
/ <P c,
N95- 19642

ADDING INTELLIGENT SERVICES TO AN OBJECT ORIENTED SYSTEM.

Bret R. Robideaux and Dr. Theodore A. Metzler

LB&M Associates, Inc.

211 SW A Ave.

Lawton, OK 735054051

(405) 355-1471

 qa '7

robidb@lbm.com metzlert@lbm.com

Abstract

As today's software becomes increasingly complex, the need grows for intelligence of

one sort or another to become part of the application- often an intelligence that does not
readily fit the paradigm of one's software development.

There are many methods of developing software, but at this time, the most promising
is the Object Oriented (OO) method. This method involves an analysis to abstract the
problem into separate 'Objects' that are unique in the data that describe them and the

behavior that they exhibit, and eventually to convert this analysis into computer code

using a programming language that was designed (or retrofitted) for OO implementa-
tion.

This paper discusses the creation of three different applications that are analyzed,

designed, and programmed using the Shlaer/Mellor method of OO development and

C++ as the programming language. All three, however, require the use of an expert sys-

tem to provide an intelligence that C++ (or any other "traditional' language) is not
directly suited to supply. The flexibility of CLIPS permitted us to make modifications to

it that allow seamless integration with any of our applications that require an expert sys-
tem.

We illustrate this integration with the following applications:

1. An After Action Review (AAR) station that assists a reviewer in watching a

simulated tank battle and developing an AAR to critique the performance
of the participants in the battle.

2. An embedded training system and over-the-shoulder coach for howitzer
crewmen.

3. A system to identify various chemical compounds from their infrared
absorption spectra.

Key-words - Object Oriented, CLIPS

PI_ PAGE I_,...ANK NOT FILMED

143



INTRODUCTION

The goal of the project was to develop a company methodology of software develop-

ment. The requirement was to take Object Oriented Analysis (done using the Shlaer-Mel-

lor method) and efficiently convert it to C++ code. The result was a flexible system that

supports reusability, portability and extensibility. The heart of this system is a software

engine that provides the functionality the Shlaer/Mellor Method (Ref. 2 & 3) allows the

analyst to assume is available. This includes message passing (inter-process communica-

tion), state machines and timers. CLIPS provides an excellent example of one facet of the

engine. Its portability is well-known, and its extensibility allowed us to embed the

appropriate portions of our engine into it. We could then modify its behavior to make it

pretend it was a natural object or domain of objects. This allowed us to add expert sys-
tem services to any piece of software developed using our method (and on any platform

to which we have ported the engine).

OBJECT ORIENTED METHODS

The principal concept in an OO Method is the object. Many methods include the con-

cept of logically combining groups of objects. The logic behind determining which

objects belong to which grouping is as varied as the names used to identify the concept.

For example, Booch (Ref. 4) uses categories and Rumbaugh (Ref. 5) uses aggregates.
Shlaer/MeUor uses domains (Ref. 3). Objects are grouped into Domains by their func-

tional relationships; that is, their behavior accomplishes complementary tasks.

Fig. 1 shows that the operating system is its own domain. It is possible the operating

has very little to do with being OO, but it is useful to model it as part of the system.

Another significant domain to note is the Software Architecture Domain. This is the soft-

ware engine that provides the assumptions made in analysis. The arrows denote the

dependence of the domain at the beginning of the arrow upon the domain at the end of
the arrow. If the model is built properly, a change in any domain will only affect the

domains immediately above it. Notice there are no arrows from the main application

(Railroad Operation Domain) to the Operating System Domain. This means a change in

operating systems (platforms) should not require any changes in the main application.

However, changes will be required in the domains of Trend Recording, User Interface,
Software Architecture and Network. The extent of those changes is dependent on the

nature of the changes in the operating system. But this does stop the cascade effect of a

minor change in the operating system from forcing a complete overhaul of the entire sys-

tem.

While CLIPS could be considered an object, the definition of domains makes it seems

more appropriate to call it a domain.

THE SOFTWARE ENGINE

The portion of the software engine that is pertinent to CLIPS is the message passing.
The event structure that is passed is designed to model closely the Shlaer/Mellor event.

144



RailRoadOperation

Process

Input/Output

Trend Recording

\

i

_O_-rating

Alarms

Software Architecture

/ Programming ,

i

Figure. 1: Domain Chart for the Automated Railroad Management System
Copied from page 141 (Figure 7.4.1) of Ref3

We have implemented five (5) kinds of events:

1. Standard Events: events passed to an instance of an object to transition the
state model

2. Class Events: events dealing with more than one instance of an object

3. Remote Procedure Calls (RPCs): An object may provide functions that other

objects can call. One object makes an RPC to another passing some parameters

in, having some calculations performed and receiving a response.

4. Accesses: An object may not have direct access to data belonging to another
object. The data other objects need must be requested via an accessor.

5. Return Events: the event that carries the result of an RPC or Access event

145



2

The event most commonly received by CLIPS is the Class Event. CLIPS is not a true

object. Therefore it has no true instances, and Standard Events are not sent to it. CLI]X3 is

more likely to make an RPC than to provide one. It is possible that an object may need to
know about a certain fact in the fact base, so receiving an Access is possible. Should

CLI_ use an RPC or Access, it will receive a Return Event. RPCs and Accesses are con-

sidered priority events so the Return Event could be handled as part of the function that

makes the call.

The events themselves have all of the attributes of a Shlaer/Mellor event, plus a few to

facilitate functionality. The C++ prototype for the function Send_Mesg is:

void Send_Mesg (char* Destination,

EventTypes Type,

unsigned long EventNumber,

char* Data,

unsigned int DataLength = 0,
void* InstanceID = 0,

unsigned long Priority = 0);

The engine is currently written on only two different platforms: a Sun 4 and an

Amiga. CLIPS, with its modifications, was ported to the Amiga --along with some appli-
cations software that was written on the Sun-- and required only a recompile to work.

This level of portability means that only the engine needs to be rewritten to move any

application from one platform to another. Once the engine is ported, any applications
written using the engine (including those with CLIPS embedded in them) need only be

recompiled on the new platform and the port is complete. Companies are already build-

ing and selling GUI builders that generate multi-platform code so the GUI doesn't need

to be rewritten.

The Unix version of the Inter-Process Communication 0PC) part of the engine was

written using NASA's Simple Sockets Library. Since all versions of the engine, regardless

of the platform, must behave the same way, we have the ability to bring a section of the
software down in the middle of a run, modify that section and bring it back up without

the rest of the system missing a beat. In the worst case, the system will not crash unre-

coverably.

MODIFICATIONS TO CLIPS

Since the software engine is written in C++, at least some part of the CLIPS source

code must be converted to C++. The most obvious choice is main.c, but this means the

UserFunctions code must be moved elsewhere since they must remain written in C. I

moved them to sysdep.c.

The input loop has been moved to main.c because all input will come in over the IPC

as valid CLIPS instructions. The stdin input in CommandLoop has been removed, and

i46



the function is no longer a loop. The base function added to CLIPS is:

(RETURN event_number destination data)

This function takes its three parameters and adds them to a linked list of structures

(see Fig. 2). When CommandLoop has completed its pass and returns control to main.c,

it checks the linked list and performs the IPC requests the CLIPS code made (see Fig. 3).'

RETURN handles the easiest of the possible event types that can be sent out: Class

Events. To handle Standard Events, some way of managing the instance handles of the
destination(s) needs to be implemented. To handle Accesses and RPCs some method of

handling the Return events needs to be implemented. The easiest way is to write a man-

ager program. Use RETURN to send messages to the Manager. The event number and

possibly part of the data can be used to instruct the Manager on what needs to be done.

RETURN 0
I

extract parameters from call

allocate a new element for the list

fill in the structure

add structure to the list

}

main 0
{
init CLIPS

begin loop

Get Message

set command string

call CommandLoop

check output list

if there are elements in the structure

make the appropriate send messages

end loop

Figure. 2: Pseudocode for function RETURN Figure 3: Pseudocode for main 0

Sending instructions and information into CLIPS requires a translator to takes Shlaer/

Mellor events and convert them to CLIPS valid instructions. In Shlaer/Mellor terms this

construct is called a Bridge.

With these changes CLIPS can pretend it is a natural part of our system.

EXAMPLES

This system has been successfully used with three different projects. An After Action

Review Station for reviewing a simulated tank battle, an Embedded Training System to

aid howitzer crewmen in the performance of their job and a chemical classifier based on

a chemical's infrared absorbtion spectra.

147



The After Action Review (AAR) station is called the Automated Training Analysis

Feedback System or ATAFS. See Figure 4 for its domain chart. Its job is to watch a simu-
lated tank battle on a network and aid the reviewer in developing an AAR in a timely

manner. It does so by feeding information about the locations and activities of the vehi-

cles and other pertinent data about the exercise to the expert system. The expert system
watches the situation and marks certain events in the exercise as potentially important.

ATAFS will then use this information to automatically generate a skeleton AAR and pro-

vide tools for the reviewer to customize the AAR to highlight the events that really were

im _ortant.

ATAFS

History
GUI

Database

Expert System

Packet Data

Software Architect?

i

L

Fig. 4" ATAFS Domain Chart

148



In an early version of the system, ATAFS was given the location of a line-of-departure,

a phase-line and an objective. During the simulated exercise of four vehicles moving to

the objective, CLIPS was fed the current location of each vehicle. CLIPS updated each

vehicle's position in its fact base and compared the new location with the previous loca-

tion in relation to each of the control markings. When it found a vehicle on the opposite

side of a control mark than it previously was, it RETURNed an appropriate event to

ATAFS. Upon being notified that a potentially interesting event had just occurred,
ATAFS is left to do what ever needs to be done. CLI]'x3 continues to watch for other

events it is programmed to deem interesting.

DSS

(Black Box)

ET

Expert System

User Interface

Software Architecture

Operating System

Fig 5: ET Domain Chart

149



Embedded Training (ET) is a coaching and training system for howitzer crewmen.

See Figure 5 for its domain chart. It provides everything from full courseware to simple
reminders/checklists. It also provides a scenario facility that emulates real world situa-

tions and includes an expert system that watches the trainee attempt to perform the

required tasks. During the scenario the expert system monitors the trainee's activities

and compares them to the activities that the scenario requires.
• r'It adjusts the use s score according to his actions and uses his current score to predict

whether the user will need help on a particular task. All of the user's actions on the ter-

minal are passed along to CLIPS, which interprets them and determines what the he is

currently doing and attempting to do. Having determined what the user is doing, CLIPS
uses its RETURN in conjunction with a manager program to access data contained in

various objects. This data is used by CLIPS to determine what level of help, if any, to
issue the user. The decision is then RETURNed to ET which supplies the specified help.

The chemical analysis system (Ref. 6) designed by Dr. Metzler and chemist Dr. Gore

takes the infrared (IR) spectrum of a chemical compound and attempts to classify it

using a trained neural net. In the course of their study, they determined the neural net

performed significantly better when some sort of pre-processor was able to narrow
down the identification of the compound. CLIPS was one of the methods selected. The

IR spectrum was broken down into 52 bins. The value of each of these bins was
abstracted into values of strong, medium and weak. Initially three rules were built: one

to identify ethers, one for esters and one for aldehydes (Figure 6).

(defrule ester

(bin 15 is strong)

(or (bin 24 is strong)

(or (bin 25 is strong)

(bin 26 is strong))

(and (or (bin 22 is strong)

(bin 23 is strong)

(bin 24 is strong))

(or (bin 25 is strong)

(bin 26 is strong)

(bin 27 is strong)))

(and (bin 28 is medium)

(or (bin 22 is strong)

(bin 23 is strong)

(bin 24 is strong))))

=>

(RETURN 1 "IR_Classifier" "compound is an ester"))

Figure 6. Example of a Chemical Rule

150



The results of this pre-processing were RETURNed to the neural net which then was

able to choose a module specific to the chosen functional group. Later, the output from

another pre-processor (a nearest neighbor classifier) was also input into CLIPS and rules
were added to resolve differences between CLIPS' initial choice and the nearest-neigh-

bor's choice.

CONCLUSIONS

CLIPS proved to be a very useful tool when used in this way. In ET and ATAFS, the

Expert System Domain could easily be expanded to use a hybrid system similar to that

of the Chemical Analysis problem, or use multiple copies of CLIPS operating indepen-

dently or coordinating their efforts using some kind of Blackboard. In many applica-

tions, intelligence is not the main concern. User interface concerns in both ET and ATAFS

were more important than the intelligence. ET has the added burden of operating in con-

juction with a black box system (software written by a partner company). ATAFS' big-

gest concern was capturing every packet off of the network where the exercise was

occurring and storing them in an easily accessible manner. The flexibility of C++ is better

able to handle these tasks than CLIPS, but not nearly as well suited for representing an

expert coaching and grading a trainee howitzer crewman or reviewing a tank battle.

While recognizing individual chemical compounds would be tedious task for CLIPS

(and the programmer), recognizing the functional group the compound belongs to and

passing the information along to a trained neural net is almost trivial.

Expert systems like CLIPS have both strengths and weaknesses, as do virtually all

other methods of developing software. Object Oriented is becoming the most popular

way to develop software, but it still has its shortfalls. Neural nets are gaining in popular-

ity as the way to do Artificial Intelligence, especially in the media, but they too have their

limits. By mixing different methods and technologies, modifying and using existing soft-
ware to interact with each other, software can be pushed to solving greater and greater

problems.

151



x

REFERENCES

1..Gary Riley, et al, CLIPS Reference Manual, Version 5.1 of CLl]'x3, Volume III Utilities

and Interfaces Guide, Lyndon B. Johnson Space Center (September 10, 1991).

2. Sally Shlaer and Stephen Mellor, Object-Oriented Systems Analysis, Modeling the

World in Data. (P T R Prentice-Hall, Inc., Englewood Cliffs, New Jerse)_ 1988).

3. Sally Shlaer and Stephen Mellor, Object Lifecycles, Modeling the World in States.

(Prentice-Hall, Inc 7 Englewo0d Cliffs, New Jersey, 1992).

4. Grady Booch, Object Oriented Design with Applications. (The Benjamin/Cummings

Publishing Company; Inc., Redwood City, California, 1991).

5. James Rumbaugh, et al, Object-Oriented Modeling and Design. (Prentice-Hall, Inc.,

, Englewood Cliffs, 1991).

L

6. T.A. Mefzler and R.H. Gore, Application of Hybrid AI to Identification of Chemical

Compounds, Proceedings of TECOM Conference on AI and the Environment, Aberdeen

Maryland, Septerhber 13-16, 1994

f

s,

152


