
/ 9

Abstract:

N95- 19643

CLIPS, AppleEvents, and AppleScript:
Integrating CLIPS with Commercial Software

Michael M. Compton Shawn R. Wolfe

compton@ptolemy.arc.nasa.gov shawn@ptolemy.arc.nasa.gov
(415) 604-6776 (415) 604-4760

AI Research Branch / Recom Technologies, Inc.
NASA Ames Research Center

Moffett Field, CA 94035-1000

-/-9

Many of today's intelligent systems are comprised of s_eral software modules, er; " s written z
chfferent tools and lan ua es that , p hap " " "n

.... tg g. , together help solve the users problem. These systems often
emptoy a/cnowteage-oasea component that is not accessed directly by the user, but instead

operates "in the background" offering assistance to the user as necessary. In these types of
modular systems, an e_cient, flexible, and easy-to-use mechanism for sharing data between
programs is crucial. To help permit transparent integration of CUPS with other Macintosh
applications, the A1 Research Branch at NASA Ames Research Center has extended CUPS to

allow it to communicate transparently with other applications through two popular data-sharing
mechanisms provided by the Macintosh operating system; Apple Events (a "high-level" event
mechanism for program-to-program communication), and AppleScript, a recently-released
scripting language for the Macintosh. This capability permits other applications (running on either
the same or a remote machine) to send a command to CLIPS, which then responds as if the
command were typed into the CLIPS dialog window. Any result returned by the command is then

automatically returned to the program that sent it. Likewise, CLIPS can send several types of
Apple Events directly to other local or remote applications. This CLIPS system has been
successfully integrated with a variety of commercial applications, including data collecn'on
programs, electronic forms packages, DBMSs, and cmail programs. These mechanisms can
permit transparent user access to the knowledge basa from within a commercial application, and
allow a single copy of the knowledge base to service multiple users in a networked environment.

Introduction

Over the past few years there has been a noticeable change in the way that "intelligent applications"
have been developed and fielded. In the early and mid-1980s, these systems were typically large,
monolithic systems, implemented in LISP or PROLOG, ,in which the inference engine and
knowledge base were at the core of the system. In these "KB-eentric" systems, other parts of the
system (such as the user interface, file system routines, etc.) were added on once the inferential

capabilities of the system were developed. These systems were often deployed as multi-megabyte
"SYSOUTs" on special-purpose hardware that was difficult if not impossible to integrate intoexisting user environments.

Today, intelligent systems are more commonly being deployed as a collection of interacting
software modules. In these systems, the knowledge base and inference engine serve as a
subordinate and often "faceless" component that interacts with the user indirectly, if at all.

Several such systems have been deployed recendy.by the Artificial Intelligence Research Branch at
NASA's Ames Research Center:.

The Superfluid Helium On-Orbit Transfer system (or SHOOT) was a modular expert system that
monitored and helped control a Spacd-Shuttle,based helium transfer experiment which flew

r.

153

onboard the Endeavor orbiter during mission STS-57 in June, 1993. In that system, a CLIPS-
based knowledge system running on a PC laptop on the Shuttle's Aft Flight Deck was embedded
in a custom-developed C program that helped crew members (and ground controllers) perform

transfer of cryogenic liquids in microgravity.

The Astronaut Science Advisor (also known as "PI-in-a-Box", or simply "it'll") was another
modular system that flew onboard the Space Shuttle in 1993 ([3]). [PI] ran on a Macintosh
PowerBook 170 laptop computer and helped crew m_emfb_rseTPC_fso_de_noP_w" letenteinWs_Sfimb_

• • " em was corn nsea ol a ,.._,_o-u,,o 0. ,
physiology m Spacelab. This syst _.___ 1 _,,,,,, Claris Conmrauon and Apple
interacted with HyperCara _a commercial user m_c,a_ ,,,v, -r-

ater and LabVIEW (a commercial data acquisitiontool from National h.stru._men_)t_t _
Comp .) ,_...... a,.¢¢,.,, advice on how to rezme me expcm_m V,_,
monitor 0eta oemg couectea oy mz tavw o.,,,.,,,,.,..onoo.o-

O. S • "
written external commanos _XL;MLJS) _at were mm_a alu" "" "'.' _" _ _'_"

The Proto Electronic PtLrchase Request (PEPR) system ([1] and [2]) is yet another modular
type " scribed in this aper The PEPR system uses a

"rated the enhancements being de P • . . • -system that mot1 . nic routin sli s tot a variety oz
-based knowled e system to validate and generate electro. _ g,.._P_" n_,no "em's

CLIPS g v an t art ot mc rr..r_, o_o,• d fr uentl at NASA Ames. A cry portan .p . .¢lectromc forths use eq Y ,,___ ,, • erdala licaUons.
..... t it is able to work seamlessly w_th several comm PPcapabihues _s ma

1 . these applications represent a progression of integration techniques in which the
Interesting y ro This progression starts

ed comtmnent interacts voth custom-developed P grams.
knowledge-bus _ . ,,_._. -,, ,. ,_ tin SHOOT), to integrauon wa custom-
with tightly-coupleO, _ mtegrauon. Qz t;u_F_,-_,._ h.,_., ..._ -¢_,n_11_to a _eneral-purpose

• " "1"1CCOlI1111eTc1al TO(lUC_ rklll LrM), _,lu A,--,-_-.*built extensions to a spe_ . P . • • .
integration mechamsm that can be used vath a venery of co_ products (in PEPR)

Requirements for the PEPR system

A brief description of the PEPR system will help .explain.how we determined our approach to the

problem of integrating CLIPS with otaer commerctat appucauons.

the development of the PEPR system was to demonstrate that knowledge-
Our primary goal in improve the usability of automated workflow systems by helping validate andbased techniques can
routeelectronicforms. In ordertodo this,we needed todevelop a prototypesystem thatwas both

usableand provided valuein the contextof a real-worldproblem. This meant thatin additionto
• knowled e base and tuningthe inferenceengine,we alsoneeded toprovide the

developm,g _e , _g _,____,u,,,,lectronicforms and send them between
users with other tOOlS. Inese mctuoca _ZtWCU_ _, ,,,-,,,,.t e

users,as wcU as mechanisms thatcould assurerecipientsof theseforms thatthe senders were
. e a eared to be, and that the data hadn't been altered, either ac.cidentally or

really who th y pP __;,h o ,, bv which to rma out me statuswantea to vzu_ _,o ,,,,,, - way
maliciously,intransit,we mso pro
of previously-sentforms,interms of who had seen them and who hadn't.

Of course,we didn'twant to have to develop allof theseother toolsourselves. Thankfully,

commercial solutionswere emerging to helpmeet theseadditionalneeds,and we u'iedto use these
commercial toolswherever possible.Our challengebecame, then,how tobestintegratethe CLIPS-

based knowledge system component with these other commercial tools.

Our first try at component integration: Keyboard macros

Our initial integration effort was aimed at developing a"seamless" interface between the knowledge

system and the electronic forms package (which of course was the primary user interface). Our

154

first try was to use a popular keyboard macro package to simulate the keystrokes and mouse clicks
that were necessary to transfer the data from the forms program to CLIPS. The keyboard macro
would, with a single keystroke, export the data on the form to a disk file, switch to the CLIPS

application, and then "type" the (reset) and (run) commands (and the requisite carriage returns)
into the CLIPS dialog window. This would then cause CLIPS to read in and parse the data from
the expone, d file.

This worked fairly well, and was reasonably easy to implement (that is, it did not require
modifying any software). However, the solution had several serious drawbacks. First, it required
that the user have the keyboard macro software (a commercial product) running on his or her
machine. Also, the macro simply manipulated the programs' user interface, and was therefore
very distracting for the user because of the flurry of pull down menus and dialog boxes that would
a_tomafically appear and disappear when the macro was run. Most importandy, however, was that

e keyboard macro approach required each user to have their own copy of CLIPS and the

knowledge base running locally on their machine. This, of course, would have presented
numerous configuration and maintenance problems; the "Ioadup" flies would have to be edited to

run properly on each user's machine, and f'ming bugs would have involved distributing new
versions of the software to all users (and making sure they used it). Another drawback was that
we found that the keyboard macros would often "break" midway through their execution and not

complete the operation. This would, of course, have also been very frustrating for users. As a
result, this early system, although somewhat useful for demonstrations, was never put-intoproduction.

Our second try: Apple Events

Our next attempt at integrating the electronic forms package with CLIPS was motivated by a
demonstration we saw that showed that it was possible to integrate the forms package we had
selected with a commercial DBMS. In this demo, a user was able to bring up an electronic order
form, and enter information such as, say, a vendor number. When the user tabbed out of the
Vendor Number field, the forms software automatically looked up the corresponding information
in a "vendor table"in a commercial DB running on a remote machine. The vendor's name and
addressautomaticallyappeared inotherfieldson theform.

Of course,thissortof data sharing isquitecommon in many data processing environments.

However, we found thiscapabilityexcitingbecause itinvolved two Macintosh applications

(includingour forms package ofchoice),from differentvendors,cooperatingacrossan AppleTalk
network, with virtuallyno assistancefrom the user. This was exactlythe sortof "seamless"
behaviorwe were seeking.

This functionality was provided by what are known as "Apple Events", a "high-level event
mechanism" that is built into "System 7", the current major release of the Macintosh operating
system. We were encouraged by the fact that the forms package we had selected supported the use
of Apple Events to communicate with external programs. We thought it might be possible to
=_:ce_n_ntour des'.u_l inter-pro..gr.-.-.-.-.-.-.-.-.,tminterface by making CLIPS mimic the DBMS a lication with

to me senamg aria recelvmg of A le Events Ho " _p le Events• PP . wever, the partacular set o
supported by that versmn of the forms software was limited to intPm_t;,,'_n ,h._, ..._.._^..PJ_ r'_, .t_

roducL This was " u,,_ Fa_ u_mm JJr_lvzo
P problemauc for several reasons. F_rst, the set of Apple Events being used were
tailored to interaction with this particular data base product, and it wasn't clear how to map the
various DB constructs they supported into CLIPS. Second, it would have required a considerable

amount of programming effort to develop what would have been the interface between a specific
forms product and a specific data base product. We wanted to minimize our dependence on a
particularproduct,incase somethingbettercame alongintheway of a forms package or a DBMS.

155

nded u not im lementing the DB-specific Apple Event mechanism. However, we were
So, we e. p P " ne of the ke s to our integration goats, ann
still convinced that the Apple Event mechamsm was o Y
did implement several more general Apple Event handlers, which are described below.

What are Apple Events?

The following provides a brief description of the Apple Event mechanism. As mentioned above,
Apple Events are a means of sharing data between to applications, the support for which is
included in System 7. An Apple Event has four main parts. The first two components are a 4-
character alphanumeric "event class" and a 4-ch_"event ID". The third component identifies
the "target application" to which the event is to be sent. The actual data to be sent is a collection of
keyword/data element pairs, and can range from a simple string to a complex, nested data
structure. (In addition to these, there are severn ! other p a_so interact
whether a reply is expected, a reply time-out value, ann wncmvt ta_ t_,s,.- er

processed using a collecuon o_ so-cauea .uumu,_ ,.,,-o ,,
subroutines.

A ,, _ .,-,-,_se" mechanism for sharing data between pro_,
IC J_venI$ _ tt l;_u_A_ Ft'_l _'

Although _h_Pexchange data must follow a pre-def'med protocol that describes the format ot meprograms
events. These protocols and record formats are described in the Apple Event Registry, published

periodically by Apple Computer.

Event Class: MI SC

Event ID: DOSC

Target App: <ProcessID>
Event Data: ".... "

" (load \"MYKB. CLP\") "

Figure 1: An Example Apple Event

• • - ,,.... ,, _--. mi"ht be sent to CLIPS The event.class is
hows an ex te o* a oo scnD vwttt u,=, _ _,, _ "._ .F;gure 1 s _ . amp t_. ,,- ,, .,.__ --a_.t. ,,..... ,,. ,,word identmes me string as a

"MISC", and me event tu ,s aosc. tn¢ ,+-u=_- t,,_,,,_,, ter ke_ ..
" ect" arameter, and is used by the receiving program to extract the data in the _ent

direct obj P , .L_ ,,.,A o,_,,,,, ,=,,-n, in the Atmle Event Registry cans _or a
The otocot assocmtea w_m mc u,, _--v • " le it'srecord, pr ,, • • tar et licanon. In this examp ,• • " e sen t' to be executed by the g app .

single string that contains th . P_ . . ,____ =,_ .r_;o oxam-le shows the simplest data

a CLIPS cominand for !oa_ding.a ,g_l_aTr_geu_r_Sn_ods_(_d _v;n embedded)keywotd/data
fornlat. More complex P,pp,c =w.,_ j .-,-_

pairs.

The Apple Event mechanism is very powerful. However, we wanted a more flexible solution to• • • °

considerable effort to im.pleme.nt a Appte-_yent _ aPI_t_.h'_t is.=we didn't want to have to code
high we nccactt to _umv 1.,the other apptications w_m w --

156

specific Apple Event handling routines for every other application we were using. This would
have made it very difficult to "swap in" different applications should we have needed to. What we
needed was a way by which we could use the power of Apple Events to communicate between

CLIPS and other programs, but make it easier to code the actual events for a given program.

Our third try: AppleScript

Just as we were trying to figure out the best way to link CLIPS with the other programs we wanted
to use, we learned about a new scripting technology for the Mac called AppleScript. This new
scripting language provides most of the benefits of Apple Events (and is in fact based on the Apple
Event mechanism) such as controlof and interactionwith Macintosh applicationsrunning either

locallyorremotely. In addition,itofferssome otherbenefitsthatpure Apple Event programming
does not. For example, using AppleScript,one isableto controland share data with an ever-

growing array of commercial applications,without having to understand the detailsof the

application'sApple Event protocol.Apple,Scriptcomes witha reasonablysimpleScriptEditorthat
can be used tocompose, check,run,and save scripts.In additionto providingallthe constructs

thatone might expectin any programming language (variables,control,I/O primitives)itisalso
extendibleand can even be embedded inmany applications.

E_vve thin.g thatm,_de AppleScriptparticularlyappealingforour use was thatitutilizedthe Apple

cnt handlers that we had already added to CLIPS. All thatwas necessary to permit the
"scriptability"we desired was the additionof a new "Apple Event Terminology Extension"

SOUrceto o_.already-m_ed ..CLII_.S application.This AETE resource simply provided the
p_e_crlpt_ct_tor(and otherapplicauons)with a "dictionary"of commands thatCLIPS could

understand,and theunderlyingApple Events thattheApplcScriptshouldgenerate.

Another very appealing aspect of integratingprograms with AppleScript is more and more
commercial softwareproductsaresupportingAppleScriptby becoming scriptable.That of course

exm_e_.s,it much e_ier to take.advantage of new s.oft_,are products as they come along. For
,,,_._p_._w_v rrx,enu_y up. ,,gr./aaca.me ,omp. mac .zm.g aata ease used by the PEPR system. We were

o_v _o_._pta_e a.-_!at.nle .aa.ta t)mse p_r,a.g e wtm a.mo.re-powerfulrelational DBMS product with
), minor moamcauons to me Appie_cnpt coae nmang the DB to the other applications. This

would have been far more difficult (if even possible) had we relied solely on integration with
AppleEvents.

The main disadvantage to using AppleScript rather than Apple Events is that AppleSeript is
somewhat slower than sending Apple Events directly. However, the increased flexibility and
power of AppleScript more than compensates for the comparative lack of speed.

tell application "CLIPS" of machine "My Mac"
of zone "Engineering"

do script "(reset)"

do script "(run)"

set myResult to evaluate "(send [wing-l] get-weight)"
display dialog "Wing weight is " & myResult

end tell

Figure 2: An example AppleScript program

157

Figure2 shows an example script that could be used to control CLIPS remotely. There are several
things to note in this example. First, the commands am p a;ssed to .CLIP S.andexeeut_, as though
they had been entered into the Dialog Window. The example snows born me ao script command
(which does not return a result) and the "evaluate" command (which does). The example also
shows a "display dialog" command which is built in to AppleScript and displays the result in a
modal dialog box. Of particular interest is that the CLIPS application is running on another
Macintosh, which is even in another AppleTalk zone.

Specific CLIPS Extensions

The following para.grap. hs descri.'be the actual .CLII_S - ex_ns_ionts ,_at?avete nb_nnismwPle_nentm_v
support the ftmcUonattty aesenoext aoove, r_ote mat somv u, u,_
implemented by Robert Dominy, formerly of NASA Goddard Space Flight Center.

Receiving Apple Events

It's now possible to send two types of Apple Events to CL.IPS. Each t_es astring that is
interpreted by CLIPS as though it were a command typed into me Dialog Wmaow. £ ne tormat ot
these A le Events is dictated by the Apple Event Registry, and they are also supported b.y a

PP • . ' r turn any syntax or executton
variety of other applicataons. Note that CLIPS doesnt currendy e
errors to the program that sent the Apple Events, so it is the sender's responsibility to ensure that
the commands sent to CLIPS are syntactically correct.

The "do script" Event

The "do script" event (event class = MISC, event ID=DOSC) passes its data as a string which
CLIPS interprets as if it were a command that were typed into the Dialog Window. It returns no

value to the sending program.

The "evaluate" Event

The "evaluate" event (event class = MISC, event ID=EVAL) is very similar to the do script event,
and also passes its data as a string which CLIPS interprets as if it were a command that were typed
into the Dialog Window. However, it does return a value to the sending program. This value is

always a string, and can be up to 1024 bytes in length.

Sending Apple Events from CLIPS

The two Apple Events described above can also be sent by CLIPS from within a knowledge base.
Of course the a ulication to which the events are sent must support the events or an error will

commonoccur. HoweverYlas mentioned above, the "do script" and "evaluate" events are very and

supported by many Mac applications.

SendAEScript command

The SendAEScript command sends a "do script" event and can appear in a CLIPS function or in

the right-hand-side of a rule. The syntax of the SendAESeript command is as follows:

(SendAESeript <target app> <eon_nand>)

In the above ptototyp¢, <target _,.,r,> |._ an "anulication soecification" and <eor:a_and> is a valid

command understandable by the tar_get app-iica_ion. An applic""ation specification can have one of
three forms; a simple application name, a combination application name, machine name and

158

AppleTalkZonename,or aprocess identifi..er (.as returned b y.vvcBrowser, describe_d, below). The
Send._ZScript command returns zero tt me commana is successmuy sent _o the remote

application, and a variety of error codes if it was not. Note that a return code of zero does not
guarantee that the command was successfully executed by the remote application; only that it was
sent successfully.

The following examples show each of the application specification types.

CLIPS>(SendAEScript "HyperCard" "put \"hello\" into msg")

0

CLIPS>

The above example sends a "do script" Apple Event to HyperCard running on the local machine,

and causes it to put "hello" into the HyperCard message box.

CLIPS>(SendAEScript "HyperCard" "John's Mac" "R&D" "put \"hello\" into msg")

0

CLIPS>

The above example sends a similar "do script" Apple Event tO H,yp_..ard running.on,,a comp, u t__
called "John's Mac" in an AppleTalk zone named "R&D . Note ttmt tt is necessary to escape me
quote characters surrounding the string "hello" to avoid them being interpreted by the CLIPS
reader.

SendAEEval command

The SendAEEval command is very similar to the SendAEScript command, differing only in that it
returns the value that results fi-om the target application evaluating the command.

(SendAEEval <target app> <command>)

The following examples show CLIPS sending a simple command to HyperCard running on the
local machine:

CLIPS> (SendAEEval "HyperCard" "word 2 of \"my dog has fleas\"

"dog"
CLIPS>

Note that the result returned by SendAEEval is always a string, e.g.:

-)

CLIPS> (SendAEEval "HyperCard" "3 + 6")

"9"

CLIPS>

The SendAEEval command does not currently supportcommands that rezluirethe target application
to interact with its user. For example, one could not use SendAEEval tO send an "ask" command

to HyperCard.

PPCBrowser command

The PPCBrowser function permits the CLIPS user to select an AppleEvent-aware program that is
currently running locally or on a remote Mac. This command brings up a dialog box from which
the user can click on various AppleTalk zones, machine names and "high-level event aware"
applications. It returns a pointer to a "process ID" which can be bound to a CLIPS variable and
used in the previously-described "send" commands.

159

CLIPS>(defglobal ?*myapp* -

CLIPS> ?*myapp*
<Pointer: 00FF85E8>

(PPCBrowser))

The above example doesn't show the user's interaction with the dialog box.

GetAEAddress command

The GetAEAddress functionisshnUar tOPPCBrowser inthatitreturnsa poin_r to a high-level

aware application that can then be bound to a variable that's used to specify the target of one of the
"SendAE" commands described earlier. Rather than presenting a dialog box to the user, however,
it instead takes a "target app" parameter similar to that described above.

(GetAEAddress <target app>)

The following example shows the GetAEAddress function being used to specify the target of a
SendAEEval/unction call.

CLIPS> (defglobal ?*myapp* - (GetAEAddress

CLIPS> (SendAEEval ?*myapp* "8 + 9")
"17"

CLIPS>

"HyperCard" "Jack's Mac" "R&D"))

TimeStamp command

Another extension we_'e made is unrelated to inter-program communication. We have added a
Timestar_,command to CLIPS. It returns the current system date and time as a string:

CLIPS>(TimeStamp)

"Wed Sep 7 12:34:56 1994"

CLIPS>

Possible Future Extensions

In addition to the CLIPS extensions described above, we are also looking into the possibility of
implementing several other enhancements. First, we want to generalize the current Apple Event
sending mechanisms to permit the CLIPS programmer to specify the event class and event ID of
the events to be sent. This is a relatively straightforward extension if we limit the event data to a
string passed as the "direct object" parameter. It would be somewhat harder to allow the CLIPS
programmer to specify more complex data structures, because we would have to design and
implement a mechanism that allows the CLIPS programmer to construct these more complex
combinations of keywords, parameters, and attributes. We will probably implement these
extensions in stages.

Another extension we're considering is to make CLIPS "attachable". This would permit the
CLIPS programmer to include pieces of AppleScript code in the knowledge base itself. This
would significantly enhance the power of CLIPS, as it would make it possible to compose,
Compile, and execute AppleScript programs from within the CLIPS environment, and save these

programs as part of a CLIPS knowledge base.

160

Acknowledgments

Some the extensions described in this paper were designed and implemented by Robert Dominy,
formerly of NASA's Goddard Space Flight Facility in Greenbelt, Maryland.

Also, Jeff Shapiro, formerly of Ames, ported many of the enhancements described herein to
CLIPS version 6.0.

References
[1] Compton, M., Wolfe, S. 1993 Intelligent Validation and Routing of Electronic Forms in a
Distributed Workflow Environment.. Proceedings of the Tenth IEEE Conference on AI and

Applications.
[2] Compton, M., Wolfe, S. 1994 A/and Workflow Automation: The Prototype Electronic
Purchase Request System. Proceedings of the Third Conference on CLIPS.
[3] Frainier, R., Groleau, N., Hazelton, L., Colombano, S., Compton, M., Statler, I., Szolovits,
P., and Young, L., 1994 Pl-in-a-Box, A knowledge-based system for space science
e:rperimentation, AI Magazine, Volume 15, No. l, Spring 1994, pp. 39-51.

161

