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Small-scale behavior in distorted turbulent

boundary layers at low Reynolds number

By Seyed G. Saddoughi

1. Motivation and background

During the last three years (Saddoughi 1993a; Saddoughi 1993b; Saddoughi &

Veeravalli 1994), we have conducted high- and low-Reynolds-number experiments,

including hot-wire measurements of the velocity fluctuations, in the test-section-

ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at

NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's

(1941) universal equilibrium theory. This hypothesis, which states that at suffi-

ciently high Reynolds numbers the small-scale structures of turbulent motions are

independent of large-scale structures and mean deformations, has been used in

theoretical studies of turbulence and computational methods such as large-eddy

simulation: however, its range of validity in shear flows has been a subject of con-

troversy. The present experiments were planned to enhance our understanding of

the local-isotropy hypothesis.

Our experiments were divided into two sets. First, (Saddoughi & Veeravalli 1994)

measurements were taken at different Reynolds numbers in a plane boundary layer,

which is a "simple" shear flow with the basic mean strain rate S =- OU/Oy. Here
our results established the conditions under which local isotropy can be expected in

simple shear flows. Detailed analyses of these data have been already presented in

our previous reports. The main conclusions were that the lower-wavenumber limit of

locally-isotropic behavior (negligible shear-stress cospectra) is given by kz V/'[-/S 3 ,_

10. Our investigation also indicated that for energy spectra this limit could be

relaxed to ka V/-[/S 3 _ 3; this is Corrsin's (1958) criterion, with the numerical value
obtained from our data. The existence of an isotropic inertial range requires that

this wavenumber be much less than the wavenumber at the onset of viscous effects

so that the combined condition (Corrsin 1958 and Uberoi 1957) is SV/-_ << 1.

Spectral "bumps" between the -5/3 inertial range and the dissipative range were

observed on all the compensated energy spectra. The shear-stress cospectra rolled

off with a -7/3 power law and scaled linearly with S (Lumley 1967). In summary,

it was shown that one decade of inertial subrange with truly negligible shear-stress

co-spectral density requires SV/_ not more than about 0.01 (for a shear layer

with turbulent kinetic energy production approximately equal to dissipation, this

implies a microscale Reynolds number of about 1500).

Second, experiments were designed to address this question: will our criteria for

the existence of local isotropy hold for "complex" non-equilibrium flows in which

extra rates of mean strain are added to the basic mean shear. In our last report

(Saddoughi 1993b) we showed that the small-scale data taken at different locations

in a highly-distorted boundary layer at high microscale Reynolds numbers (1750
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to 2000) behaved similarly to the simple shear flow case, and that they satisfied

the local-isotropy predictions. In the current report the results of our experiments

conducted in complex flows at low Reynolds numbers at a variety of extra mean

strain rates are presented.

2. Accomplishments

2.1 Apparatus and measurement techniques

We have studied the plane-of-symmetry flow in front of a circular cylinder placed

vertically in a fully developed two-dimensional turbulent boundary layer. In this

type of flow, the pressure rises strongly as the obstacle is approached, and the

boundary layer is also influenced by the effects of lateral divergence. Hence, in

addition to the basic mean shear, OU/Oy, the extra mean strain rates involved in

the flow are OU/Ox, OV/Oy, and OW/Oz. To obtain the desired effects, the size of

the cylinder should be at least of the order of the thickness of the boundary layer.

Since in our study the approaching boundary-layer thickness was approximately

1.1 m, the following dimensions were chosen for our test cylinder: D = 1.22 m and

height L = 1.83 m. Our measurement location was fixed at x/D _ 0.85 with respect
to the front of the cylinder.

We presented (Saddoughi 1993b) a very brief review of the experimental inves-

tigations dealing with the large-scale structural changes that occur in this kind of

flow, and also gave a detailed description of the test cylinder and other apparatus

used in our experiments. The measurement strategy, instrumentation, and pro-

cedure were all similar to those explained by Saddoughi & Veeravalli (1994), and
details will not be repeated here.

Our low-Reynolds-number complex-flow experiments are divided into two cases:

boundary layers under the influence of (i) large and (ii) small, extra mean strain
rates. These two flow cases are described below.

2._ Distorted boundary layers: Large extra-strain-rate experiments

Fig. 1. shows a schematic diagram of the test cylinder attached to the ceiling of

the 801 x 120 _ wind tunnel. During our complex-flow measurements the tunnel runs

were dedicated to our experiments; however, as shown in Fig. 1, a full-scale F-18

fighter aircraft set at an angle of attack of 50 ° was present in the central region of

the working section for both the high- and low-Reynolds-number measurements. It

will be shown later that the presence of the aircraft in the tunnel usefully increased

the mean strain rate in front of the cylinder.

Our low-Reynolds-number measurements have been taken at a reference velocity,

Ur,l = 10.75 m/s. The mean-flow data for this case are compared with the data

for the high-Reynolds-number large-extra-strain-rate case in Fig. 2.

The normalized profiles of the longitudinal mean velocity, U/Ur_I , for the dis-

torted boundary layers are compared with the profiles obtained for the plane bound-

ary layer in Fig. 2(a), where y is the distance from the wall. The shapes of the

velocity profiles for the distorted boundary layers are typical of the large adverse-

pressure-gradient flows: note the flattening of the profiles in the middle of the layer.
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FIGURE 2. Mean-flow data at high and low Reynolds numbers. (a) Normalized

longitudinal mean-velocity profiles, U/Urel, measured in large extra-strain-rate and

plane boundary layers. (b) Normalized vertical mean-velocity profiles, V/U,._I,

measured in large extra-strain-rate boundary layers. (c) Flow yaw-angle profiles,/3,

measured in large extra-strain-rate boundary layers at different spanwise locations.

, U,., I _ 50 m/s and ,, , U,., I _ 10 m/s plane boundary layer; i , Urn/ _ 51.25

m/s and -, U,.,! ,_ 10.75 m/s large extra-strain-rate boundary layer.
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The boundary-layer thickness, b (the point where U/Ut = 0.995), has increased to

approximately 1250 mm in the distorted boundary layer. Here the shape factor

H _ 1.85, and at the edge of the boundary layer the pressure coefficient Cp _ 0.23.

Fig. 2(b) shows the normalized profiles of the vertical velocity component, 11"/U,._ I"

A least-squares polynomial fit to the V profile was used to obtain the values of

ov/ou.
The magnitudes of the extra strain rate due to the streamline divergence, OW/Oz,

influencing the plane of symmetry of the flow can be obtained from (OW/Oz) =

U(Ofl/Oz) (see e.g. Saddoughi & Joubert 1991), where fl is the flow yaw angle

measured at different spanwise locations z. The profiles of/7 measured by a yaw-

meter probe for three spanwise locations (z/D = -0.21, 0, and 0.21) through the

boundary layers are shown in Fig. 2(c). It can be seen that, as expected, in the

plane of symmetry of the flow the crossflow, W, is approximately equal to zero. The

profiles are typical of three-dimensional boundary layers: larger flow yaw angles near
the wall than the freestream.

Finally, the continuity equation was used to obtain the OU/Ox values. For both

our high and low Reynolds number distorted boundary layers, typical values of

(OU/Ox)/(OU/Oy), (OV/Oy)/(OU/Oy), and (OW/Oz)/(OU/Oy) were larger than 0.1,

0.2, and 0.3 respectively. These large extra-mean-strain rates produce large non-

linear effects on the large-scale structures of the boundary layers (Bradshaw 1973).

The profiles of the Reynolds normal stresses 2 2 2 2 2(u,lU..s,u lV os,u lV..s), and
the shear stress, -ulu2"/U_l, for the distorted boundary layers at high and low

Reynolds numbers are compared with the profiles for the plane boundary layers in

Fig. 3. The profiles for the distorted boundary layers appear to be quite different

from the plane flow case. The peaks of u_ and the shear stress, -uxu2, profiles have

moved away from the wall to y _ 300 mm, and in the outer part of the layer the

values of all the Reynolds stresses have increased.

From Fig. 3(d) it can be deduced that at the wall r/pU2re! ._ 0.0003. Also from

Fig. 2(a) note that at the edge of the boundary layer U/Ur_I "_ 0.88. Based on

the above values, a C I .._ 0.00078 can be obtained, which corresponds to shear

velocities U_ _ 0.89 m/s and 0.186 m/s for the high-Reynolds-number and low-

Reynolds-number cases respectively. Using Ur as the scaling velocity, the Reynolds

shear-stress profiles are replotted in Fig. 4. These large changes in the large-scale

structure of turbulence are due to the effects of large adverse pressure gradients (see

Bradshaw 1967).

2.2.1 Analysis of small-scale data: low-Reynolds-number case

As mentioned earlier, the spectral measurements taken in this highly-distorted

boundary layer at high Reynolds number were presented in our last report where

it was shown that these data satisfied local-isotropy predictions. Hence, in the

following we will concentrate only on the low-Reynolds-number experiments.

The spectral measurements of the three components of the velocity taken at

y = 100 mm (inner-layer), 300 mm (maximum shear stress), 500 mm (around mid-

layer), and 700 mm (outer-layer) for the low-speed case are analyzed here. In this

case, the microscale Reynolds number range was about 850 to 650.
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FIGURE 3. Profiles of Reynolds stresses measured in plane and large extra-strain-

rate boundary layers at high and low Reynolds numbers: (a) ul/Ur_i,2_ (b) u2/Ur_l,22

u3/U_,l, (d) -ulu2/U,_ I. For key to symbols see Fig. 2.
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FIGURE 4. Scaling of the Reynolds shear-stress profiles (Fig. 3d) using Ur as

velocity scale. For key to symbols see Fig. 2.

Compensated spectra can be defined as e-213k_13E_,,_(kx), where a = 1, 2 or 3

(no summation over a). In the inertial subrange, these should be independent of

wavenumber and equal to the Kolmogorov's constants for one-dimensional spectra.

In Fig. 5 the compensated longitudinal spectra at the four y-positions are plotted

against kl r/. The compensated ninth-order, least-square log-log polynomial fits of

E11 (kl) are also presented in this figure. Here the dissipation value at each measure-

ment location was obtained from the isotropic relation e = 15u fo k_Ell(kl)dkl

(e.g. Batchelor 1953). (For details see our previous reports.) As can be seen in

this figure, the ul-spectra (single wire) at all the measurement locations have -5/3

ranges and the Kolmogorov constant C = 1.5 (i.e. (71 = 18C/55 = 0.491) (Monin &

Yaglom 1975; Saddoughi & Veeravalli 1994) agrees reasonably well with the present
data.

The compensated u2- and ua-spectra are presented in Figs. 6 and 7 respectively.

These two figures illustrate several points. (i) They show that the extent of -5/3

range of the transverse spectra reduces when the wall is approached. This is similar

to the behavior of the spectra for the zero-pressure-gradient boundary layer. (ii)

At the inner-layer position, isotropy is satisfied and the densities of the transverse

spectra in the inertial subrange are equal to 4/3 times that of the ul-spectrum.

However, when the outer part of the bovndary layer is approached, there is an

increased deviation from isotropic behavior. (iii) All the compensated spectra at

the outer-layer position (y = 700 mm) have a new "bump" between the large-scale

range and the inertial subrange. (iv) At all the measurement positions, to within

the accuracy of measurement, the u3- and u2-spectra are equal to each other in the

inertial subrange and dissipation range. This is further illustrated in Fig. 8, where

the ratio of the measured ua-spectrum to u2-spectrum, E_ea_(kl)/E_2eaS(kl), at

each y location is plotted against klrt.

All of the above measurements were repeated by taking data on different days

with different hot-wire elements having different calibrations and using different

anemometers. Also, the ul-spectra obtained by X-wires in x-y and x-z planes
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FIGURE 5. Compensated ul-spectra measured at different locations in the large
extra-strain-rate boundary layer at low Reynolds number. Solid lines are the ninth-

order, least-square, log-log polynomial fits to the spectral data. (a) y = 700 mm
(outer-layer), Rx ,_ 650; (b) y = 500 mm (around mid-layer), Rx _ 820; (c) y = 300

mm (maximum shear stress), Rx _ 800; (d) y = 100 mm (inner-layer), Rx _ 830.
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FIGURE 6. Compensated u2-spectra measured at different locations in the large

extra-strain-rate boundary layer at low Reynolds number. Solid lines are the ninth-

order, least-square, log-log polynomial fits to the spectral data. For key to captions

for (a)-(d) see Fig. 5.
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in the large extra-strain-rate boundary layer at low Reynolds number• For key to

captions for (a)-(d) see Fig. 5.

compared well with the spectra measured by single wires (shown in Fig. 5).

If the motion is isotropic, the transverse spectra E22(k] ) and E_3(k_ ) are uniquely

determined by the longitudinal spectrum E_ _ (k]) (e.g. Batchelor 1953): E22(/q ) =

E_3( k_ ) k_ _,c,_tct _, _ and _r.= ½(1- g_-_)E1](kl). The transversespectra, _22 _] .L,aa _]),

can be calculated from the measured longitudinal spectrum, E_*"_(k_), using the
1_calc/ k "_ l E'_meas/ L "_above equation• An anisotropy measure may be defined as _,_ _ _)/_ _,_),

where _ = 2 or 3 corresponds to u2 or u3 respectively• These anisotropy measures
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should be equal to 1.0 in an isotropic flow. We have used the least-squares fit data

in Figs. 5, 6, and 7 to calculate these measures, which are plotted against kzq in

Fig. 9. These measures clearly show that, as expected from our earlier observations

of the compensated spectra, at the inner-layer position, isotropy is satisfied, and

when the outer part of the boundary layer is approached, the transverse spectra

deviate from the local-isotropy predictions.

We showed (Saddoughi 1993b) that our small-scale measurements in the highly-

distorted boundary layer at high Reynolds number followed the local-isotropy pre-

dictions. For the same flow at low Reynolds number, isotropy is satisfied in the

inner-layer position; however, it appears that in the outer parts of the boundary

layer, the small-scale behavior is better described by local-axisymmetry assump-

tion about the streamwise direction (Batchelor 1946) since the measured transverse

spectra are equal to each other and they deviate from the isotropy predictions.

The correlation-coefficient spectra, R12(kl) _ -Ez2(kl)/v/Elz (kl)E_2(kl), are

plotted in Fig. 10. In isotropic flow the shear-stress cospectrum, Em(kz), which

satisfies fo Em(kl)dkl = -ulu2, is equal to zero. This indicates that the correla-

tion coefficient spectrum should fall to zero at high wavenumbers. This condition

should also be satisfied for a locally-axisymmetric flow. As can be seen in Fig. 10,

for all the measurement positions in this boundary layer the Rz2(ka) spectra drop

to zero at high wavenumbers, but as noted before (Saddoughi & Veeravalli 1994),
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both positive and negative values are inferred from the measurements in the high-
wavenumber ranges for all the measurement stations• However, in the dissipation

ranges of the present case at the measurement locations close to the wall, average
values of R_2(k] ) appear to be slightly negative. Based on their model for Taylor-

hypothesis correction, Wyngaard & Clifford (1977) suggested that the convection

velocity fluctuations could alias enough spectral content into the measured cospec-
trum to make it appear to change sign at large k_. At the inner-layer station where
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(a) U/U,.¢I; (b) V/Urel. , plane boundary layer at low and high Reynolds

numbers;-, large extra-strain-rate (with F-18) boundary layer at low and high

Reynolds numbers; &, small extra-straln-rate (without F-18) boundary layer at low

Reynolds number.

the local turbulence intensity for the current experiment is approximately 0.2, the

errors arising from the use of Taylor's hypothesis can be large in the dissipation

range, and the present data appear to follow the trend suggested by Wyngaard &:
Clifford (1977).

2.3 Distorted boundary layers: Small extra-strain-rate experiments

In order to isolate the reasons for the deviations of the transverse spectra from

the loeal-isotropy predictions in the outer parts of the distorted boundary layer at

low Reynolds number, we repeated our measurements in front of the cylinder after
the F-18 aircraft was removed from the 80' × 120' wind tunnel.

The normalized profiles of the longitudinal mean velocity, U� Urn/, and the vertical

velocity component, V/Urel, for this case measured at low Reynolds number, are

compared with the profiles obtained for the plane boundary layer and the large

extra-strain-rate case (with F-18) in Fig. 11. It is clear that the removal of the

F-18 from the wind tunnel reduces the magnitudes of the extra mean strain rates in
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Fig. 11.
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FIGURE 13. Compensated longitudinal and transverse spectra measured at y =

300 mm in the small extra-strain-rate boundary layer at low Reynolds number

(R_ ,_ 790). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) Ul-spectrum; (b) u2-spectrum; (c) u3-spectrum.

front of the cylinder• This reduction can be seen also on the profiles of the Reynolds
stresses, shown in Fig. 12.

2.3.2 Analysis of small-scale data: Iow-Re_lnolds-number case

The compensated spectra of the three components of the velocity taken at y = 300
mm, 500 mm, and 700 mm for the low-Reynolds-number case are shown in Figs. 13,

14, and 15 respectively. Recall from Figs. 6 and 7 that the deviations from the
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FIGURE 14. Compensated longitudinal and transverse spectra measured at y =

500 mm in the small extra-strain-rate boundary layer at low Reynolds number

(Rx _ 760). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) ul-spectrum; (b) u2-spectrum; (c) u3-spectrum.

smMl-scale isotropy took place only at these three y locations. However, for the

present case, without the presence of the F-18, the transverse spectra at all the
measurement stations follow the local-isotropy predictions: i.e. at each station the

transverse spectra are equal to each other and are larger than the Ul-spectrum by

the 4/3 factor.



260 S. G. Saddoughi

1.2

1.0

0.8

Lu_0.6

0.4

0.2

1.0

0.8

0.6

_ 0.4

0.2

1.0

0.8

w

_ 0.6

_ 0.4

0.2

0
10-5

........ i ........ I ........ I ........ I ' (a) 1

: i i illl

]
• _ C : 1 5'Cl : (1a/55) C . •

: " " (b) __

. ........ I ........I ........ I ...... I:i I I illm?j,

: '" " " " "s -'.'P-- ....._

i -I

ci-('u3)c • -"{ ",-,i. "

.... •-r "" •

i i i illiJl ii_llltl i i iiiiill i i iiiiiii ii ,_, "

10 .4 10-3 10-2 10-1

klq

FIGURE 15. Compensated longitudinal and transverse spectra measured at y =

700 mm in the small extra-strain-rate boundary layer at low Reynolds number
(Rx _ 560). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) ul-spectrum; (b) u2-spectrum; (c) u3-spectrum.

3. Closure

Further analysis of all the data taken in distorted boundary layers at high and low

Reynolds numbers is in progress. However, our complex-flow experiments (see also

Saddoughi 1993b) have again highlighted an important fact: as long as the high-
Reynolds-number requirement - which is an intrinsic part of the local-isotropy
hypothesis - is satisfied, the small-scale structures of turbulent motions become

independent of large-scale structures and the mean deformation rate (Kolmogorov
1941).
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