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Abstract 

This paper addresses the issue of integrating the C Language Integrated 
Production System (CLIPS) into distributed data acquisition environments. In 
particular, it presents preliminary results of some ongoing software development 
projects aimed at exploiting CLlPS technology in the new Mission Control Center 
(MCC) being built at NASA Johnson Space Center. One interesting aspect of the 
control center is its distributed architecture; it consists of networked workstations 
which acquire and share data through the NASAIJSC-developed Information 
Sharing Protocol (ISP). This paper outlines some approaches taken to integrate 
CLlPS and ISP in order to permit the development of intelligent data analysis 
applications which can be used in the MCC. 

Three approaches to CLIPSfISP integration are discussed. The initial approach 
involves clearly separating CLlPS from ISP using user-defined functions for 
gathering and sending data to and from a local storage buffer. Memory and 
performance drawbacks of this design are summarized. The second approach 
involves taking full advantage of CLlPS and the CLlPS Object-Oriented 
Language (COOL) by using objects to directly transmit data and state changes 
from ISP to COOL Any changes within the object slots eliminate the need for 
both a data structure and external function call thus taking advantage of the 
object matching capabilities within CLlPS 6.0. The final approach is to treat 
CLlPS and ISP as peer toolkits. Neither is embedded in the other, rather the 
application interweaves calls to each directly in the application source code. 

Introduction 

A new control center is being built at the NASA Johnson Space Center. The 
consolidated Mission Control Center (MCC) will eventually replace the existing 
control center which has been the location of manned spaceflight flight control 
operations since the Gemini program in the 1960s. This paper presents some 
preliminary results of projects aimed at incorporating knowledge-based 



applications into the MCC. In particular, it discusses different approaches being 
taken to integrate CLIPS with the MCC lnformation Sharing Protocol (ISP) 
system service. 

MCC and ISP 

The new control center architecture differs significantly from the current one. The 
most prominent difference is its departure from the mainframe-based design of 
the existing control center. The new MCC architecture is aggressively 
distributed. It consists of UNlX workstations (primarily DEC AlphafOSF1 
machines at present) connected by a set of networks running TCPIIP protocols. 
Exploitation of commercially available products which will be relatively easy to 
replace and upgrade has been a prime motivating factor in this change. 
Particular attention has been paid to the use of standard hardware, and 
commercial off-the-shelf (COTS) software is being used wherever possible. 

With a mainframe computer at the center of all flight support computation, the 
process of presenting telemetry and computational results to flight controllers 
was really a matter of "pushing" the relevant data out of the mainframe onto the 
appropriate flight control terminals. In recent years, the task of acquiring 
telemetry on the system of MCC upgrade workstations has been a matter of 
requesting the telemetry data from the mainframe. The central computer has 
sewed as the one true broker for telemetry data and computations. 

In the distributed MCC design, the notion of a central telemetry and computation 
broker has disappeared. In fact, terminals have disappeared. The flight control 
consoles consist of UNlX workstations which have access to telemetry streams 
on the network but must share data instead of relying on the mainframe for 
common computations. 

Software applications running on the MCC workstations will obtain telemetry data 
from a system service called the lnformation Sharing Protocol (ISP). ISP is a 
client/server service. Distributed clients may request ISP support from a set of 
"peer" ISP servers. The servers are responsible for extracting data from the 
network. Client applications needing those data initiate a session with the 
sewers (possibly from different machines), using the ISP client application 
program interface (API). These clients subscribe to data from the ISP servers, 
which deliver the data asynchronously to the clients as the data change. 
Parenthetically, the ISP API provides data source independence. Thus, ISP 
client applications may be driven by test data for validation and verification, 
playback data for training or live telemetry for flight support. 

It is the intent of the new MCC architecture that hardware (workstations, routers, 
network cabling, etc ...) will take a backseat to the "software platform". ISP is a 
prominent element of this platform, since it is the data sharing component of the 
system services in addition to providing a telemetry acquisition service. Indeed, 
the architecture presupposes that many of the functions previously handled in the 
mainframe program (e.g., display management, limit sensing, fault summary 



messages, "comm fault" detection) will now be carved up into smaller, easier to 
maintain application programs. 

ISP supports the integration of these applications by allowing clients to receive 
data that have been published by other clients. These shared data will in many 
instances be computations which were previously handled internally to the 
mainframe, e.g., spacecraft trajectories and attitude data, but with greater 
frequency, the shared data are expected to be "higher order information" derived 
from analyses of telemetry data. 

Some of the data analysis necessary for the generation of this higher order 
information will be derived from rule-based pattern matching of telemetry. One 
example of this is the Bus Loss Smart System which is used by EGlL flight 
controllers to identify power bus failures. Another example discussed later in this 
paper is the Operational Instrumentation Monitor (oimon) which assesses the 
health of electronic components involved in the transmission of Shuttle sensor 
data down to Earth. 

Rule-based applications can capture the often heuristic procedures ~~ised by flight 
controllers to perform their duties. A number of such applications are currently 
under development by flight control groups where the knowledge-based 
approach contributes to getting the job done "better, faster and cheaper". CLlPS 
is being used in a number of these. In the discussion that follows, methods for 
combining the telemetry acquisition and data sharing functionality of ISP with the 
pattern matching capabilities of CLlPS are discussed. 

An Embedded Approach 

CLlPS is a data-driven language because it uses data in the form of facts to 
activate and fire if-then rules which result in a change of execution state for the 
computer. CLlPS was designed to be embedded in other applications thus 
allowing them the ability to perform complex tasks without the use of complex 
programming on the part of the rule developer. Since ISP is a transport protocol 
for both receiving and transmitting information, it only makes sense to find a way 
to integrate the two toolkits to provide CLlPS developers with a reliable transport 
mechanism for data. 

In our work using ISP and CLlPS we have taken two approaches in integrating 
the two toolkits. The first was to directly embed ISP within CLIPS and provide a 
simple set of user-defined functions which allow the CLlPS developer to 
communicate via ISP. The second approach was to use both toolkits as peers 
allowing the developer to have complete control over the integration. 

The first method of embedding ISP into CLlPS grew out of three separate 
attempts to balance data, speed and ease of use concerns for the application 
developer. The first attempt at integration (Figure 1) consisted of creating a 
separate data layer with which ISP and CLlPS could communicate. This layer 
provides a storage location for all the change only data that ISP receives as well 



as hiding the low level ISP implementation. This approach provided several 
challenges in how ISP and CLIPS would communicate with the data layer. 

I Data Layer I 

TCP / IP H 
Figure 1 : The first attempt at integration 

A simple set of commands was added to CLlPS to aid in the communication with 
ISP. 

(connect-server [CLIPS-TRUE / CLIPSFALSE] ) 
(subscribe-symbol [symbol-name] [CLIPS-TRUE / CLIPS-FALSE] ) 
(enable-symbols [CLIPS-TRUE / CLIPSFALSE] 1 

The connect-server command establishes or disconnects a link with the ISP 
server and registers the application as requesting ISP data. Likewise, 
subscribe-symbol, informs .the ISP server of which data elements are 
requested or no longer needed by the application. The enable-symbols 
command begins and ends the flow of data to the application. 

Other API calls were added to CLlPS to enable an application to publish data to 
the ISP server for use in other CLIPS or ISP only applications. 

(publish-symbol [ symbol-name] [EXCLUSIVE I ) 
(publish [ v A L U E / L I M I T / S T A T U S / M ~ ~ ~ ~ ~ ~ ]  [symbol-name] [data] 
[time] ) 
(unpublish-symbol [symbol-name] 1 

The publish-symbol command informs the ISP server that the CLIPS 
application wants permission to send data under a given symbol-name. The 
optional EXCLUSIVE parameter informs the server that the requesting application 
should be the only application allowed to change the value. 

The final set of APls allows ISP to communicate with CLlPS in the form of facts. 

(want-isp-event [CYCLE/LIMIT] [CLIPS-TRUE/CLIPS - FALSE]) 

The want-isp-event command will activate or deactivate cycle or limit facts to 
be published in the fact list. 

This first attempt provided a solid foundation for communication between the two 
tool kits. However, the use of a separate data layer proved to be cumbersome to 



implement. The data layer needed to have a dynamic array and a quick table 
look-up mechanism as well as a set of functions to provide CLlPS with the ability 
to check values. Each time a rule needed a data value, an external function 
would have to be called. This proved to be a costly option in the amount of time 
needed to call the external function. A better method was clearly needed. 

Our second attempt at integration ISP and CLlPS consisted of the elimination of 
the data layer (Figure 2). All of the ISP data would be fed to CLlPS via facts. 
This method had several advantages. First, it reused the ISP functions 
developed earlier. Second, it allowed CLlPS to store all ISP data as facts. 
Finally, CLlPS application developers could do direct pattern matching on the 
facts to retrieve the data 

I CLlPS 6.0 1 

TCP I IP H 
Figure 2: Removal of the data layer 

The use of facts provided a few smaller challenges in the update and 
management of the fact list. There needed to be a way to find an old- that 
had not been used and retract it when new data arrived. This could be done at 
the rule level or in the integration level. At the rule level, the application 
programmer would be required to create new rules to seek out and remove 
obsolete facts. At the integration level, time would be spent looking for matching 
facts with similar IDS to be removed. 

The final approach at integration of ISP with CLlPS involved the use of the CLlPS 
Object-Oriented Language (COOL). Each data packet would be described as an 
instance of a class called MSID. The MSID class would provide a data storage 
mechanism for storing the data name, value, status, time tag, and server 
acceptance information. 

(defclass M S I D  
(is-a USER) 
( ro le  concrete) 
(pattern-match reactive) 
( s l o t  value ( create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  s ta tus  ( create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  time (create-accessor read-write) (default  0 . 0 )  ) 
( s l o t  accepted (create-accessor read-write) 

(default CLIPS-TRUE) ) 
) 

A second advantage of using the object implementation consists of inheriting 
constructors and destructors. When an instance of the MSID class is created, a 



constructor is activated and the symbol is automatically subscribed. On the other 
hand, when an symbol is no longer needed a destructor is activated and the 
symbol is automatically unsubscribed. Constructors and destructors free the 
application programmer from worrying about calling the appropriate ISP APls for 
creating and deleting symbols. 

(defmessage-handler MSID init after() 
(subscribe-symbol (instance-name ?self) CLIPS TRUE) 

1 
- 

(defmessage-handler MSID delete before() 
(enable-symbols CLIPS-FALSE) 
(subscribe-symbol (instance-name ?self) CLIPS FALSE) - 
(enable-symbols CLIPS - TRUE) 

1 

( definstances MSIDS 
( S02K6405Y of MSID ) 
( S02K6205Y of MSID ) 
( S02K6026Y of MSID ) . . a  

( S02K6078Y of MSID ) 
1 

Creating and subscribing symbols are automatically handled by COOL. One of 
the only ISP implementation details that the application programmer needs to be 
concerned is to enable the symbols and to schedule which ISP events are to be 
handled. 

(defrule connect 
?fact<- (initial-fact) 

r> 

(retract ?fact) 
(enable-symbols CLIPS TRUE ) 
(want-isp-event LIMIT-CLIPS-FALSE ) 
(want-isp-event CYCLE CLIPS-TRUE ) 

1 

Another clear advantage of using objects, like facts, is the ability to do direct 
pattern matching. As the ISP data changes, a low level routine updates the value 
in the affected slot. CLIPS could then activate any rule which needed data from 
the changed slot and work with this information on. 

(defrule Valuechanges 
?msid <- (object ( is-a MSID ) ( value ?value)) 

=> 
(update-interf ace ( instance-name-to-symbol ( 

instance-name ?msid) ) ?value ) 
1 

After working with the integration of CLIPS and ISP there is an advantage that 
CLIPS/COOL bring to bear on the ease of use for linking CLIPS with external 



'real time' data. One such application that used this integrated technology was a 
prototype to display switch positions from on-board systems to Space Shuttle 
ground controllers. The prototype was up and running within three days. The 
display technology had already been developed as part of a training tool to help 
astronauts learn procedures for the Space Habitation Module. The display 
technology was then reused and combined with CLIPS and ISP to monitor 
telemetry and react whenever subscribed data were detected. CLlPS was 
needed deduce single switch settings based on the downlinked telemetry data. 
FOP example, several parameters may contain measurements of pressure across 
a line. If most of the pressure sensors begin to fall low, then a pressure switch 
might have been turned off. 

An Open Toolkit Approach 

So far, the discussion has focused on integration of CLlPS and ISP by 
embedding ISP into CLIPS. This has the advantage of hiding the details of the 
ISP client API from developers of CLlPS applications; however, it is easy to 
imagine applications which are no more "CLIPS applications" per se than they 
are "ISP clients". CLlPS and ISP provide distinct services, so it is not 
immediately obvious which ought to be embedded in the other, or whether 
embedding is even necessary. 

The third approach we used to integrating CLlPS and ISP was implemented into 
the oimon application, discussed below. Instead of embedding ISP inside CLIPS, 
the two APls are treated as "peers" within the application. Consider the following 
definitions: 

open system: a system which makes its setvices available through a 
callable API, 

open toolkit: an open system which permits the caller to always remain 
in control of execution. 

The primary distinction between these two is that open systems may require that 
the caller turn over complete control of the application (e.g., by calling a 
MainLoop ( )  function). 

Open toolkits permit the caller to exploit the systems' functionality while 
maintaining control of the application; it real-time applications, this can be 
critical. Examples of open toolkits include the X-toolkit, the lSlS distributed 
communications system, and TclKk. Figure 3 depicts a number of the CLlPS 
and ISP API functions. Although both have functions which will take control of 
the application (i.e., Run (-1) and ItMainLoop ( )  ), the use of these functions is 
not required; lower level primitives are available to fine-tune execution of the two 
Systems (i.e., Run ( 1 ) and ItNextEvent ( )  , ItDispatchEvent ( )  ). By the 
definitions above, both CLlPS and ISP are open toolkits. As a result, they may 
both be embedded in a single application which chooses how and when to 
dispatch to each. 



ISP: - ItInitialize ( )  
- Itpublish ( )  , Itsubscribe ( ) 
- Itconnectserver(), ItDisconnectServerO 
- ItNextEvent 0 ,  ItDispatchEvent ( )  

CLIPS: - InitializeCLIPS (1 
- Assertstring (1 
- Reset ( 1 

Figure 3: Elements of the CLIPS and ISP appication program interfaces 

The Operational Instrumentation Monitor (oimon) is being developed as a MCC J 

application run at Instrumentation/lntegrated Communications Officer (INCO) 
console workstations. The program is useful to other non-INCO flight controllers, 
since it publishes (via ISP) the status of certain electronic components which may 
affect the validity of data in the telemetry stream. The paragraphs which follow 
outline oimon and discuss how ISP and CLIPS have been integrated into it as 
peer open toolkits. 

ground station 

flight support software 

sensors 

Figure 4: Shuttle sensor "channelization" 

Figure 4 presents a summary of the data flow originating at sensors on board the 
Shuttle (e.g., temperatures, pressures, voltages, current) and ending up on a 
flight controller's display or in some computation used by a flight control 
application. The significant aspect of this figure is that there are a number of 
black boxes (multiplexer/demultiplexers -- MDMs and discrete signal conditioners 
-- DSCs) which sit in the data path from sensor to flight controller. A number of 
these black boxes (the so-called operational instrumentation (01) MDMs and 
DSCs) are the responsibility of the INCO flight control discipline. There are other 
black boxes managed by other disciplines, for example the "flight critical" MDMs. 
The oimon application is concerned with the 01 black boxes. 



Failure of an 01 MDM or DSC can corrupt the telemetry data for a number of on- 
board sensors. As a result, most flight controllers and many flight control 
applications are interested in the status of MDMs and DSCs. Instead of requiring 
that each consumer of telemetry data individually implement the logic necessary 
to assess MDMfDSC status, the INCO discipline will run oimon as an ISP client 
which publishes the status of the 01 MDMs and DSCs. Any consumer of data 
affected by a particular 01 black box may subscribe to its status through ISP and 
thus effectively defer 01 MDWDSC to the INCO discipline. This deferral of 
responsibility to the appropriate discipline is one of the benefits of a software 
architecture which promotes data sharing between different applications on 
different workstations. 

The oimon application is a C-language program which makes calls to the ISP API 
to obtain its input data, the CLIPS API to execute the pattern matching necessary 
to infer the MDM/DSC statuses, and the ISP API to publish its conclusions. 
There are no explicit parameters in the downlist which unambiguously indicate 01 
black box status, and this is the reason CLIPS is needed. The major elements of 
oimon of relevance here are 

*a set of CLIPS rules which implement the pattern matching, 
.callback functions invoked whenever a telemetry event occurs, 
*assertions of CLIPS facts from within the callback functions, and 
*a main loop which coordinates CLIPS rule firing and ISP event dispatching. 

A template of oimon is shown in Figure 5. 

... 
sprintf ( fact, . . . ) ; 
Assertstring (fact) ; 

main 0 t ... 
ItAddCallback( ... isp-events ... ); 
while (True) { 

while ( moreISP ( ) ) { 
ItNextEvent ( . . . ) ; 
ItDispatchEvent ( . . . ) ; 

1 

while ( moreCLIPS () ) { 

Run(1); 
1 

1 
I 

Figure 5: oimon code template 



The CLlPS rule base is constructed so as to implement a number of tests 
currently used by INCO flight controllers to manually assess MDMIDSC status 
and to enable/disable some tests based on the results of others. In particular, 
these tests are (1) the MDM wrap test, (2) MDM and DSC built-in test equipment 
tests, (3) power bus assessment, and (4) a heuristic test developed by INCO 
flight controllers to deduce 01 DSC status based on a handful of telemetry 
parameters which are connected to the DSCs through each of the DSC cards 
and channels. 

The oimon application is still under development. However, preliminary 
experience with it suggests that the integration of CLlPS and ISP as peer toolkits 
called from a main application is not only feasible but easily implemented. 
Preliminary experience with this approach to CLIPS/ISP integration has revealed 
one advantage of it over embedding ISP in CLIPS. Under certain circumstances, 
the invocation of CLlPS functions can invoke the CLlPS "periodic actionw. When 
CLlPS is embedded in ISP, this can cause ISP events to "interrupt" the execution 
of the consequent of an ISP rule. In the peer toolkit approach, ISP functionality is 
not invoked using the CLlPS periodic action and thus this behavior does not 
exist. Subsequent testing of oimon will focus on tuning the event- 
dispatchinglrule-firing balance to ensure that oimon is neither starved of 
telemetry nor prevented from reasoning due to high data rates. 

Summary 

This paper has outlined three approaches we took to integrating the CLlPS 
inference engine and the ISP client API into single applications. A summary of a 
'data layer" approach was given, but this approach was not actually 
implemented. A similar method was also described in which ISP API calls are 
embedded in CLIPS, and ISP event processing is handled as an ISP "periodic 
action". The CLlPS syntax for this approach was presented. A quick prototype 
was developed based on this second approach, and the prototype demonstrates 
the soundness of the technique. In particular, it permitted very rapid 
development of the application. Unlike the first two approaches, the third 
approach we discussed did not embed ISP in CLIPS. Rather the CLlPS and ISP 
APls are invoked as "peer toolkitsw in the C-based oimon application. This 
application is currently being tested against STS-68 flight data, but additional 
development is expected. Preliminary results from oimon suggest that the peer 
toolkit approach is also sound. The possibility of ISP events interrupting the firing 
of ISP rules is eliminated in the oimon approach, since ISP is invoked directly 
from the application instead of being called as a CLlPS periodic action. 
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