three attributes are represented in the
database by subjective scores (ratings), on a scale of 0 to 10. A "0" may indicate, for example, an
F rating, "10" an A++ rating. This intormation could come from industry analysts and experts in
the robotics industry.

Illustration

In this section we shall provide the results of a consultation with the prototype expert system using
actual robotics data obtained from Fisher [4]. The first step in Stage One is to describe the applica-
tion. For lack of space, we skip the dialogue that allows the decision maker to describe the task and

its suitability for robots or human workers. On the basis of the information provided in that dia-
logue advice will be given as to the choice between a robot solution or human workers for the task.

Next, in Stage Two, economic analysis is performed, using information elicited through a similar
dialogue as in Stage one, to determine the economic merit of each robot passing the technical test.
This involves calculating a net present value (NPV) for the net incremental benefits resulting from
employing robotics in the task under consideration. The NPV is then compared to the net cost
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(priceplusoperatingcost)of eachrobot,and only robots whose net cost is less than or equal to the
NPV are chosen. If no robot is found to meet this test, the system offers two reasons for the

failure:

1. that the task is not worth the required investments in robots, or
2. that the database includes insufficient number of robots.

In the last stage, Stage Three, the system elicits subjective input from the decision maker regarding
the importance of vendor attributes, such as service or warranties. Again, the rating is on a scale of
0 to 10; "0" indicates unimportant and "10" maximally important. This information is then used to
compute a subjective score for each vendor, by weighting the analyst's ratings of each vendor with
the input from the decision maker. Now, robots can be ranked by both price and vendor weighted
score. Figure 5 shows the final results of this consultation.

Indicate the importance of each of the following,

on a scale from 0 to 10:

i. Vendor service quality :7

2. Vendor warranties :8

3. Product quality :9

4. Price :6

Rank by Subjective score (S) or by Price (P)? P

Robot Index Vendor Name Price Score

RT005 ASEA, Inc. $60000 17

RT007 Bendix $70000 13

RT011 Cincinnati Milacron $90000 17

RT006 Automatix, Inc. $95000 18

RT008 Bendix $95000 13

RT016 Kuka $125000 13

The net present value of cashflows: $129036.6

Figure 5: Subjective Values and Final Results

LIMITATIONS AND EXTENSIONS

The description of the task as allowed by the current prototype provides only a broad definition of
the nature of the task to be performed; it does not provide specific details or "tolerances." For

example, to increase the chances of a match, the user may be tempted to supply larger (less tighter)
values for positional accuracy and repeatability. However, this may result in a large number of
robots being selected and the prototype system allows ranking only through price and vendor
attributes. To rank robots for each and every attribute, however, would probably be both unwieldy

and unrealistic.
Moreover, a knowledge-based robot selection system should provide a friendly interface that
allows the decision maker to input English phrases to describe a particular application; the system
would then use the task definition thus provided by the user to suggest applicable robot(s).
Therefore, the crucial task of the knowledge-based system would be to make sense out of the

English phrases supplied by the decision maker to describe the task. This implies that the knowl-
edge-based system would have to have some natural language processing capability to properly
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associate the task description with meanings represented in the knowledge base. This, then, would

pave the way for processing the applicable kaa.owledge to reach _achoic e of a se! of rob_o_.
Additionally, as mentioned earlier, the database component ot Uae expert system neeus tu store a
wealth of information about a wide range of robots and vendors. This information can be not only

very detailed, but volatile as well, as the robot technology advances and as competition among
vendor produces changes in vendor profiles. What all this amounts to is that the expert system
needs to be able to survive the test of time and handle this voluminous data in a graceful manner.

Current expert systems exhibit elementary data management capabilities which are inadequate for
this inherently complex database. As Jarke and Vassiliou [7] indicate, a generalized Database

Management System (DBMS) integrated in the ES may be necessary to deal with this database
effectively. These authors sketch out four ways to extend expert systems with DBMS capabilities,
not all of which are relevant in any given circumstances.

CONCLUSION

We presented in this paper a robot selection model based on a three-stage selection process; each
stage feeds its output into the next stage until a final robot/vendor combination is selected. We
implemented this model in a prototype knowledge-based system using the CLIPS expert system
language. The prototype indicated that a full fledged expert system will be practical and can be
extremely useful in providing a consistent and credible robot selection approach.

Further work is needed to improve the granularity and natural language processing capability of the

system. Also needed is research into possibilities of extending the database management capabili-
ties of the robot selection system by coupling it with a database management system.
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