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REVIEW OF SOLAR CELL TEMPERATURE COEFFICIENTS FOR SPACE

Geoffrey A. Landis
NYMA, Inc.

Brook Park, Ohio

INTRODUCTION

Energy conversion efficiency is an important parameter for solar cells, and well reported in the

literature. However, solar cells heat up when in sunlight, and the efficiency decreases. The
temperature coefficient of the conversion efficiency is thus also extremely important, especially in
mission modeling, but is much less well reported. It is of value to have a table which compiles into a
single document values of temperature coefficient reported in the literature.

In addition to modeling performance of solar cells in Earth orbit, where operating temperatures may
range from about 20°C to as high as 85 ° C, it is of interest to model solar cells for several other recently

proposed missions. These include use for the surface of Mars, for solar electric propulsion missions
that may range from Venus to the Asteroid belt, and for laser-photovoltaic power that may involve laser
intensities equivalent several suns. For all of these applications, variations in operating temperature
away from the nominal test conditions result in a significant changes in operating performance.

In general the efficiency change with temperature is non-linear, however, in the range from

negative 1OO°C through room temperature to a few hundred degrees C, efficiency is usually quite well
modeled as a linear function of temperature (except for a few unusual cell types, such as amorphous
silicon, and for extremely low bandgap cells, such as InE_aAs). Typical curves of efficiency versus
temperature are shown in figure 1, from Reference [9].

TEMPERATURE COEFFICIENTS

This is a compilation of data reported in the literature on a variety of cell types. Not all literature
values were reported. Some of the literature is ambiguous (for example, not listing whether reported
values are normalized), or lacks required information (for example, reporting power variation in mW/°C
without reporting cell power, or reporting Iscvariation without listing cell area). This compilation is also
biased toward more recent cell types and cell types currently in production, and data on several old cell
designs no longer in use has been left out.

These parameters are reported in terms of the normalized coefficients, that is, the fractional change
in value per degree Celsius, 1/11 dWdT. Clearly, the same coefficients apply to both efficiency and

power, lh1 d_/dT= 1/P dP/dT. A negative coefficient indicates a decrease in efficiency as temperature

rises. Thus, given the efficiency at the nominal measurement temperature To, the efficiency at T is:

_(T) = _I(To) [1+(1/1"I dWdT)(T o -T)] (l)

The temperature coefficient can be resolved into the sum of the variations of the open circuit
voltage,Voc, the short circuit current, Jsc, and the fill factor, FF:

1/11 drl/dT = l/Voc dVoc/dT + 1/Jsc dJsc/dT + 1/FF dFF/dT (2)

The Voc variation contributes the majority of the change in efficiency. The Voc and FF variations can

be found in the references and are not tabulated here. The short circuit current temperature coefficient,

1/Js c dJsJdT (= 1/Isc dlsc/dT ) is reported, for reasons discussed below.
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Figure 1

Variation of maximum power (Pmax) and Voc, Isc, and fill factor with temperature for gallium arsenide
solar cell (top) and indium phosphide solar cell (bottom) (data from Weinberg et al. [9], used with
permission of the author).
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The wide variability in the quoted values of the Jsc temperature coefficient for cells of the same

general type deserves discussion. The values differ not only from each other, but from the actual value

measured under space conditions. This can be seen, for example, in a comparison of temperature

coefficients measured using simulated sunlight compared with measurements made in space on the

NTS-1 mission [table 4-12 of reference 32, reproduced as figure 2]. The temperature coefficients of

voltage match to well within the error bars of the measurement. Measured temperature coefficients of

Jsc, on the other hand, are incorrect by an average of 340 percent.

Variation of short circuit current with temperature is primarily due to the change in bandgap energy

with temperature. As the cell heats up, the bandgap decreases, and hence the cell responds further

into the infrared portion of the spectrum. Hence, the Jsc variation term is roughly proportional to the

incident spectral intensity at wavelengths near the band edge. Solar cells are not typically tested under

actual sun illumination, however, but under a solar simulator, often a Xenon lamp. While a Xenon lamp

has a spectrum that approximates that of the solar spectrum on the average, the intensity does not

duplicate the solar spectrum in detail [31]. This is shown in figure 3. In particular, the spectral intensity

near the semiconductor band edge (the range from about 800 to 1100 nm for silicon and GaAs cells) is

significantly different from that of the sun, and in general different simulators (even of the same type) will

have differences in the detailed structure. Thus, the variability of Jsc temperature coefficient is due to

variations in the solar simulator, and not differences in the cells.

Measurements of Jsc temperature coefficient made with simulated sunlight cannot be trusted.

Fortunately, the Jse variation accounts for only about 10-20 percent of the efficiency variation. For

greatest accuracy, it is suggested that the measured 1/Jsc d Jsc/dT term should be subtracted from the

normalized power temperature coefficient to cancel this variation, and a calculated value appropriate to

the cell material should be substituted. For Si and GaAs cells, use of values from flight experiments

(last lines of tables 1 and 2) are suggested.

Tables 1-2 give the compiled values of temperature coefficients from the solar cell literature, along

with the temperature range of the measurement and the cell efficiency when listed, for silicon and GaAs

space solar cells. The first three values in the list show current production cells for space. Table 3

compiles temperature coefficient data for various emerging materials not yet being used for space

power. Table 4 shows values for Iow-bandgap TPV cells under 1500 ° blackbody illumination. Note that

since 1500 ° blackbody radiation contains considerably higher amounts of infrared than the solar

spectrum, the Jsc temperature coefficient is much higher than under solar spectrum illumination.

As expected, the temperature coefficients varies with the bandgap of the material, with the highest

temperature dependence shown by the materials with lowest bandgaps. For comparison, table 5

shows the theoretical values of temperature coefficient for idealized GaAs, Si, and Ge cells [24]. The

efficiencies of these idealized cells are higher than that of those achieved today, and hence the

temperature coefficients are slightly lower. However, the theoretical values for efficiency coefficient

agree rather well with the measured values for the GaAs and the Ge cells, as well as for the best of the

silicon cells. For reasons discussed above, the short-circuit current coefficients do not agree very well.

The emphasis here is for space operation (Air Mass Zero spectrum). However, since the Voc and

FF coefficients are not dependent on spectrum, most of this data is also usable for terrestrial

calculations.

Reference [24] discusses the theoretical basis for the variation of performance with temperature.

The largest term in the temperature dependence is the voltage term, which is:

dVoe/dT = (V_-Eg/q)/T- 3k/q - d(Eg/q)/dT + kT/q(l/JscdJsc/dT) (3)

387



I I II

dVoc (mV/OC) disc (mA/OC/4 cm 2)
dT dT

Ground Space Ground Space

Exp. No. Measurement Measurement Measurement Measurement
IIII

I

1 2.114 2.139 + .178 .045 .197 + .064

2 2.082 2.144 + .113 .058 .213 :t: .137

4 1.941 1.871 _+.149 .096 .271 _+.093

5 2.191 2.098 _+.117 .046 .139 + .047

6 2.082 1.989 _+.140 .058 .170 :t: .041

7 1.973 2.089 + .149 .076 .231 ± .055

8 2.082 2.098 :t .127 .058 .225 _ .061

Figure 2

Measure of voltage and current temperature coefficients for 8 silicon solar cell experiments flown on

NTS-1 satellite, comparing measurements made on the ground with those made in space [from ref. 32].
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Figure 3

Spectral comparison of Spectrolab X-25 Xenon-Arc Solar Simulator with AM0 solar spectrum
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where Eg/q is the bandgap in volts, T the temperature, and k/q the thermal voltage, equal to 0.086

mV/°C. Parameters to calculate the bandgap change with voltage for GaAs, Si, and Ge are given in

[24], and for InP in [16].

The largest contribution comes from the first term, proportional to the difference between the

bandgap and the open circuit voltage. Temperature coefficient thus decreases nearly linearly as

voltage increases. Since higher efficiency cells typically have higher open circuit voltages, higher

efficiency cells tend to have lower temperature coefficients than low efficiency cells of the same

material. This can be clearly seen in table 1.

Temperature coefficient is rarely considered as a design parameter for solar cells. From the

standpoint of temperature coefficient, increasing open circuit voltage, even at the expense of decreases

in other cell parameters (for example, by increasing base doping of the cell) may result in higher power

under actual space operating conditions.

Since open circuit voltage increases logarithmically with short circuit current, temperature

coefficient decreases as the log of the intensity. This is shown in the graph of temperature coefficient

versus intensity for GaAs solar cells [from Swartz and Hart, [11]). For cells with low bandgap, such as

Ge, the fractional rise in voltage is higher, and thus the decrease in the coefficient with intensity larger.

Since temperature coefficient is a function of illumination level, these tables do not report temperature

coefficients for concentrator solar cells [33-36].

At low temperature, the linear approximation is less valid. The increase in efficiency as

temperature decreases tends to level off, reaching a plateau typically typically around -80°C for silicon

cells [see figures 4-57 through 4-60 of reference 32]. At low illumination intensity and low temperature

("LILT" conditions), some solar cells are subject to additional degradation in performance. References

[39], [40], and [41] discuss operation of silicon solar cells at low temperatures and low intensity.

OPERATING TEMPERATURE AND EFFICIENCY

Operating temperature can be calculated from equating the power incident on the array, Pin, with

the power produced plus that radiated away, Pout. Here

Pln= (Xsolaz Psun +albedo Palbedo+C_therma]PthermaJ (4)

and

Pout = Tl(T)Psu n + F_.frontoT 4 +F_Tear 6r 4 (5)

where T is in degrees Kelvin and o is the Stefan-Boltzmann constant, 5.67-10 -8 W/m2-°K 4. For the case

of a laser-illuminated array there are additional terms corresponding to the laser incident power and the

laser conversion efficiency [47]. Equating these and inserting TIas a linear function of T results in a

fourth-order equation, which is typically solved by Newton's method.

Note that in calculating temperatures in low Earth orbit, the contribution of sunlight reflected from

the Earth ("albedo") and thermal infrared radiated from the Earth must be accounted for. The Earth's

albedo varies with cloud cover and season. Average values for Paibedo are quoted as "up to 30%" [31],

"about 0.3" [28], and 0.35 [1]. Note that albedo increases significantly at high latitudes in winter due to

snow cover; this can be important for polar orbits. The worst (highest temperature) case is at orbital

noon, when the albedo illumination is directly on the back of the array; for this reason, the rear-surface

alpha is an important parameter and is listed in table 6 for the cases where it has been reported.

Thermal radiation also varies with position over the Earth and time of year. Typical thermal

estimates use a thermal load in low Earth orbit (LEO) of about Pthermal--0.17 solar intensity [28,31], with
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Normalized temperature coefficient (with Isc variation subtracted) of GaAs solar ceils at various incident
solar intensities. Line shows the expected variation if the only factor in temperature coeffient is the
variation of Voc.
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the spectrum of a 288 °K blackbody [31]. The absorption constant for thermal radiation e.therma_ is the

same as the thermal emissivity, c, rather than the solar absorptivity _. Higher orbits reduce albedo and

thermal loading proportionately to the solid angle subtended by the Earth. Hence (as can be seen in

table 6) operating temperatures tend to be lower for GEO orbit (40,000 km altitude) than in LEO (800 km

altitude).

The solar absorptivity, (x, is a characteristic of the solar cell, subject to some modification by

ultraviolet and/or infrared rejection filters on the coverglass. To reduce the solar absorptance, silicon

cells may have back-surface reflectors ("BSR") to reflect unabsorbed infrared radiation back to space, or

even gridded back contacts to transmit unused infrared directly through the array. Cells with textured

surfaces have higher absorptance than cells with planar surfaces, and hence higher operating

temperature. In the infrared, the glass cover on the solar array is typically opaque, and hence the

thermal emittance c is characteristic of the glass and independent of the cell type.

Table 6 gives some quoted values of the thermal parameters, a and c, and also shows the

calculated equilibrium operating temperatures in orbit for several cells.

Future cells may have advanced covers which more efficiently reflect undesired IR and UV

radiation [43,44]. This can reduce the solar alpha for silicon cells to 0.75 tor cells without back-surface

reflectors or gridded back contacts [43], and to 0.72 to 0.79 [43, 44] for GaAs/Ge cells.

TEMPERATURE COEFFICIENTS FOR NON-SOLAR SPECTRA

There has recently been some interest in use of photovoltaic cells for converting laser radiation

[45,46]. Equation 2 shows the components of the variation of efficiency with temperature. Of the three

terms, only the Jsc term should depend on spectrum. Hence, the normalized temperature coefficient

under laser illumination can be calculated from the efficiency and Jsc terms:

[l/11 dll/dTllaser = [1/11 d_l/dTlsolar- [l/Jse dJsc/dT ]solar + [l/Jsc dJsc/dTllaser (5)

Since the Jsc term typically contributes 10-20% of the efficiency variation with temperature, to

single-digit accuracy the normalized efficiency temperature coefficient should be roughly the same for

laser or solar illumination [47]. The Voc term will have a slight dependence on spectrum because the

laser wavelength may be chosen to be close to the cell spectral response maximum, and hence the

current output for a given intensity input will be higher, resulting in a logarithmic increase in voltage and

a slight decrease in temperature coefficient.

Under solar illumination the short circuit current increases with temperature. Under monochromatic

illumination this may or may not be true. There are two regions of operation, depending on the

wavelength of the laser and the shape of the cell spectral response (in A/W). The two regions are: (1)

wavelength shorter than the spectral response peak, or (2) wavelength longer than the spectral

response peak.

For wavelengths shorter than the spectral response peak, the semiconductor absorbs essentially

all of the incident light, and this does not change as the bandgap changes with temperature. Changes

in short circuit current are only due to changes in quantum efficiency, which should be close to unity for

high efficiency cells. Since the number of incident photons is not dependent on the bandgap, the

current is nearly independent of temperature, and the temperature coefficient of Jsc is near zero.

Hence, for this region of operation, the monochromatic temperature coefficient can be approximated by

subtracting the (solar) normalized Jsc temperature coefficient from the normalized efficiency coefficient.

For a cell operating at wavelengths longer than the peak of the spectral response this will not be
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true. At long wavelengths the laser light is only weakly absorbed, and hence a small change in the

bandgap will result in a large change in absorption. For such cells the Jsc will increase with

temperature. This effect may be especially important in indirect bandgap materials, such as a silicon

cell operated at 1.06 B. For such regimes of operation the change o! absorption with temperature will be

very significant, and the cell may even increase in efficiency with temperature.

The theoretical monochromatic Jsc temperature coefficient is:

[ 1/Jsc d Jsc/dT]laser = _,/Eg (dQE/d_,)(dEg/dT) (6)

where QE is the cell quantum efficiency at the laser wavelength _,. The variation in bandgap energy

with temperature for most materials, dEg/dT, can be found in the literature [16,24].

Solar cells can be used for spectra other than solar or laser. Wilt et al [47] discusses the

temperature coefficient of 0.6 to 0.7 eV InGaAs cells under 1500 °C blackbody radiation; these results

are shown in table 4. Note that, for these cells, the Jsc component of the temperature coefficients is a

much larger component of the total. This is because of the low bandgap of the cell and the fact that the

1500 ° C blackbody has a large amount of its radiation in the infrared. The fact that these cells are

operated under high intensity also means that the Voc component of the temperature coefficient is

somewhat reduced by the logarithmic dependence of Voc.

For blackbody spectra, as for laser spectra, the temperature coefficient can be computed from the

solar temperature coefficient by subtracting out the measured Jsc coefficient and replacing it with the Jsc

coefficient for the spectrum desired.

CONCLUSIONS

The variation of solar conversion efficiency with temperature has been reviewed. The efficiency is

assumed to be linear with temperature. This is correct for temperatures near 25 ° C for most cell types,

but the behavior is nonlinear at extremely high and low temperatures. Typically the increase of

efficiency with reduction of temperature flattens out below~200 °K. Also, at extremely high

temperatures, the efficiency does not go to negative values, but levels off near zero. References 32 and

33 have data on (1967 vintage) silicon cells to temperatures down to 82 °K. The Design Handbook has

data on later vintage silicon cells at low intensity and low temperatures [32].
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Table 1: Silicon Cel; Temperature Coefficients

The first cell listed, SSF gridded back, is the large-area silicon cell developed for the space

station Freedom project. This, and the Applied Solar Energy Corporation (ASEC) Back
Surface Field/Reflector (BSFR) and ASEC Back Surface Field (BSF) cells, may be taken

typical of silicon cells currently used in flight, however, they are not significantly different in

performance from the other silicon cells listed, with the exception of the last two.

The University of New South Wales (UNSW) cells are recently developed laboratory cells

with improved open-circuit voltage and high efficiency. Cells ot this design are not yet

qualified for use in space.

Cell Temp

SSF grid back 0-95
ASEC BSFR 28- 60
ASEC BSR 28-60

2_ High E. 0-140
10_ Helios 0- 140
10_ BSF 0-75
2_I K5 0-75
"Violet" 0- 120
CNR (text.) I0-70
AEG 10f_ BSR
UNSW MINP
UNSW PESC

NTS- 1

ll

(28°C)
13
135- 148
125-.134
122
116
140
136
14
148
122

5-60 1870
5-60 1907

space measurement (avg. 7 types)

normalized temp. coefficients

1/11 dWdT I/Jsc dJsc/dT Ref.

(X I 0-3°C-I)(x I0-3°C-I)

-4.5 [1]
-4.60 [2]
-4.45 [2]
-4.62 +0.74 [3]
-4.72 +0.59 [3]
-5.0 [4]
-5.o [4]
-4.2 +0.65 [5]
-4.35 +0.34 [5]
-3.79 +I.14 [6]
-3.443 +0.650 [7]
-3.202 +0.650 [7]

+1.12 [32]

Table 2: GaAs Cell Temperature Coefficients

The ASEC GaAs/Ge cells listed on the first two lines can be taken as typical of cells that

are currently flown in space.

Cell Temp 11

{°c) (28oc)

ASEC GaAs/Ge 20- 120 .174 -1.60
ASEC GaAs/Ge28-60 .18-.185 -2.23
ASEC/GaAs 28-60 .18-.185 -2.32
Spire /GaAs 10-80 - 1.47
Varian 60 .195 -2.2
EEV LPE .174 - 1.90

Hughes LPE 0-415 .157 -2.09
French LPE 40-200 .212 -2.53
LPE 25-350 .156 -2.64
DH 15-80 -2.74

Hughes p/n 0-80 .164 -2.0
LLn/phomo. 0-80 .166 -2.6
Japan LPE p/n0- I00 .175 2.10

Varian 10-80 (high altitude test)

normalized temp. coefficients

I/T1 dWdT 1/Jsc dJsc/dT Ref.
(x I0-3°C-i) (x I 0-3°C-I)

+0.830 [8]
+0.56 [2]
+0.56 [2]
+0.246 [38]
+0.6 [9]
+0.92 [10]
+I.I [ll]

[121
+0.37 [13]
+0.30 [14]
+0.714 [15]
+0.71 [151
+0.63 [37]

+0.508 [31 !
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Table 3: Temperature Coefficients from Cells of Other Materials

Cell Temp TI

T_y.m _£KL (_
1.7eVAIGaAs
AlGaAs 15- 80

normalized temp. coefficients

1/_ dq/dY 1/Jse dJse/dY

(X 10-3°C-1)(X 10-3°C-1)

Ref.

-1.55 +0.95 [14]

1.93 eV AIGaA._

Varian 25-96 (high altitude test} +0.761 [311

/rip
diffused (best) 60 .132 -3.45 +0.767 [ 16]
diffused (wrst)60 .103 -3.56 +0.966 [ 16]
RPI 60 .136 -2.8 +0.8 [9]
MO-CVD 0-150 .195 -1.59 +0.890 [17]
ITO/InP 15-80 -3.80 +0.515 [14]

Ge
RTI 20-80 .090 -10.1 +0.617 [18]

Cu/cu_e 2

Boeing CIS -40-80 .087 -6.52 [19]
ISET CIS -40-80 .088 -6.03 [19]
Boeing CIS 25 .08 -5.26 +0.43 [20]
CIS/CdZnS 15-80 -5.87 +0.260 [ 14]
CIS/CdS -6.880 +0.057 [2 I]

Amorphous S/a//oqs Reported a-si cells have nonlinear response
temperature. Data reported here is for the region listed.
(single junction)
Solarex 0-40 .066

ECD a-si:H,F 15- 80
ECD aSiGe:H,F 15-80

*nonlinear

(two junction)
Fuji 22 - 60
C,aas/C_ Tandem
low temp.* 35- 100 .194
high temp.* 100-180 -.18
Spire 25-80 .189
[see also ref. 38]

*nonlinear

.089-.10

- 1.1 l* +0.74 [19]

-0.98 to -1.97" 0.83 to 0.95* [141
-1.02 to -1.97" 1.01 to 1.36" [14]

2.0 [42l

-2.85 +I.02 [22]
-2.0 +1.02 [221
-1.54 +0.94 [23]

with
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Table 4: Temperature Coefficients For Theromphotovoltaic (TPV) Cells under

1500°C blackbody radiation

Note that Jsc temperature coefficient will be much higher under 1500 ° blackbody radiation
than under the solar illumination.

normalized temp. coefficients

Cell Temp I/q dWdT I/Jsc dJsc/dT Ref,

{°C} (xlO-3°C -1) {xlO-3°C -1}

0.6eV InGaAs 30-70 -9.46 +3.04 [48]
0.66eV InGaAs 25-60 - i0.12 +3.18 [48]
0.75eV InGaAs 30-60 -4.67 +2,00 [48]
note: the Jsc temperature coefficients for these cells are highly non-linear above 60°C.

Table 5: Calculated Values of Temperature Coefficients
These values are for theoretical cells with performance at or near the theoretical limit. Numbers are not

representative of actual cells in use today.

normalized temp. coefficients

Cell Temp _I l/q dWdT I/Jse dJse/dT Ref.

Material (°C} { 28°C} (x 10-3°C -I ) (x I 0"3°C "l)

GaAs (calc.) 27 .277 -2.40 +0.34 [24]
Si [calc.) 27 .247 -3.27 +0.293 [24]
Ge (calc.) 27 .I06 -9.53 +0. 125 [24]
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Table 6: Other Thermal Parameters

Cell Fron_ Rear

__g_ _ _.K_
Slllcom Cells/Arrays

Operating

temp. t°C)

8x8 (SSF} 0.62 0.85 0.25 0.85 60

ASEC grd back 0.65

ASEC BSR 0.68

ASEC BSFR 0.72-0.74

Si (HST) 0,75(cell) 0.83 0.54 0.70 50-61
(BSFR SI) 0.54(array)

Silicon 0.80-0,840.8 I-0.84 0.81

Si K4, K6 0.63 23

(planar SI, grldded back)

Si K5, K7 0.81

{textured SI, gridded back)

Si BSFR 0,757 0.83 0.54 0,898 7 1

44

Si bffacial 0.66 0.83 0.57 0.78 57

Si BSF 0.82 0.82 0.86 42

Thin Si 0.72 0.86 0.86 27

IR refl. Si 0.69 0.86 0.86 22

IR transp. Si 0.67 0.86 0.86 2 1
ASEC BST 0.65 0.88

Sharp BSFR Si 0.75 0.82 0.80 37
textured cell 0.93 0.77
(textured Si, no BSR)

textured cell 0,905 0.75
(above, with conductive coated coverglass)

C,a_ C.e.lla

0.86 36

0.80 45
0.20 0.85 84

0.54 0.898 72

48

ASEC/Ge 0.870

ASEC/GaAs 0.83

thin GaAs 0.82 0.86

Sharp GaAs 0.86 0.82
GaAs/Ge 0.88 0.80

GaAs 0.84 0.83

Orbit Ref.

(Tl= 13.5} LEO Ill

(_I= 14.2%} [21

(Tl= 12.5- 13.4%) 121

(TI= 13.5- 14.8%) [2]

LEO [25]

126]

(q= 14%) LEO 14]

43 (q=14%) LEO [4l

(II=8%) LEO

(_I=8%) GEO [27]

(11=9%) LEO [27]

(q= 14.2%) [28]

(q= 13.5%) [28l

(Tl= 14.4%) [28]

(11= 13.3%) [28]
[29]

(q= 14.3%) [30]

[5l

151

(_1= 18- 18.5%) [2]

(_1= 18- 18.5%) I21

(_1=16.0%) LEO [28l

(_= 18.0%} [301

polar 5600nm [22]

(11=9%) LEO

(i1=9%) GEO [271
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