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Experimental and numerical study
of the intermittency exponent

By Alexander Praskovsky a

1. Motivation, background, and objectives

After publication of the Kolmogorov (1962) refined similarity hypotheses, the

small-scale intermittency of the energy dissipation field became a central problem

in fully developed turbulence (FDT). This phenomena has been studied in many

different ways, e.g. by searching for corrections to scaling exponents in the inertial

range velocity structure functions (see reviews in Monin & Yaglom 1975, Kuznetsov

&: Sabelnikov 1990). A direct measure of this intermittency is, however, available

by studying the local rate of energy dissipation, and it may be quantitatively char-

acterized by the intermittency exponent p (Nelkin 1981).
The first description of the intermittent field was proposed by Kolmogorov (1962),

who introduced the energy dissipation ¢r averaged over a segment r:

r

1/- c(x + x)d)c, (1) r(x) = r
0

where x is the longitudinal coordinate, and the local value of the energy dissipation

c(x) is defined in the standard way as

e(x) = -2 \axj + --Oxi) ' (2)

where v is the kinematic viscosity, and ui, i = 1, 2, 3, denote the velocity compo-

nents in the directions xi. To analyze experimental data and compare them with

numerical modeling, the one-dimensional sections of the energy dissipation field in

the x - xl direction will be considered throughout this paper.

It was assumed by Kolmogorov that er has the normal probability density dis-

tribution (pdd) if r belongs to the inertial range, i.e., 77 << r << L where L and

denote the integral and Kolmogorov viscous scales, respectively. This assumption

is known as the log-normal model. Kolmogorov further assumed that the variation

of In _ obeys a logarithmic scaling

a 2 - A + Pk In(L/r), 7/<< r << L, (3)
ID _r --

where A is some function of the local flow conditions, and pk is the intermittency

exponent which was assumed to be a universal constant (if there is no intermittency,
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#k -- 0). Different subscripts to # are adopted to identify different definitions of

the intermittency exponent.

Novikov _z Stewart (1964) showed that

< _(x) > o, r-,., r/<<r <<L. (4)

Hereafter the angular brackets denote average over x. Novikov (1990) demonstrated

that under some weak assumptions/2k = #e.

It was also found (Monin & Yaglom 1975) that the correlation function of energy

dissipation Re(r) obeys the power-law scaling at separations r within the inertial

range

Re(r) = <c(x) ¢(x+r) > = Ce <c >2 (r/L)-"', r/<<r <<L, (5)

where Ce is assumed to be a universal constant, and/2r = #_.

Monin & Yaglom (1975) further assumed that at very high Reynolds numbers,

where fluctuations of ¢(x) are much larger than < _ >,

R_(_) _ B_(_) - < [_(x)- < _ >] [_(x+ _)- < _ >] > _. _-.b, r/<< _ <<L,
(6)

and the energy spectrum of e (which is the Fourier transform of B_) should behave

as

OO

E_(k) = _,1 f cos(kr) dr o¢ k -l+t'', 1/L << k << l/r/, (7)
0

where k is the wave-number.

Relations (3)-(7) are commonly used to estimate/_. Several more methods for

such an estimate are also well-known, e.g. by using the six-order velocity structure

function (Monin & Yaglom 1975), the breakdown coefficients (Novikov 1990), etc.

but in this brief paper only methods based on (3)-(7) are considered.

A diverse body of measurements of # in different laboratory flows as well as

in the atmosphere and ocean has been reported during the last three decades (for

comprehensive review see Kuznetsov & Sabelnikov 1990, Gibson 1991, Nelkin 1994).

The reported values of/_ vary from 0.15 to 0.7, and this scatter certainly exceeds
the measurement errors. Some theoretical considerations as well as the scatter in

experimental results caused a doubt about universality of the exponent # (e.g.,

Kraichnan 1974, Nelkin 1994). However, as far as we know, nobody has posed an

obvious question: Is the intermittency exponent/z a unique constant, i.e., are the

values #t,/_,,/_, pb, and _, the same at high Reynolds numbers, or do they create

a set of different (and perhaps independent) exponents? This paper addresses the

above question using the high Reynolds number experiments.

The second objective of this paper becomes clear from the following considera-

tions. It is commonly assumed (e.g., Monin & Yaglom 1975, Nelkin 1981) that the
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longitudinal component Ou/Ox should contain most of the important dynamical in-

formation on the dissipation field. In other words, it is assumed that the exponents

# defined by Eqs. (3)-(7) would not be changed if the true local rate of energy

dissipation _(x) were replaced by the one-dimensional surrogate

= 15 (OulOz) (s)

Nelkin (1981) commented, "this rather weak assumption seems plausible, but is

difficult to test experimentally". We are not so optimistic about the "weakness"

of this assumption. Indeed, it is well-known (e.g., Hosokawa and Yamamoto 1991)

that pdd of _(x) and g(x) are qualitatively different. The second statement, namely

"difficult to test experimentally", is completely valid. In most experiments nothing

more than u(x) has been recorded, and in some experiments simultaneous measure-

ments of u(x) and us(x) were executed. There are also a few experiments at low

Reynolds numbers (see Tsinober et al. 1992, and references therein) where all terms

in Eq. (2) were directly measured with multi-wire probes. However, the reliability
of such measurements, especially at high Reynolds numbers, still seems to be rather

questionable.
The remarkable success of direct numerical simulations (DNS) of FDT during the

last decades offers another approach to such a test. In spite of well-known limitations

(relatively low Reynolds numbers, somewhat arbitrary boundary conditions, etc.),

DNS provides an exact solution of the Navier-Stokes equations and gives complete

information on the three-dimensional flow field. Using the numerical data base,

one can estimate (at least qualitatively) how adequately the true energy dissipation

_(x) is represented by the one-dimensional surrogate g(x). To execute such a test is

a second objective of this paper. This approach contradicts traditional belief that

measurements give the "final truth", and any theoretical or numerical result should

be tested by comparison with experiment. We believe that numerical modeling (now

fairly called numerical experiment) becomes so powerful and reliable that it can be

used to test physical experiments. First results from this approach are reported in

this paper.

2. Accomplishments

P.1 Experimental and numerical data bases

The experimental data base includes measurements in the atmospheric surface

layer and in a large wind tunnel at very high Reynolds numbers.

The experiment in the atmospheric surface layer was executed by Dr. Steven

Oncley from the National Center for Atmospheric Research (Oncley 1992). After

preliminary processing, six time series were chosen from the total record (Praskovsky

& Oncley 1994a). Four of these series are analyzed in the present work. The second

experiment was executed in the large wind tunnel of the Central Aerohydrodynamic

Institute (Moscow, Russia). Measurements have been done in the mixing layer and

in the return channel of the wind tunnel (Praskovsky el al. 1993).

The main flow characteristics of the experimental data base are listed in Table 1

where the abbreviations ML, RC, and ASL denote the mixing layer, return channel,
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and atmospheric surface layer, respectively, and numerals after ASL correspond to

the sequence of the time series (in accordance with that in Praskovsky & Oncley

1994a). U is the mean longitudinal velocity, and eO denotes the rms value of any

quantity O. The Taylor _ and Kolmogorov 77 scales, and the Reynolds number Rx,

are defined with standard formulas: _ = au/aou/o_, q = (uS� < _ >)1/4, and

Rx = a_A/v. Other quantities in Table 1 will be defined later. Taylor's hypothesis
was used to convert from temporal to spatial coordinates.

Time series ML RC ASL-2 ASL-3 ASL-5 ASL-6

U, m/s 7.87 10.8 6.58 8.10 12.9 14.5
a_, m/s 1.67 1.03 0.693 1.10 1.82 2.08
L, m 1.3 4.8 42 51 99 77
< e >, m2/s 3 1.90 0.115 0.0235 0.0322 0.140 0.128
A, cm 1.8 4.6 6.5 9.0 7.0 8.3
R_ × 10 -a 2.0 3.2 3.3 6.9 9.2 12.7

77,mm 0.21 0.41 0.58 0.55 0.37 0.37
+ a_, 0.20+0.01 0.19±0.01 0.20±0.01 0.20±0.01 0.20±0.02 0.20±0.01

_--_± a_ 0.38+0.01 0.32±0.01 0.35-t-0.02 0.29±0.03 0.33±0.02 0.30±0.02

#-T± a_, 0.59±0.03 0.60±0.02 0.57±0.04 0.61+0.02 0.56±0.02 0.55±0.01
± a_k 0.40±0.01 0.22±0.03 0.19±0.04 0.22±0.02 0.22±0.02 0.23±0.02

J ± a_ 0.26±0.01 0.24±0.01 0.23±0.02 0.19±0.01 0-18±0.01 0.14±0.01
± a_. 0.42±0.01 0.38±0.01 0.41±0.02 0.38±0.01 0.36±0.01 0.35±0.01

Table 1. Main turbulence characteristics of analyzed time series.

The DNS of homogeneous, isotropic, equilibrium flow fields were executed by

Dr. Robert Rogallo from the NASA Ames Research Center. A description of this

data base, covering a range of Rx from 35 to 168 can be found in Jimenez et al.

(1993). Two simulations at Rx = 94 and 168 are analyzed in the present work.

2.2 Experimental results for g(x)

2.2.1 Correlation functions and spectra

Two examples of the correlation functions R_(r) and B_(r) at the lowest and high-

est R), are presented in Fig. 1. The local values of scaling exponents are estimated
using the logarithmic derivatives:

#r(r) - d[lgRe(r)] d[lgBe(r)] d[lgEe(k)]
d[lgr] ' ca(r)- d[lgr]' p,(k)=l + d[lgk] (9)

It follows from Eqs. (5)-(7) that #_, #b, and #_ should be constants within the

inertial range. The measured values of #_(r) and #b(r) are presented in Fig. 2.

The constant-value regions of these exponents are ill-defined, especially for #b(r).
However, for each time series one can choose a range of separations r where the

exponents are approximately constant. Within these limits, deviations of # from

constant can be attributed to measurement uncertainty. The mean values _- and
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FIGURE 1. Correlation functions of the energy dissipation.., Re(r); o, B,(r).
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FIGURE 2. The local values of scaling exponents #r(r) and #b(r). Note the

expanded linear scale of the ordinate at this and other similar figures. * , ML;

• ,RC; o,ASL-2; [],ASL-3; A,ASL-5; o,ASL-6.

standard deviations a_, (i = r, b) were estimated by averaging over these ranges,

and the results are listed in Table 1. It is seen that Vrr is significantly smaller than

#--L This result is not surprising. Anselmet et al. (1984) found pr = 0.18 and #b =

0.48 in the round jet at Rx = 536. Kuznetsov et al. (1992) found/_r _ 0.14, #b ,_

0.45, and #, _ 0.60 in the mixing layer at Rx ,_ 1700. The equality Re(r) ,_ Be(r)

is based on the assumption that both Re(r) and Be(r) are much larger than < c >2
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FIGURE 3. Spectra of the energy dissipation, and the local values of scaling

exponent #+(k). For symbols see Fig. 2.

in the inertial range (Monin & Yaglom 1975). This assumption is not valid at any

finite Reynolds number. It is seen in Fig. 1 that at big enough r, say at r/r 1 _ 103,

Be(r) is smaller than < _ >2. Hence one should always obtain p_ < pb. There is

a contradiction, recently noted by Praskovsky & Oncley (1994b). The correlation

functions are connected by the exact relation:

Be(r) -- Re(r) - < _ >2. (to)

It obviously follows from this relation that at any finite R_ where < _ >2 is of

the order of (or even larger than) Be(r) at q << r << L, only one of the functions,

Re(r) or Be(r), may obey the power-law scaling. As was mentioned above, the

constant-value regions for both #r(r) and #b(r) are ill-defined. Taking into consid-

eration Eq. (10), one can suggest that the present experiments as well as all previous

measurements do not prove power-law behavior of any correlation function. The

results demonstrate that the power laws (5) and (6) reasonably approximate both

correlators within the inertial range.

Typical energy spectra Ee(k) and local values of the scaling exponents p+(k)

are presented in Fig. 3. It is seen that at large enough k the power law (7) gives

reasonable approximation of Ee(k). The mean values _ and the standard deviation

(Tu, are estimated over the ranges where pe(k) are approximately constant, and the

results are listed in Table 1. It is seen that _ are roughly twice _-g. This result

agrees with previous studies, and it is explained by Nelkin (1981). It follows from

Eq. (7) that Pb -- P_ if scaling (6) is valid for all r from 0 to infinity. In reality,

Be(O)/ < e >2 increases with no limit as Rx --_ oo while the inertial range values

of Be(r)� < ¢ >2 increase more slowly. In other words, Be(r) has a strong peak

at r < rl, and this peak increases as Ra increases. As was shown by Kuznetsov
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FIGURE 4. Scaling exponents averaged over the inertial range.

Error bars at this and other similar figures correspond to the rms value of the

exponent, o , It---;; zx , It--_; a , It--_.

et al. (1990), Itb is always smaller than #_, and this difference may increase when

RA increases.

The values of #r, #b, and _ are plotted in Fig. 4. Beyond any doubt, Pr, #b,

and p, are different exponents at Rx up to 12,700. Variation of these exponents

with Rx and the type of flow is quite small. As a first approximation, one can

consider the exponents #r _ 0.2, #b ,'_ 0.3, and #, _ 0.55 to be universal (but

different!) constants at the highest Reynolds numbers currently attainable, say at

Rx > 2×103. At Reynolds numbers too high to be attained on this planet, the

different #'s could still be the same.

9.2.2 Test of the log-normal model

The log-normal model includes the statement that in ¢r has a normal distribution

for 7/<< r << L (Kolmogorov 1962). Note that this assumption and Eq. (3) are two

independent hypotheses, i.e., the log-normal model may be valid while Eq. (3) is

not, and vice-versa (see Castaing et al. 1990 for more explanation).

The log-normality of ln er was tested in numerous experiments (see reviews in

Monin & Yaglom 1975, Gibson 1991), and this was found to give a reasonable

approximation of reality in different turbulent flows. The present experiments give

similar results. As an illustration, several distributions for segments r from the

inertial range are presented in Fig. 5. It is surprising that deviations of experimental

results from the log-normal model increase as Rx increases.

Eq. (3) was also reported by many authors to be valid (see Gibson 1991 and

references therein). However, Castalng et al. (1990) presented experimental and

theoretical evidences that at small r (up to the viscous range) the variation of In _r

obeys the power-law scaling
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RC: o,r/r 1=23; zx,130; o,927; ASL-6: v,r/r 1=33; zx,180; o,1025.

a_.,, o( r -#. (11)

Hypotheses (3) and (11) are tested in Fig. 6. The local values of pk(r) and/3(r)
are defined as

d[a_, ,.] d[lg a_, _r] (12)
#,(r) -- d[ln r-T-' /_(r) = d[lg r]

It is seen that at large r, say r/q > 200, the Kolmogorov (1962) assumption (3)

provides a good approximation of the experimental results. At small r Eq. (3) does

not agree with the present experiments while the power-law scaling (11) works quite

well. The values of _-_ and _ averaged over regions where they are approximately

constant are listed in Table 1 and presented in Fig. 7. One can see that Pk does

not depend on Rx and the type of flow at Rx > 3 x 10 a, and is approximately

equal to 0.22. The exponent fl in (11) does not reveal any dependence on the type

of flow (measurements by Castaing et al. 1990 in the round jet at Rx = 852 and

in the Modane wind tunnel at Rx = 2720 are also presented in Fig. 7). However,

this exponent strongly depends on Rx, and the dependence may be approximated

as _ o¢ R-x 1/3, which is different from the relation fl oc 1/lnRx suggested by

Castaing etal. (1990).

_._.3 Measurements of the second-order moments

The measured values of < e_(x) > as well as the local values of scaling exponent

2 >]/d[lnr] are presented in Fig. 8. No region of power-law scaling= -d[lg <
is seen within the inertial range; i.e., pc(r) decreases monotonically over the range

of r/r/from say 5 to 20,000. Contradiction of this result to all previous studies is
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FIGURE 6. Variation oflner, and the local values of #k(r) and fl(r).

apparent. No previous papers reported the local values #_(r), but only log-log plots

such as that in Fig. 8. Such plots may be deceptive; a range of slow change in/_(r)

may be erroneously considered as implying/_(r) _ constant.

It was recently suggested by L'vov and Procaccia (1994) that scaling (4) should

be applied to the centered second-order moment, i.e., the relation

< [er(x)- <c >]>2 cx r -_', q<<r <<L (13)

should be used instead of (4). This suggestion is tested in Fig. 9. It is seen that

%(r) = d[lg < (e_- < e >)2 >]/d[lnr] does reveal some range of being approxi-

mately constant. The values of _ averaged over these ranges are presented in

Fig. 10. It is seen that % slightly depends on Reynolds number.
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exponent p,(r). For symbols see Fig. 2.

2.3 Analysis of the DNS data base

Two DNS of isotropic homogeneous turbulence at Ra = 94 and 168 (Jimenez et

al. 1993) are analyzed. The purpose of this analysis is a comparison of statistical

characteristics of the "true" energy dissipation field e(x), Eq. (2), and its one-
dimensional surrogate g(x), Eq. (8). Significance of such a comparison is illustrated

in Fig. 11 where pdd P(e) of ¢(x) and P(g) of g(x) are presented. One can see a
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qualitative difference of these functions: P(e) -* 0 as e --* 0 while P(g) -* Po > 0

as g --* 0 (see also Hosokawa and Yamamoto 1991). In other words, we test a

question: what of the results from Sec. 2.2 which are obtained for g(x) are valid for

the true dissipation e(x)? A comparison is executed in the following way. Using

the DNS data base, each parameter is estimated for the true energy dissipation and

one-dimensional surrogate by substituting in the same defining formula either c(x)

or g(x), respectively.
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values of scaling exponent/zr(k), u, Rx = 94; zx, 168. See caption of Fig. 11.

The correlation functions R,(r) and the local values of scaling exponent pr(r) are

presented in Fig. 12. No clearly defined inertial range is seen, i.e., there is no region

where/_(r) _, constant. This is expected due to relatively low Reynolds number in

the present DNS. In spite of different pdd (Fig. 11), a qualitative behavior of R,(r)

for ¢(x) and g(x) is quite similar. Hence one can expect that results and conclusions
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FIGURE 14. DNS: pdd of In er. Solid lines correspond to the normal distribution.

(a) Rx = 94, r/r_ = 10; (b) Rx = 168, r/r/= 15. See caption of Fig. 11.

of Sec. 2.2.1 are valid for the true energy dissipation field.

Pdd of energy dissipation averaged over a segment r are presented in Fig. 13.

Variation of g,.(x) is much larger than that of er(x): the maxima of P(g_) are shifted

to the smaller amplitudes while the tails of P(gr) at large amplitudes are higher

than those of P(_r). The log-normal model is tested in Fig. 14. The true energy

dissipation field agrees quite well with the model while P(lngr) reveals significant
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deviations similar to those in Fig. 5. One can suggest that the deviations from the

log-normal model in Fig. 5 would be smaller (or even disappear) if the true energy
dissipation was measured at high R_.

Eqs. (3) and (11) were tested, and the results are presented in Fig.15 which is

similar to Fig. 6 for experimental data. A qualitative behavior of a_n e, for the one-

dimensional surrogate in the DNS is completely similar to that in the high Reynolds

number experiments. The DNS results for gr do not agree with Eq. (3) at r/t/

7-20 (this region is expected to model the inertial range) while they agree with

Eq. (11). On the other hand, the true field Cr(x) is reasonably described by Eq. (3)

in the vicinity of r/t/ _ 10, and it does not agree with Eq. (11). Using DNS at
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FIGURE 16. DNS: the non-centered and centered second-order moments of Cr(x),

and the local values of scaling exponents #,(r) and 7e(r). [], Rx = 94; ix , 168.

See caption of Fig. 11.

Rx = 68.1 and 151, Wang et al. (1994) recently found the values of pk _ 0.28 for

the true field er(x), and 0.34 for the surrogate gr(X). In the present DNS the values

of/zk(r) for gr are also larger than those for er (Fig. 15). However, our results differ

conceptually from those by Wang et al. (1994). We state that the surrogate field

does not obey Eq. (3) in the vicinity of r/r/ _ 10-15, and no value of #k may be

estimated. Perhaps, Wang et al. (1994) would draw the same conclusion if they

used the logarithmic derivatives instead of the log-linear plots of a 2lner V,S lnr.

2 (Fig. 16) are also similar to the experimental dataThe DNS results for < _r >
z2

(Figs. 8, 9). A functional behavior of the second-order moment < > in the DNS
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agrees with Eq. (13) at r/l I ,_ 10-20 as that in experiments while < e 2 > clearly
agrees with Eq. (4).

It follows from the above results that the experimental findings of Sec. 2.2.2 and

2.2.3 may be valid only for (Ou/Ox) 2, and their application to the true dissipation
field _(x) is quite questionable. Based on these preliminary results, we cannot draw

any final conclusions. However, two suggestions may be stated. First, any exper-

imental finding obtained for the surrogate d(x) should not be applied to the true

dissipation field before similarity of this result to that for ¢(x) is proven. Second,

DNS seems to be the most reliable (and perhaps a unique) tool for such a proof.

3. Future plans

The goal remains to understand what characteristics of the energy dissipation field

are adequately represented by the one-dimensional surrogate. To further study this

question, we are going to use the recent DNS data base with resolution 5123.

The second question may be formulated as follows: what is the minimum set of

terms in Eq. (2) which adequately represents any statistical characteristic of e(x)?

An answer to this question will allow a proper design of the future high Reynolds
number experiments.
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