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Turbulence modeling for separated flow

By P. A. Durbin

1. Motivation and objectives

Two projects are described in this report. The first involves assessing turbulence

models in separated flow. The second addresses the anomalous behavior of certain

turbulence models, such as k - e, in stagnation point flow.

The primary motivation for developing turbulent transport models is to provide
tools for computing non-equilibrium, or complex, turbulent flows. Simple flows

can be analyzed using data correlations or algebraic eddy viscosities, but in more

complicated flows such as a massively separated boundary layer, a more elaborate
level of modeling is required. It is widely believed that at least a two-equation

transport model is required in such cases. The transport equations determine the
evolution of suitable velocity and time-scales of the turbulence. The appropriat__e

velocity scale for turbulent transport toward a wall is the normal component, v 2,
not the turbulent intensity, k. This and other considerations motivated the k -

- v 2 model, which can be used in wall-bounded flows. Applications to complex

geometry require a generalized interpretation of the velocity scale v 2. The model

originally was developed for attached or mildly separated boundary layers. Rather

promising results were obtained in tests of the formulation.__ Here the model is

assessed in strongly separated flows. Doing so requires that v2 be regarded simply as

a velocity scale that satisfies boundary conditions suitable for the normal component
of turbulent intensity; it cannot be regarded as the 'y-component' because that

would be inappropriate in general geometrie__s that can have surfaces aligned in any
direction. This loosened understanding of v 2 presents no operational difficulties.

Two equation models as well as the k - _ - v 2 model predict an anomalously

large growth of turbulent kinetic energy in stagnation point flows. Even when the
stagnation point region is not of interest per se, this spurious behavior can upset
the rest of the flow computation. A formal upper limit to the turbulent time-scale

in such models alleviates their stagnation point anomaly. This bound is derived

in §2.4 and is illustrated with the stagnation point flow at the leading edge of an
airfoil.

2. Accomplishments

The governing equations of the k - e - v 2 model will not be presented here. Their

initial development is described in Durbin (1991), and a more complete description

of the present work will appear in Durbin (1994). The mean flow satisfies the

incompressible Navier-Stokes equations with an eddy viscosity. The turbulence
model uses the standard k - e equations, a v2 transport equation and an elliptic

relaxation equation for the source term f22 in the v2-equation.

The computations were done with an extended version of the INS2D code of

Rogers and Kwak (1990). The extensions required for the present computations
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FIGURE 1. Skin friction coefficient on wall downstream of the backstep compared

to experiments of Jovic and Driver ( --, • ) and Driver and Seegmiller ( .... ,
• ). •....... line is solution to SSG model for Jovic and Driver flow.

consist of providing subroutines to solve the transport and elliptic relaxation equa-
tions of the k - e - v 2 model. This code development will not be described here.

The numerics are discussed in Durbin (1994). The program can solve full second

moment closure models as well as eddy viscosity models.

The present study included assessment of second-moment closures in separated
flow. The results were generally less satisfactory than k - e - v 2 . These second-
moment computations will not be presented.

Sections 2.1-2.3 present three separated flows: these illustrate sharp edge separa-

tion; smooth wall, pressure driven separation; and unsteady vortex shedding. This
last case was studied at the suggestion of colleagues at Pratt & Whitney.

_.1 Flow over backward facing steps

The backstep flow configurations studied experimentally by Jovic and Driver
(1993) and by Driver and Seegmiller (1985) were computed with the k- _- v 2 model

and with second-moment closure models. The JD experiment had a step height
Reynolds number of 5,000; the DS case had Re = 37,500. Both the IP and SSG

second-moment closures as incorporated into the elliptic relaxation procedure were

tried. Computations showed that they significantly under-predict the magnitude of

the reversed flow downstream of the step, as suggested by the dotted skin friction

curve in Fig. 1: this should be compared to the solid line and triangles.
Computed and experimental skin friction coefficients on the wall downstream of

the step are compared in Fig. 1. The computed reattachment point at x = 6.2 step
heights is in agreement with the data. The relatively large negative skin friction in

the JD experiment is due to low Reynolds number. The k - e - v 2 model correctly

shows this sensitivity to Reynolds number. Overall, the agreement with experiment
is better than has been found using the standard k - e model with wall functions

(Driver and Seegnfiller, 1985); numerous independent computations have shown
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that model under-predicts the reattachment length.

Figs. 2 and 3 show profiles of the U-component of velocity. These profiles are

plotted in the form 10U+x to display their evolution down the duct. The agreement

between model and experiment in the JD case is quite good. In the higher Reynolds

number DS case, the agreement is good for z < 8, but the model solution for the

boundary layer downstream of reattachment recovers more slowly than the data.

This slow recovery downstream of reattachment is a universal problem of turbulence

models shown by Reynolds stress as well as k - _ models.

2._ A _e1_arated diffuser

Obi eL al. (1993) measured the flow in a one-sided, 10 ° plane diffuser. The

expansion ratio of 4.7 was sufficient to produce a separation bubble on the sloping

wall; hence, this provides a test case for smooth, adverse pressure driven separation.

The entrance to the diffuser consisted of a long plane channel (aspect ratio 35) in
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FIGURE 4. Mean velocity profiles in the Obi, et al. diffuser. Both Eq. (9) ( -- )

and a constant value of 1.55 ( .... ) were used for C * The light dashed lines
show the diffuser surface.

order to produce fully developed flow. The Reynolds number based on the half-

height of this channel was 10,000. The computational inflow profiles were obtained

by solving fully developed channel flow with a parabolic code. Fig. 4 shows profiles

of 10U + x. The boundary of the diffuser is indicated in the figure--note, however,

that the aspect ratio of this figure is not unity: the actual duct is more elongated.

The profiles on the ramp are in good agreement with the data, showing the smooth

separation; further downstream, the predicted back/low is less strong than the data.

Note that the mass flux is constant, so less backflow near the lower wall is necessarily

accompanied by less forward flow in the upper part of the channel. Second moment

closure computations of this flow failed to predict the separation in this flow. Both

SSG and IP second-moment closure models gave only a tiny region of reversed flow

at the foot of the ramp.

_.3 Vortex shedding behind a triangular cylinder

The flow around a triangular cylinder in a duct was measured by Sjunnesson

(presented in Johansson et at. 1993). This geometry provides an example of bluff

body flow with fixed separation points. The study by Sjunnesson was motivated

by the application to flame holders. The geometry consists of a 6:1 aspect ratio

equilateral triangular cylinder centered symmetrically in a duct three cylinder sides

high. The Reynolds number based on the cylinder side and inlet velocity was about

42,500.

Both steady state and (statistically) unsteady solutions were computed. By tak-

ing a large artificial time-step on the order of the shedding period in length, we ob-

tained symmetric, steady solutions. Upon introducing an asymmetric disturbance

and taking a smaller step, an oscillatory solution was obtained. Fig. 5 is a com-

posite showing the time-averaged U-contours of the unsteady computation in the

upper half and the steady state solution in the lower. It shows that the steady-state
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FIGURE 5. U-contours for a steady calculation (lower half) and time-average of

an unsteady computation with vortex shedding (upper half).
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FIGURE 6. Instantaneous vorticity contours showing shedding in the time accurate

computation.

separation bubble is over twice as long as the averaged, unsteady bubble.

Instantaneous vorticity contours, in Fig. 6, show the asymmetric flow in the time

accurate computation. The interaction between the vortex street and the boundary

layers in the side walls results in eruption of secondary vorticity. The complexity of
such interactions underscores the need to resolve the coherent vortices in this type

of flow.

Fig. 7 shows profiles of the time-averaged U-velocity component in the wake. The

computational results were obtained by averaging the numerical solution over one

period of the vortex shedding. The profiles are displayed evenly spaced, but the
actual locations were x -- 0.375, 0.95, 1.525, 3.75, and 9.4 heights downstream

of the rear face of the cylinder. The agreement between experiment and model is

excellent. The first profile at x = 0.375 shows the sharp boundary and large velocity

deficit of the near wake. By x = 0.95 the wake profile has altered substantially

and is undergoing transition to a Gaussian form. The different curves show the

convergence of the solution with grid refinement. It can be concluded that the
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FIGURE 7. Time-averaged velocity profiles in the wake of a triangular cylinder.

The calculations are shown for three grids: 141 × 101 ( _ ), 121 × 91 ( .... );
71 x 51 ( ........ )

statistical unsteadiness produced by vortex shedding must be resolved in order

to compute this flow. The steady state computation of this flow is as dubious

as a homogeneous computation of a spatially homogeneous flow; it leads to quite
erroneous predictions.

2.4 On the k - e stagnation point anomaly

Two equation models as well as k - e - v 2 predict an anomalously large growth

of turbulent kinetic energy near to stagnation points (Launder and Kato, 1993;

Menter, 1992). This can cause difficulties in aerodynamic flows with a free-stream

impinging on a blunt leading edge. Even when the stagnation point region is not of

interest per se, this spurious behavior can upset the rest of the flow computation.

The usual explanation for the stagnation point anomaly is that the eddy viscosity
formula

2

uiu] = -2vtSij + -_kSij (1)

gives an erroneous normal stress difference (Launder and Kato 1993). In (1), Sij =
(OiUj + OjUi)/2 is the rate of strain and

vt = C_,kT (2) ,I,

is the eddy viscosity. T is the turbulent time-scale (e.g., k/e).

Some of our computations suggest an alternative understanding of the anomaly:

as the stagnation point is approached, T becomes very large. The c-equation is of
the form

T +V. (v+ )Ve , (3)
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where the rate of turbulent energy production is _P = 2vtSijSji. A large value of

T in Eq. (3) causes the production of e to be too small, allowing spuriously high
turbulent kinetic energy• The stagnation point anomaly can be ameliorated by

imposing a bound on the time-scale. In the following we will derive the constraint

T = rain ' 3C/,
(4)

where SoSji = IS[2. In most situations this reduces to T = k/e; in highly strained

flow the upper bound comes into play.
The constraint will be derived by requiring that (1) satisfy 2k >_ u 2 >_ 0, which

can be called a 'realizability condition'. The rate of strain tensor Sij is symmetric

and becomes purely diagonal in principal-axes coordinates. The diagonal elements,

Aa, a = 1... 3, are its eigenvalues and satisfy

_ + _ + _i = isl' . (5)

In incompressible flow

It follows from (5) and (6) that

Ax+A2+)_3=O (6)

l_al= _12 (7)

in two dimensions (i.e., when As = 0), and

l_al_< x/_213 (8)

in three dimensions.

If (1) is written in the principal axes of Sij, it becomes

u_ = -2"d,° + 2_k.
3

(9)

Of the constrains u_ >_ 0 and 2k > u--_, V a, the former is more stringent; this
constraint is

2
2vimax)_a <_ _k. (lo)

Substituting (2) into (11) results in the time-scale bound

T < 1 1 (11)
- 3C u maxA_

which gives

T < 2 1 (12)
- 3Cu v/fisl2
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FIGURE 8. Contours of constant k/U2: (a), with (6) imposed; (b), without
constraint. Contour intervals of 1.5 × 10 -a.

in two dimensions, and

r_< _ 8lSl 2 (13)

in three dimensions. These bounds might be imposed computationally by Eq. 4.

Fig. 8 shows k contours for the flow over a NACA4412 airfoil at zero angle of
attack and with k = 4 x 10 -4 U_ in the approach flow, with and without the con-
straint on T. This computation was done with the k - c - v2 model. The constraint

prevents the spurious growth of k although some amplification still occurs.

3. Future plans

Flows with mean swirl are of interest for their role in enhancing mixing both by
turbulent and mean motion. The swirl can have a stabilizing as well as a destabi-
lizing effect on the turbulence. I have written an axi-symmetric extension to the

INS-2D computer program and added the capability to compute swirling flow. This

is in order to study confined coaxial jets with or without swirl. High swirl can
produce vortex breakdown on the centerline of the jet. This type of flow occurs in
various combustors.

The present vortex shedding calculations suggest that the application of turbu-
lence models to separation control by external periodic excitation should be ex-

plored. This is a problem that Hans Kaltenbach has been investigating by LES.
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