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A Lagrangian dynamic subgrid-
scale model of turbulence

By C. Meneveau 1, T. S. Lund 2 AND W. Cabot 2

A new formulation of the dynamic subgrid-scale model is tested in which the
error associated with the Germano identity is minimized over flow pathlines rather

than over directions of statistical homogeneity. This procedure allows the applica-

tion of the dynamic model with averaging to flows in complex geometries that do

not possess homogeneous directions. The characteristic Lagrangian time scale over
which the averaging is performed is chosen such that the model is purely dissipa-

tive, guaranteeing numerical stability when coupled with the Smagorinsky model.
The formulation is tested successfully in forced and decaying isotropic turbulence

and in fully developed and transitional channel flow. In homogeneous flows, the
results are similar to those of the volume-averaged dynamic model, while in channel

flow, the predictions are superior to those of the plane-averaged dynamic model.

The relationship between the averaged terms in the model and vortical structures

(worms) that appear in the LES is investigated. Computational overhead is kept

small (about 10 % above the CPU requirements of the volume or plane-averaged dy-

namic model) by using an approximate scheme to advance the Lagrangian tracking

through first-order Euler time integration and linear interpolation in space.

I. Introduction

The dynamic model (Germano et al., 1991) for the parametrization of subgrid
stresses in a Large-Eddy-Simulation (LES) is a means of utilizing information from

the resolved turbulent velocity field fii(x, t) to dynamically compute model coeffi-

cients. It is based on the algebraic identity,

L_i= T_i- _j, (1)

where

Lij = ui(tj - uiui, Tij = u_ - _i_j, and rij = uiu'-"_- fiifij. (2)

Above, a tilde represents low-pass filtering with a filter-width of size A (comparable

to the grld-size of the LES), while an overbar represents filtering at a scale 2A. When

the identity is written with the stresses Tij and ri) replaced by the Smagorinsky

model, and Eq. (1) is enforced in a least-square error sense over all five independent
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tensor elements (Lilly, 92), one obtains the following expression for the (dynamic)

Smagorinsky coefficient:

c_(x,t) = LpqMpq
MpqMpq' (3)

where

(4)

and S,j is the resolved rate-of-strain tensor. This version of the dynamic model in

which the coefficient can vary from point to point is often referred to as the 'local
dynamic model'.

There are two problems associated with the local dynamic model (Eq. (3)). First,
as pointed out by Ghosal et al. (1994), it is mathematically inconsistent to remove

the coefficient from the filter operation (in _'_) as if it were a constant. Second,

as observed during LES, during a-priori analysis of DNS data (Lund et al., 1993)
and when analyzing experimental data at high Reynolds numbers (Liu et al., 1994;

O'Neil & Meneveau, 1994), the coefficient field predicted by the local model varies
strongly in space and contains a significant fraction of negative values. Negative

values of c_ are of particular concern because they lead to negative values of eddy

viscosity in the Smagorinsky parameterization. This is destabilizing in a numerical
simulation, and non-physical growth in the resolved velocity fluctuations is often

observed (Lund et al., 1993).

Historically, the first problem was given very little attention while the second

problem was dealt with by averaging terms in the equations for c,2 over space and/or

time. When averaged, the numerator in Eq. (3) was generally found to be posi-

tive, thus recovering the statistical notion of energy transfer to the subgrid scales.

Averaging over homogeneous directions has been a popular choice, and excellent
results were obtained in a variety of flows. As examples, Germano et aI. (1991)

and Piomelli (1993) average the equations over planes parallel to the walls in chan-

nel flow simulations whereas Akselvoll and Moin (1993) average over the spanwise
direction in a backward-facing step flow. While these averaging schemes proved to

be effective at controlling possible instabilities and led to accurate results, rigorous

justification for them was lacking. Additionally, homogeneity in either space or time

was required.

These problems as well as the lingering issue of extracting c_ from the filtering
operation were addressed by Ghosal et aL (1994) where a variational approach

was used to account properly for the spatial variation of the coefficient within the

filter operation. Using this approach, various prior models employing averaging

were rigorously derived by imposing appropriate constraints in the solution to the

variational problem. Finally, two stable local models were derived that did not

make use of homogeneous directions. The first simply imposes the constraint that
2 but enforces a budget for the2 be non-negative. The second allows negative caC s

reversed energy transfer through inclusion of a subgrid-scale kinetic energy equation.

These latter two models have been tested in a variety of flows and are applicable to

complex geometry flows under unsteady conditions.
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While the work of Ghosal et al. (1994) has provided rigorously-derived methods

applicable to inhomogeneous flows, there is still room for improvement. The con-
straint c2 > 0 is hard to justify on other than heuristic grounds, and the numerical

solution of the integral equation can be expensive. The kinetic energy formulation

removes the conceptual problem associated with the constraint c] > 0, but only at

the additional expense of two more integral equations and one transport equation.

Also, new constraints for model coefficients in the kinetic energy equation have to be
introduced. Therefore, schemes that make use of averaging continue to have appeal

due to their demonstrated accuracy and relative ease of implementation. At the

same time, current averaging schemes require at least one homogeneous direction

(in space or time) and are therefore not applicable in fully inhomogeneous unsteady
flows. If this restriction could be removed, an equally general and perhaps simpler

alternative to the integral equation of Ghosal et al. (1994) would be available for

inhomogeneous flow simulations.

The objective of this work is to develop a simple, but generally applicable, aver-

aging scheme. As originally suggested by O'Neil & Meneveau (1993), we propose
to average over particle trajectories rather than directions of statistical homogene-

ity. Particle trajectories are always well defined objects that in no way rely on

special boundary conditions or assumptions of statistical homogeneity. Since parti-
cle trajectories are the natural directions associated with fluid flow, averaging the

2equations for c, over these directions has some physical appeal. It is reasonable to
expect that turbulent eddies evolve along particle paths and that the turbulence

energy cascade should be most apparent when viewed in a Lagrangian coordinate
system. As reported by Menevean & Lund (1994), there is evidence to suggest that
this is indeed the case. If the energy cascade does in fact proceed mainly along fluid

trajectories, then it would seem logical to postulate that the subgrid-scale model

coefficient at a given point x should depend in some way on the history of the flow

along the trajectory leading to x. This picture should be contrasted with that of
conventional schemes where spatial averaging removes the local details of the flow

structure and the turbulence development history is completely ignored. Eulerian

time averaging suffers from similar deficiencies since the advection of structures is

ignored.

The Lagrangian model is derived by requiring that the error in Germano's identity

be minimized along fluid trajectories. This procedure leads to a pair of relaxation

transport equations that carry the statistics forward in Lagrangian time. We show
that these equations can be solved in an approximate fashion in a numerically

efficient way. The model is applied to a variety of test eases including forced and

decaying isotropie turbulence, fully developed channel flow, and transitional channel

flow. In each case, the model is shown to produce results equal or superior to those of

spatially-averaged versions of the dynamic model. At the same time, the numerical
solutions to the transport equations increase the computational workload by only

about 10% as compared with the spatially-averaged approach.
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2. The Lagrangian dynamic model

_.1 Formulation

We propose to determine the model coefficient c_(x, t) by minimizing the error
in Germano's identity along particle trajectories. Consider a particle located at

position x at time t. The trajectory of this particle for earlier times t' < t is

j_t f
z(t) = x - fi[z(t"), t"]dt" (5)

The error associated with Germano's identity at any point along the trajectory is

e,_(z,t') = c_(z,t')M,Az, t') - L_j(z,t'). (6)

2 varies negligibly in space over the scale of the testHere we have assumed that c,
filter and have therefore removed it from the filter operation.

The total error is defined as the pathline accumulation of the local error squared,

E = / eij(z(t'),t') eij(z(t'),t') W(t- t') dt' (7)

The weighting function W(t - t') is introduced here in order to control the relative

importance of events near time t with those of earlier times. As described below,

we shall weight the error at time t most strongly and assign a decreasing weight to
2 varies negligibly in time over the scale ofearlier times. It is now assumed that c,

the weighting function W(t -t'). In this case, c_(z, t') may be replaced by c2(x, t),

and the total error is then minimized with respect to c ] by enforcing

t

OE / Oeii-- = 2eij--ff_ W(t - t') dt' = O. (8)
Oc_ Oc,

_ t20

Making use of Eq.
then obtains

where

(6) (with c2(z,t ') replaced by c](x,t)) and solving for c_, one

cZ(x,t)_ ZLM
T_MM , (9)

t

:TLM(X,t) = / Li¢Mij(z(t'),t') W(t- t') dt', (10)
--00

t

:rMM(X,t) = f MoMo(z(t'),t') W(t-t') dr', (11)
--00



Lagrangian dynamic model 275

L:M[z(t'"),t"']

M:M[z(t"'),t'"]

),t' L:M[z(O,tl

t_t '>t">t'" M:M[z(t),t]

....

IMM(X't)

t

FIGURE 1. Sketch of fluid trajectory of the resolved LES velocity field. The error

associated with the Germano identity is weighted with an exponentially decreasing

function (indicated as different gray levels), backwards in time, to yield a current

value for the model coefficient at point x and time t.

The function W(t - t r) is a free parameter in the current formulation, essentially

defining the extent backward along the pathline over which we choose to minimize

the error. Although several appropriate weighting functions are possible, an expo-

= T e has the dmtmct practicalnential weighting of the form W(t - t I) -1 -(t-¢)/T • •

advantage that the integrals _LM and _]_MM are solutions to the following relaxation

equations

DILM O_LM 1 (L,jMij - ZLM) (12)
Dt =- Ot + LI. _7_LM = -_

D_MM __ O_MM 1 (MijMi j _ ZMM) (13)
Dt - Ot --[- _1. V_MM = "_

In the context of LES, solving such transport equations is much more natural than

having to perform integrals backwards in time according to Eqs. (10) and (11).

Fig. 1 illustrates the basic idea of averaging over pathlines with an exponentially

decreasing memory.

$.2 Relaxation time scale

The time-scale T controls the memory length of the Lagrangian averaging, and

several choices can be made. The model coefficient should be responsive to changes

that occur on the time-scales associated with the smallest resolved turbulent mo-

tions. Thus, one could choose T based on variables at the grid-scale. Some possible
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choicesare the following:(a) T _ ISl-', (b) T IN1-1,(e) T A(M,
. _--1/4(d) r ,_ A(Lij/Vlij) -1/4, (e) T ,-- A2"M_ 4, and (f) T ,,, Z.XXLM . In fully devel-

oped turbulence, all of these time-scales are of the same order of magnitude on

average. The first four choices are based on local values, which would mean that
T is a strongly fluctuating variable while (e) and (f) are based on the smoother,

Lagrangian averages themselves.

Option (f) has several attractive features. Physically, it can be interpreted as

a time scale for energy flux since it is formed by contracting a stress L with the

strain-rate like tensor M. Thus, it may be indicative of the speed at which energy is

being cascaded towards the grid-scale. Furthermore, if Li.iMij <_ 0 for a persistent

time along the pathline, then LrLM approaches zero. T evaluated according to (f)
then tends to _, i.e. the memory time increases. In other words, the current

values are weighted less and less strongly relative to the past ones, if they are of the
backscattering type. This is useful in the implementation with the Smagorinsky

model where we wish to restrict the Smagorinsky expression for the modeling of

energy dissipation only. The Germano identity is thus weighted much less heavily

when LijMij <_ 0 in a persistent fashion, i.e. we opt for 'learning' as little as possible
about the coefficient from the resolved field when it would predict backscatter.

Equation (12) can now be written as

DJTLM 0 1
Dt = -A Z_'M (LiiMij - ZLM), (14)

where 0 is a dimensionless coefficient of order unity. If _LM reaches zero, its rate

of change is zero as well. Therefore, 2"/;M cannot become negative, and the result-
ing dynamic model will not suffer from numerical instability due to negative-eddy

viscosities. We point out, however, that if Lij._li) <_ O, the approach of _LM to
zero is not exponential, but of the power-law type (as (to - t)4/a). This means that

after the (finite) time to at which :rLM = 0, the solution becomes complex. Thus,
in practice, the solution must still be 'clipped' to zero during such times. This type

of clipping is much less drastic than previous approaches since the coefficient field

approaches zero smoothly with zero slope.

A judicious choice for the dimensionless coefficient 0 must now be made. In-

tuitively, we must average over a few 'events' of the variable LijMij along the
pathline. The average duration of such events is expected to be of the order of

A < ZijMij >-I, but in order to quantify this assertion, we analyze results from
DNS of forced isotropic turbulence. The goal is to compute the Lagrangian auto-

correlation function of the scalar variable LijMij. The method employed to follow
fluid trajectories and to compute the autocorrelation is the same as described in

Meneveau &Lund (1994). For comparison, we also compute the Lagrangian auto-

correlation function of the scalar IM 12as well as their Eulerian fixed-point two-time

autocorrelation functions. The Lagrangian tracking was done in a sequence of DNS
velocity fields computed on a 128 a mesh. The ensemble has a microscale Reynolds

number of Rx = 95.8. Each field was filtered with a Fourier cutoff filter at a scale

corresponding to 4 mesh spacings. Lagrangian and Eulerian autoeorrelations were

then computed for quantities derived from the filtered velocity fields.
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FIGURE 2. Lagrangian and Eulerian autocorrelation functions calculated from

a filtered DNS of forced isotropic turbulence. • : Lagrangian autocorrelations of

LijMij; • : Lagrangian autocorrelations of MijMi); ----- : Eulerian temporal

autocorrelations of LijMij; ........ : Eulerian temporal autocorrelations of MijMi).

Fig. 2 shows the computed autocorrelations. Time is non-dimensionalized based

on the space-averaged value of LijMij. As expected, the Lagrangian autocorre-

lations decay at a slower rate than the Eulerian ones, but the difference is small

due to the fact that the mean velocity of this flow is zero. Also, the decay of the

LM and MM terms is quite similar. The main observation is that after a time

,,, 2A < LijMij >-14, the autocorrelation almost vanishes. This suggests that av-

eraging over Lagrangian time spans equal to this interval is sufficient to smooth

instantaneous fluctuations. In summary, during the present work we choose

1

T = 2 A (zS)

as the time-scale characterizing the exponential memory with which the Germano

identity is enforced.

$.3 Numerical method

In principle, the implementation of the Lagrangian dynamic model requires the

solution of two additional transport equations (Eqs. (12) and (13)) during the LES.

This undoubtedly increases the computational cost associated with the subgrid

modeling. However, the considerable flexibility of choice of the averaging domain
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suggests that high numerical accuracy in solving Eqs. (12) and (13) may be unnec-

essary. Therefore, we use a particularly simple formulation based on discretizing

Eq. (12) in time as follows:

- z[M(x - a"At) 1
At = T--Z - • (16)

Eq. (13) is dealt with in a similar manner. Positions x are coincident with grid

points of the simulation. The value of 2"_.M at the previous time-step and at the

upstream location x - fi"At can be obtained by multilinear interpolation. Finally,

the new values at the grid points are solved for. The result is a weighted sum of
the interpolated prior value and the current source term at the grid point:

2"/_+1(x) = H{ e[LijMij]n+l(x) + (1-- e):T_M(X -- finAt) } (17)

and

where

:TMM(X)"+1 = e [Mij_blij]"+l(x) + (1 - e)/'_M(X -- fi"At),

At�T" T" ,
e = 1 + At�T"' and = 2 A (2"[M)-:t (18)

where H{z} is the ramp function (H{x} = z if x > 0, and zero otherwise). The
ramp function is introduced to clip the solution away from complex values.

Finally, we point out that the process of spatial interpolation between grid points
introduces some numerical diffusion to the fields 2"t,M and ZMM. Physically, such

diffusion effectively 'thickens' the pathline over which the averaging is being per-

formed, but this would not seem to be a worrisome aspect for this model.

_._ Statistical features of the model

As a next step, the model is implemented in a LES for the simulation of forced
isotropic turbulence on a 323 grid. The code is a variant of the pseudo-spectral

method developed by Rogallo (1981). Forcing is achieved by holding the Fourier

amplitudes fixed within the sphere k < 2. Test filtering is achieved through a
Fourier cutoff at twice the grid scale.

The velocity field is initialized in the usual manner by superposing Fourier modes

with a prescribed spectrum but random phases, and projection onto the divergence-

free space. Additionally, initial condition for the fields :ELM and ZMM must be

prescribed. For initializations corresponding to turbulent flows, we propose to set

:TMM(X,O) = MijMij(x,O), ZLM(X,O) = c_(O) MijMij(x,O), (19)

where c,(0) = 0.16 is the traditional value of the Smagorinsky constant. Thus at
the initial time, the model involves a position-independent, prescribed coefficient.
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FIGURE 3. Probability density functions of the coefficient c_, computed from the

Lagrangian dynamic model in a pseudo-spectral LES of forced isotropic turbulence
at Re = c_, on a 32 s mesh. The circles represent the asymptotic pdf long after

initial transients have died out (obtained here at t = 6 < T >, where < T >=

2A < LijM 0 >-1/4). Evolving pdfs on both sides illustrate delta function pdfs
with the wrong initial conditions quickly reach the asymptotic statistics. Curves

that peak to the left of the asymptotic curve correspond to c_(0) = 0.005; those

peaking to the right evolve starting from c] = 0.075. -- : (1 time-step);

(t=0.1 <T>); ......... (t=0.45<T>); -----: (t=0.95<T>); ....
(t = 1.9 < T >). For reference, in this simulation the time scale associated with
the resolved strain-rates was < JijSij >-1/2= 0.26 < T >.

For initializations corresponding to laminar flows, we propose to set c, = 0 in the

above expressions.

When the LES of forced isotropic turbulence is started, fluctuations of the La-

grangian dynamic coefficient c, quickly build as different values of LijM 0 begin to
affect the averages. Once a statistical steady-state has been reached, these fluctua-

tions are characterized by the probability density function of the coefficient shown

by solid circles in Fig. 3. Notice the small spike at c, = 0, arising from the regions

in which c_ is clipped at zero, away from complex values (on about 5% of the points

in this case). Initial transients leading to such a steady-state distribution are rela-
tively short. This can be appreciated by observing the time development of the pdfs

when the 'wrong' initial condition is employed for c_(0). In one case, we start with
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FIGURE 4. Probability density functions of numerators. ----- : evaluated locally

(Li/Mij); -- : after Lagrangian averaging (ZLM). These distributions are cal-
culated from a 32S-node, pseudo-spectral LES of forced isotropic turbulence that

uses the Lagrangian dynamic Smagorinsky model. To increase the sample, pdfs are
accumulated over several independent fields.
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FIGURE 5. Probability density functions of denominators. ----- : evaluated

locally (Mi.iMij); _ : after Lagrangian averaging (ZMM). Details as in Fig. 4.
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FIGURE (3. Probability density functions of model coefficients taken from a 32 s

Lagrangian dynamic model LES of forced isotropic turbulence. --.-- : coefficient

evaluated locally; -- : coefficient from the Lagrangian model.

c](0) = 0.005, and in another case with c2,(0) = 0.075. In both cases the asymptotic
distribution is reached after times of the order of 2 < T > where T is the time scale

defined by Eq. (15). We conclude that the proposed method of initialization is

acceptable since the simulation 'forgets' the initial state after only few grid-scale

turnover times. This is comparable to the time it takes the simulation to build up

realistic phases in the resolved velocity field, starting from the random-phase initial

condition. To further document the effect of the Lagrangian averaging, we com-

pute the probability density functions of :TLM and :TMM and compare them with

those of the local values LijM_j and M, jMij. Figs. 4 and 5 show these results. As

expected, the distributions become narrower after the Lagrangian averaging. By

construction, there are no negative values of _LM (Fig. 4). In terms of denomina-

tors, the averaging is seen to virtually eliminate values near zero. The pdf of IMM

approaches the origin with negligible slope while the probability of the local value

of M_jMij being close to zero is considerable. In Fig. 6, we show the measured

pdf of the coefficient c 2, itself. As can be seen, the variance of the coefficient in the

local formulation is greatly reduced by the Lagrangian averaging. Also, no negative
2 0 as indicatedvalues exist although a finite number of points (_,, 5%) exhibit c, =

by the spike at the origin.
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,_.5 Relationship to vortical flow-structures

The goal of this section is to make qualitative observations pertaining to possible
relations between the terms :TLM, ZMM, and discernible flow structures that may

appear in the resolved velocity field during LES.

First, we report the existence of tubular structures that characterize regions in
which the resolved vorticity vector has high magnitude, in our 323 LES. Fig. 7a

shows iso-surfaces of vorticity magnitude (at a threshold of ]with = 2.4 < w 2 >112).

Clearly, 'fat worms' exist in the solution. The existence of tubular vortical structures

in LES has also been observed recently by Briscolini and Santangelo (1994), using
a different subgrid model. One interesting question to be answered is whether the

prediction of such 'fat worms' by LES is realistic. We recall that DNS predicts

worms with very small diameters of about four Kolmogorov scales (Jimenez et al.,
1993)). Surely they cannot be captured by a LES at Re = ¢x_. The relevant question

is whether a field generated by DNS and then low-pass filtered at inertial-range
scales comparable to the LES grid-size exhibits 'fat worms' that are comparable

to those predicted by LES. We have performed such an operation based on the

1283 forced DNS described earlier and have visualized regions of high vorticity-

magnitude. We indeed observed 'fat worms' that were of similar appearance than

those of the LES (see also Fig. 17 of Vincent & Meneguzzi, 1991). It must be
recognized that the 'high-vorticity' regions in the filtered DNS correspond to much

lower vorticity-magnitudes than those of the unfiltered fields. This is the reason

why these 'fat worms' are not visible when analyzing the unfiltered DNS fields.
In summary, we observe elongated vortical regions in LES and believe that their

existence is a realistic prediction by the simulation since they also exist in low-pass
filtered DNS fields.

The next issue to be addressed is whether the Lagrange-averaged quantities that

enter our dynamic model bear any relationship to such local structures. Fig. 7(a)

shows contour plots of _LM on tWO planes of the computational cube, selected to
cut some of the most visible vortical structures. The field is chosen at some time

long after the simulation has reached statistical steady-state (15,000 time-steps).
Fig. 7(b) shows a similar graph for _MM, Generally, it is apparent the contours of

both ZLM and _MM are somewhat 'correlated' with the presence of worms. The

contours peak in the neighborhood of the worms while not much activity is seen

in regions that are far removed from the structures. Upon closer examination, we

observe that the peaks in _LM and _MM are most often located near the cores of

the worms but not inside of them. Many times the maximum values occur between
two closely spaced worms. These are expected to be regions of large straining

and turbulence generation. Also, considerable correlation is seen between both

fields _LM and _MM (it is p(_LM,_MM) '_" 0.8 while the correlation between the

local values is much lower, p(LijMij, MijMij) ,,_ 0.4). This increased correlation
between numerator and denominator is instrumental in decreasing the variance of
the predicted model coefficient.

Clearly, a detailed understanding of the relationship between the coefficient Co

and local flow structures, and of their dynamical interplay and relevance, is still
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Ca)

(c)

FIGURE 7. Visualization of high-magnitude vorticity regions in LES of isotropic
forced turbulence at Re = co. Surfaces correspond to points at which I&l = 2.4 <

&2 >1/_. On planes, contours of different variables shown. Ca) ILM, (b) IMM,

Cc) ]_51 (proportional to eddy viscosity with volume-averaged coefficient) and (d)

C_LM/_MM) ISI Cproportional to eddy viscosity computed from Lagrangian dy-

namic model).
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elusive. Nevertheless, we have shown that the Lagrangian averaging preserves some

spatial locality in the model. Spatially localized events in the numerators and

denominators used to compute the model coefficient bear some relationship to lo-

cal flow structures. The volume-averaged dynamic model would have generated a
position-independent coefficient that is oblivious to local flow structures. To observe

the effect on the predicted eddy viscosity, Figs. 7(c) and 7(d) show contour plots
of the strain-rate magnitude ISI and of the expression (ZLM/ZMM)ISI. The former

is proportional to the eddy vlseosity predicted with a volume averaged coefficient

while the latter is proportional to the eddy viscosity predicted by the Lagrangian

dynamic model. Both show peaks surrounding the worms, but the precise location

of these peaks differs. Also, the Lagrangian dynamic eddy viscosity appears to be
more intermittent in the sense that more eddy viscosity is concentrated near the

structures while being lower and fluctuating less in the regions far away from the
structures.

3. Applications

In this section, we report applications of the Lagrangian dynamic model to several

test-cases. We consider forced and decaying isotropic turbulence and channel flow.
These flows could have also been treated with the traditional dynamic model with

averaging over statistically homogeneous directions (arid they have in the past). Our
purpose in choosing these simple flows is to test the model in well-understood cases

and show that good results can be obtained. This is a necessary first step before

applications to unsteady and complex-geometry flows should be attempted where
many other effects such as numerics, etc. may influence the results and obscure the

role of the subgrid model.

3.1 Forced isotropic turbulence

LES of forced isotropic turbulence is performed on both 323 and 1283 grids, using

the code already described in section 2.4. The simulation is run for 15,000 and 6,600
tlme-steps on the 323 and 1283 grids, respectively.

Figs. 8(a) and 8(b) show the resulting radial energy spectra. The wavenumbers

and energy density are made dimensionless with the grid wavenumber and the aver-

aged subgrid-scale energy dissipation (- < Sijrij >). Figure 8(b) is premultiplied
by k 5/3. In these 'mesh-Kolmogorov units', one expects simulations with different

meshes to collapse at high wavenumbers, and the spectra to follow the universal

power-law in the inertial range. The dotted line in Fig. 8(a) shows a power-law
(k/kza) -s/3" A slight decay below the power law for k/k/, > 0'3 and a 'pile-up' very

close to the cut-off wavenumber ka are visible. These are known effects of physical
space eddy viscosity closures, which do not have a 'cusp' near ka. These defects

appear not to be remedied by the dynamic model in its Lagrangian implementa-

tion. We have confirmed that the same is true for the traditional dynamic model

by running the same program with the volume-averaged dynamic coefficient.
With regard to computational cost, we find that the CPU time for the simulation

with the Lagrangian averaging was higher by about 9% when compared to that of

the volume-averaged dynamic model. Most of the additional time was spent in the



Lagrangian dynamic model 285

(o)
10 I4 ..... .....

J "". °

lt_lO I. ,.

10_ , _ ,
10-_ 10-I

k/k_o,

0 o

(b)
3-51 ! ' i ! ! _ _ _ I

i , i , ! i i ii !I1t i i i i i ! i!! ! ! ! i i i

i i i i i } i i

i i i i i i i ii i i i i i _
• _ i _ _ i _ _ _ : i ! i i i _

! ! t ! ! _ ! ! ! ! ! ! !

O_ , I0 100

k/kmQ,,

FIGURE 8. Radial energy spectra of LES using Lagrangian dynamic Smagorinsky

model at Re = oo. Wavenumbers are non-dimensionalized with grid-wavenumber

while non-dimensionalization of energy density also involves mean subgrid-scale

energy dissipation rate, e = - < rijSij >, computed from simulation• (a) conven-

tional spectra, (b) premultiplied spectra. -- : 1283 simulation; : 323

run; ........ : slope -5/3. 323 spectrum averaged over 374 independent samples

taken from 15,000 time-steps (approximately 13 integral large-scale turnover times

L/u', with L = 2rr). The 1283 spectrum is based on 290 samples taken from 6,600

time-steps (approximately 4 large-scale turnover times).



286 C. Meneveau et al.

5.0000e-04

4.0000e-04

3.0000e-04

2.0000e-04

1.0000e-04

IGo 220

Uot/M

FIGURE 9. Temporal decay of turbulent kinetic energy in isotropic turbulence.

-- : 323 LES using the Lagrangian dynamic model; • : filtered experimental

results (Comte-Bellot & Corrsin, 1971) in grid turbulence which decays downstream

of a grid. U0 and M are the mean fluid speed and the spacing of the turbulence-

generating grid in the experiment.

linear interpolations. Two additional scalar arrays had to be defined, for _T.LM and

ZMM. Compared to overall memory requirements, this addition was not significant.

8._ Decaying isotropic turbulence

In order to test the model in an unsteady case, we perform LES of decaying

isotropic turbulence. Meaningful comparisons can then be made with the experi-

mental results of Comte-BeUot & Corrsin (1971). The initial 3-D energy spectrum

is made to match the experimental measurements at their earliest time. The phase

of the Fourier coefficients is chosen to be random so that the initial velocity field

had Gaussian statistics. The dimension of the computational box is chosen to be

roughly 4 integral scales.

Fig. 9 shows the decay of the kinetic energy compared with the experimental

results of Comte-Bellot & Corrsin (1971). The predicted initial decay appears to

be a little slower than the experimental rate, but the overall agreement is good.

Of course the agreement could have been improved by using a slightly larger value

of c_(0) as initial condition - an after-the-fact adjustment that we opted to avoid.

A comparison of the spectra at the three different times at which experimental

results are available is shown in Fig. 10. The decrease in overall kinetic energy and

the decrease of k at which the spectra peak (increasing integral scale) is clearly
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FIGURE 10. Radial energy spectra for decaying isotropic turbulence at different

times. _ : 323 LES with Lagrangian dynamic model; • : experimental results

of Comte-Bellot & Corrsin (1971). Scaling parameters are defined in Fig. 9. L =

10.SM is the computational box size.

reproduced well.
We conclude that the model is able to reproduce important features of this time-

dependent flow.

3.3 Fully developed channel flow

In this section we describe the application of the Lagrangian dynamic model to a

pseudo-spectral simulation of plane channel flow. For comparison, another LES is
performed with the traditional implementation of the dynamic model in which the

terms are averaged over planes parallel to the wall. The flow Reynolds number is
selected to match the experimental data by Hussain & Reynolds (1970) to permit

detailed comparison.
The channel flow simulations are performed with in a pseudo-spectral code (Kim

et al., 1987) in a numerical domain with streamwise, wall-normal, and spanwise

dimensions of 3r × 2 × 37r/4 (in units of channel half-width d) on a 48 × 65 × 64

mesh. Chebyshev polynomials are used in the wall-normal direction on a collocated

grid; Fourier transforms are used in the homogeneous streamwise and spanwise
directions on a uniform grid. Real space (tophat) filtering is used for the dynamic

test filtering procedure and is performed explicitly only in horizontal planes. The

equivalent filter width Aeq is taken to be the geometric mean of unidirectional grid
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LES with plane-averaged dynamic model; _ : LES with Lagrangian dynamic

model; • : Experimental measurements of Hussain & Reynolds (1970). (a) Wall
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FIGURE 12. Profiles of second-order moments of the resolved velocity field. ---- :
i

' from Lagrangian model; o : ur,,,,ur,,,,' from the plane-averaged LES; v : ur,,,_
from the experimental measurements of Hussaln & Reynolds (1970). o : Spanwise

' from Lagrangian LES; : from plane-averaged model. A : Wall-normaltO rrn s ........

' from Lagrangian LES; : from plane-averaged model. , : ResolvedVrrns

shear stress < u'v' > from Lagrangian LES; --.-- : from plane-averaged model.

widths (this procedure is justified for moderate grid anisotropies as shown in Scotti
et al., 1993). For the plane-averaged LES, averaging of the dynamic coe_cient is

performed in horizontal planes.

The approximate Lagrangian interpolation for the horizontal directions is im-

plemented in this code as described in §2.3. The wall-normal direction requires
different treatment due to the stretched mesh used in that direction. The trans-

formation 8 = cos -1 (y/d) is used to map the stretched mesh into a uniform one.
The wall-normal advection term, vO/O_I, is recast as voO/08 and the interpolation

is performed in $ identically to the horizontal directions, but using v0 = -v/sin $.

The wall planes are treated specially with ZLM = 0 and _rMM approximated by
values at the nearest off-wall plane. There was also the possibility that the interpo-

lation might attempt to place approximated points at the previous time step beyond
the walls; however, the CFL condition gives sufficiently small time steps that this
situation is never encountered.

A target friction Reynolds number Re_ (= u_d/v, where the friction speed u_
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is the square root of the mean total wall stress, and v is the molecular viscosity)

of 650 was chosen, corresponding to one set of experimental data by Hussain &
Reynolds (1970). The channel flow is started from a flow field at lower Reynolds

number and is allowed to evolve to near statistical equilibrium, with Re_- _ 641
in the last runs. The initial conditions for _LM and _MM are chosen as in the

homogeneous case but with c_2(0) as function of y matching the values of a previous

plane-averaged dynamic simulation. Using the Lagrangian formulation proved to

be more expensive than the standard plane-averaged method by 10% in CPU due,

in part, for the need to perform a division at each point to compute the dynamic

coefficient rather than at each plane. The Lagrangian method also requires extra

mass storage of ZLM and _MM between runs.
The averaged statistics will be shown first, followed by a more detailed analysis

of additional variables.

Fig. 11 shows the mean velocity profile in the half-channel, in outer units (a) and

wall units (b). As can be seen, at the resolution of the present LES, the plane-
averaged model predicts an excessive center-line velocity (smaller losses) for the

prescribed pressure gradient. The Lagrangian model yields a centerline velocity

slightly below the measured values although the magnitude of the error is consider-

ably smaller than that of the plane-averaged case (6.8% error in centerline velocity

for the plane-averaged model and -1.8% for the Lagrangian model). Fig. 12 shows
the profiles of rms velocities and Reynolds shear stress of the resolved fields, and

a comparison of the rms streamwise velocity with the measurements of Hussain &

Reynolds (1970). In the core region (for y/d > 0.2), the LES with both models
fall below the measured values to a large extent because the former do not include

the subgrid portion of the energy. Closer to the wall, both LES erroneously over-

predict u'ms , but the Lagrangian model does a better job than the plane-averaged

one. Interestingly, the magnitude of the resolved shear stress for the Lagrangian

model is larger than that of the plane-averaged case. This is possibly the cause for

the increased (more realistic) losses in the Lagrangian simulation. The mean eddy
viscosity predicted by both LES is shown in Fig. 13. It is computed according to

< .t > (y) =< z,t) 2  0qlSl >z,z, (20)

where the averaging is performed along x, z planes and over several times. The

2 is either computed according to the plane-averaged or the Lagrangiancoefficient cs

dynamic model. It can be seen that over much of the log-layer, the Lagrangian

model generates a lower eddy viscosity compared to the plane-averaged dynamic
model. We have checked that this reduction is due primarily to a decrease in the

2dynamic coefficient cs as opposed to reduced strain-rate magnitudes. The reduced

eddy viscosity is likely to generate less SGS dissipation of resolved turbulence, which
in turn is probably the cause for the increased resolved shear-stress observed before.

As an aside, an important feature of the dynamic model is that it exhibits the

proper near-wall scaling for the SGS eddy viscosity when the sublayer is numerically

resolved (Germano et al., 1991), namely vt "_ (y+)a. As can be seen in Fig. 13,

this scaling is followed quite well by the plane-averaged case (as observed before by
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FIGURE 13. Ratio of mean eddy viscosity to molecular viscosity taken from

the channel flow simulation, o : Lagrangian dynamic model; [] : plane-averaged

dynamic model; ........ : vt "- (y+)3 power-law.

Germano et al. 1991; Piomelli, 1993). The mean eddy viscosity from the Lagrangian

model also decays very quickly but at a somewhat slower rate (approximately as

vt "_ (y+)2.5 in our case). We shall return to this issue at a later stage. But we
stress that near the wall such minute differences are unlikely to have any practical

effect since there the molecular viscosity strongly dominates. With the purpose
2 and its evolution awayof documenting the statistics of the model coefficient c,

from the initial condition, we show in Figs. 14(a)-(c) probability-density-functions

of c_ at different times and different elevations from the wall. The pdf at t = 0
is a delta-function at the plane-averaged value of the dynamic coefficient, which
is used as an initial condition. As can be seen for y+ = 641 and y+ = 12 (core

and near-wall region), the convergence of the pdf to the asymptotic value (circles)

is nearly complete after 80-160 time-steps. This duration corresponds to about
u/u2r ,,_ 25 - 50 viscous times or d/ur "_ 0.04 - 0.08 outer times. At y+ = 108,

the convergence is slower because in the log-layer the initial guess for c2s is worst.

Still, after between 300 and 600 time-steps, the asymptotic state is reached for

2 Figs. 14(5) and (c) clearly show the considerable decreasethe fluctuations in %.
2 values in the Lagrangian model as compared to the plane-averagedof typical c_

model.
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LES - plane-averaged

y+ 12 108 640

< LiiMo > 2.912 104 5.362 102 1.099 101

< MiiMii > 3.054 107 4.932 104 6.998 102

LES - local Lagrangian

y+ 12 108 641
< _LM > 2.690 104 7.076 102 1.056 101

< _MM _> 2.814 10' 2.537 105 7.777 102

TABLE 1. Numerators and denominators in the expressions for the dynamic

coefficients averaged over sample planes.
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FIGURE 15. Scatter plot of _MM versus vertical velocity v' in LES of channel

flow, using the Lagrangian dynamic model.

The main issue left to answer is why the Lagrangian model generates such de-

creased coefficients in the log-layer. For this purpose, the average values of numer-

ators and denominators are evaluated separately for both models on some sample

planes as given in Table 1.

The largest discrepancy can be seen by comparing the denominators < MiiMii >

and < _MM > at y+ -_ 108. A possible reason for this discrepancy can be deduced
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by comparing < _IijMij > at y+ = 12 and at y+ = 108. < MijMij > and
< 7._MM > are several orders of magnitude higher in the near-wall region, as is to

be expected for a variable based on the strain-rate (to the fourth power). During
ejection events, fluid particles that were close to the wall reach decp into the log-

layer, thus convecting elevated values of:TMM upwards. This feature can be deduced

from Fig. 15, which shows a scatter plot of the Lagrangian denominator _MM as

function of the local vertical velocity. Clearly, large values of IMM are associated

with positive values of v r, which are indicative of ejection events or bursts.

The net effect is that the Lagrangian model is less dissipative as far as bursts

are concerned. They can survive longer and feed more turbulence into the channel

flow, producing more realistic (higher) levels of Reynolds-averaged (resolved) eddy

viscosity and losses.

It is likely that a similar phenomenon causes the near-wall scaling of Lagrangian
eddy viscosity to be less steep than that of the plane-averaged model. Occasionally,

'sweeps' bring log-layer material into the sublayer and effectively increase the model

coefficient and eddy viscosity above that of the plane-averaged model. Numerical

diffusion is also likely to play a role in reducing spatial differences in _LM and _MM.

3._ Transitional channel flow

A known drawback of the traditional eddy viscosity closure for LES of transitional

flows is that it is overly dissipative, possibly eliminating instabilities altogether

(Piomelli & Zang, 1990). The dynamic model, on the other hand, yields essentially

zero eddy viscosity if the resolved part of the flow is not turbulent. Instabilities
are thus allowed to grow initially in a realistic fashion, as shown in simulations of

transitional channel flow using the dynamic model, with planar averaging (Germano

et al., 1991). Once the non-linear breakdown phase is reached, the SGS model must
become active in order to prevent excessive growth of turbulent kinetic energy, wall

shear-stresses, etc. In the Lagrangian model, the variable 2"r._ must be initialized

to zero everywhere in the laminar region. As turbulence is generated, this variable

(and therefore the eddy viscosity) will rise from zero. The rate at which 2"L:_ rises
from zero is controlled in part by the memory time scale. If the memory time
scale, T, is too long, the rise in eddy viscosity may occur too late in the transition

process. In order to investigate this potential problem, we have performed an LES of

transitional channel flow. In this section we attempt to ascertain if the Lagrangian

model as proposed here (with the time scale given by Eq. 15) is able to (i) allow for

initial instabilities to grow in a realistic fashion, and then to (ii) sufficiently damp

the turbulence at the appropriate time.

The transition channel ease is identical to that of Zang et al. (1990), Piomelli &

Zang (1991) and Germano et al. (1991). The initial (laminar) centerline Reynolds
number is 8,000. The initial condition consists of a parabolic mean flow plus a 2-D

Tollmien-Schlichting wave of 2% amplitude and a pair of 3-D Tollmien-Schlichting

waves of 0.02% amplitude. The streamwise wavenumber for both the 2-D and 3-D
modes is 1.0, whereas the spanwise wavenumber for the 3-D modes is 4-1.5. See

Zang et al. (1990) for more details on the initial conditions. The dimensions of the
computational domain (streamwise, wall-normal, and spanwise) are 2r × 2 × 47r/3
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FIGURE 16. Time history of wall-shear stress from the transitional channel sim-
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Symbols: DNS ofZang et al. (1990). • : t = 176; • : t = 200;

: Lagrangian model LES; : plane-averaged dynamic

(in units of 6). The term :rLM is initialized to 10-]4 (instead of to zero) in order

to allow the first-order Euler scheme (explicit in T n) to move ZLM away from zero
once the source term L : M becomes non-zero.

The calculation is started on a 16 × 65 × 16 mesh. As the transition process

proceeds, the solution is interpolated onto increasingly finer meshes. The timings

of the remeshings are determined by monitoring the energy content in the highest

resolved frequencies in the streamwise and spanwise directions. The remeshing
procedure was found to introduce a complication in the Lagrangian SGS model.

Refining the mesh while holding the test-to-grid filter ratio fixed results in different

values of L : M and M : M. Because of its memory, the Lagrangian model requires

a finite amount of time to adjust to the sudden changes in L : M and M : M (about

At = 5, or 100 timesteps). In order to minimize this recovery time, the remeshing is
performed with values of:TLM and _MM rescaled so that their plane-averaged values

are equal to those of the instantaneous L : M and M : M, respectively. Early in

the transition process the SGS dissipation is minuscule and errors associated with

remeshing probably have a negligible effect. However, the flow may be more sensitive
to remeshing at later times when the SGS dissipation is not negligible.

The 16 × 65 × 16 mesh is used until t = 145 (in units of initial centerline velocity

Uc and 6), when the grid is remeshed to 24 × 65 × 24. The run is then continued to

t = 176 on both 24 x 65 × 24 and 32 × 65 × 32 meshes (with little notable difference).
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The field is then remeshed to 32 × 65 x 48. Another remeshing to 48 x 65 x 64 is

performed at t = 200, and the simulation is then run without further remeshing to
t = 280.

Figure 16 shows the time-history of the wall-shear stress compared with the DNS

of Zang et al. (1990). Results from the plane-averaged dynamic model are included

in this figure. The Lagrangian model is in good agreement with the DNS results

up to t = 210. Then, the wall-shear stress slightly overshoots the peak after which
it settles to a plateau, near the DNS value. The plane-averaged dynamic model

results are similar, with the exception that the peak shear stress is underpredicted.

Streamwise velocity fluctuations from the Lagrangian and plane-averaged models
at times t = 176, 200, and 220 are compared with the (filtered) DNS data in Fig.

17. Overall the agreement is quite good, and at t = 176 it is excellent. At this time

the Lagrangian and plane-averaged results are indistinguishable. Reynolds shear
stresses are shown in Fig. 18. Very good agreement is obtained at t = 176, whereas
some differences exist at t = 200 and t = 220.

Overall these results show that the Lagrangian model is capable of simulating

transition. The eddy viscosity does rise from zero with a delay which is small

enough so that turbulence is sufficiently damped after the rapid growth of kinetic

energy during transition.

4. Summary and conclusions

A new version of the dynamic model has been tested in conjunction with the

Smagorinsky closure. The model involves averaging the Germano identity for some

time along fluid pathlines rather than over directions of statistical homogeneity,
as was the practice in previous applications of the dynamic model. The present
model is not restricted to flows with such special directions and should be readily

applicable to complex-geometry, unsteady flows. We have shown that if an expo-
nential memory is employed, the required averages can be obtained by solving a

pair of relaxation-transport equations. In order to allow for the implementation of
this model with minimal computational complications, we proposed to discretize
the total derivatives that enter in these equations using a first-order expression in

time, coupled with linear spatial interpolation to find the values required at the
'upstream' locations. The resulting formulation (embodied in Eqs. (17) and (18))

is very simple to implement.
Basic properties of the model were studied in DNS and LES of forced isotropic

turbulence. The effect of the Lagrangian averaging on the pdfs of various quantities

involved in the modeling were identified. It was also shown that the model preserves

enough spatial locality to be influenced by vortical structures ('fat worms') that were
identified in the LES.

Applications of LES to isotropic turbulence and fully developed and transitional
channel flow has shown that the model performs well and should be readily appli-

cable to more complex flows.

On a final note, we recognize that the Lagrangian dynamic model contains some

arbitrary elements. In particular, an adjustable memory time scale T is involved.
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This fact is unfortunate since it appears to conflict with the dynamic model philos-

ophy of dispensing with adjustable parameters in favor of determining the subgrid-
scale stress solely from information contained in the resolved velocity field. However,

for any implementation which uses averaging, there is a similar ambiguity in choos-

ing the domain over which Germano's identity is to be enforced. Schemes that make

use of spatial averaging often average over all homogeneous directions although a

smaller subspace may be sufficient to insure the stability of the model. Choosing a
particular value of the averaging time scale in the Lagrangian model is analogous

to choosing a particular region in space over which to average. When viewed in

this way, the Lagrangian model actually has an advantage over spatially-averaged

variants in that it is designed to average over the minimum time necessary to insure

stability. This feature allows the model to retain the maximum amount of spatial
and temporal variability while remaining stable.
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