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Resolution requirements for
velocity gradients in turbulence

By a. Jim_nez 1

1. Motivation

Since high resolution numerical simulations of turbulent flows, or experiments

at high Reynolds numbers, represent a substantial investment in resources, the
estimation of the minimum resolution required for the study of a given property

has been the subject of continued interest. Early results include the papers by

Wyngaard (1968, 1969) on the maximum hot wire length allowed for the resolution

of the dissipative range of the energy spectrum in isotropic turbulence, and the

more recent one by Klewicki and Falco (1990) for wall bounded flows. Both studies

conclude that an adequate measurement of the spectrum requires hot wires sensors

smaller than approximately three times the Kolmogorov length, 71= (v a/e) 1/4. The

latter paper also treats the measurement of velocity gradients and concludes that

the same resolution is needed for reliable estimates of the variance of Ou/Ot, and is

probably sufficient for its skewness. From the numerical point of view it has been
estimated that the resolution required in a properly de-aliased spectral code for

the study of the vorticity structure in the near wall region of a turbulent channel

is about 5 Kolmogorov lengths (Kim, Moin and Moser, 1987), although even in

that case, the grid spacing in the direction normal to the wall, in which gradients

are highest, is usually taken much smaller. The study of the dynamics of intense

vorticity structures in isotropic turbulence requires km_xr/ >__2, where kmax is the

largest resolved wavenumber, corresponding to a distance between collocation points

Ax/_? < 1.5 (Jim_nez et al. 1993).

Different properties require, in general, different resolutions, and the present pa-

per is dedicated to the requirements for the measurement of the probability dis-
tribution functions of the velocity gradients and, in particular, of their low order

moments. The deviation of these quantities from the values corresponding to a

Gaussian distribution was one of the first indications of the presence of Reynolds

number-dependent intermittency (Batchelor and Townsend 1949) and has been the

object of recent interest as numerical simulations have become able to explore the

distribution of gradients in the low Reynolds number range, while new experiments

have extended the range to increasingly high Reynolds numbers (Van Atta and An-

tonia 1980, Saddoughi and Veeravalli 1994). We will use progressive filtering of the

results of numerical simulations of isotropic turbulence as a model for the effect of

a sensor of finite size (Wyngaard 1968). The numerical issues will be addressed

first to insure that the simulations are fully resolved from the point of view of the

1 Also with School of Aeronautics, U. Polit_cnica, Madrid.
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Rex N k,,_,xq Ax/q -F3t F4t F6t F4t Fst

66 256 4 0.78 0.47 4.7 60 6.3 120

94 256 2 1.57 0.52 5.3 80 7.6 200

TABLE i.

paper.
Numerical and statistical parameters for the cases analyzed in the

velocity gradients. This will also give us an estimate for the numerical resolution
required for the different quantities.

2. The numerical fields

The numerical flow fields are the same used in (Jimdnez et al. 1993) and are

extensively discussed there. They are direct numerical simulations of isotropic ho-

mogeneous turbulence in triply periodic boxes at two different Reynolds numbers in

the low end of the range for which dissipation first becomes independent of Reynolds
number. They are summarized in Table 1.

The numerical method is fully spectral, using primitive variables, u, p, with

dealiasing achieved by a spherical mask and phase shifting (Rogallo 1981, Canuto
et al. 1987). The resolution N given in Table 1 reflects the number of real Fourier

modes in each direction before dealiasing. A more practical measure of resolution

is the largest useful wavenumber after de-aliasing, kmax = v_N/3. In terms of

distance between "effective" collocation points, the grid spacing is Ax = 7r/kmax.

All simulations are forced to achieve a statistically stationary steady state. Forcing

is achieved by introducing, for all the modes with wave numbers k = Ikl < 2.5, a

negative viscosity coefficient whose magnitude is adjusted every few time steps so

as to keep constant the product kmaxr/. The instantaneous energy dissipation rate,

e, the one-component r.m.s, velocity, u', and the Taylor and integral length scales,

and L, are computed in terms of the three dimensional energy spectrum E(k), as
explained in (JimSnez et al. 1993). The microscale Reynolds number is defined as

Re:_ = u'$/u, and the large-eddy turnover time as T = L/u'.

Throughout this paper the probability density functions are often characterized
by their generalized flatness factors

• /../2
Fn = I,_n/_2 , " d,n=fy p(y) y.

Flatness factors with subscript _ refer to the pdf of the longitudinal velocity deriva-

tives, Ou/Ox, while those with subscript t refer to transversal derivatives, Ou/Oy.
In all cases, equivalence was assumed for the three coordinate directions and used
to augment the statistics.

The parameters in Table 1 represent the highest resolution available for each

Reynolds number. For each run the pdf's of the velocity components and gradients
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FIGURE 1. Three-dimensional energy spectra for the Re), = 66 simulation at four

different resolutions. Left: e-2/3kS/aE(k), to enhance the "inertial" range. Right:

e-2/a_-S/3E(k), to display the dissipation range. _ : kmaxY = 4, .... : 2,

........ : 1,-----: 0.5.

were computed periodically and accumulated. For all but the highest resolution

cases, this was done "on the fly" while the simulation was advanced, and the statis-

tics represent several tens of fields spaced at least by 0.1 T. For N = 256 the time

step was too small to generate a sufficient number of fields in a single simulation,

and the statistics were accumulated using the restart files from different runs. The

number of fields used in this case is smaller, O(10). The restart fields were also

used for the filtering experiments described later.

There is considerable temporal variability in the extreme tails of the distributions,

and the values for the different moments given in Table 1 axe subject to apprecia-

ble statistical uncertainty. The number of significant figures given in the table is

intended to give a rough indication of the reliability of the different figures, derived

from the variability among different flow fields.

The same simulations were run at lower resolutions to check for numerical conver-

gence. The three dimensional spectra for Re), = 62 at four different values of kmax_

are given in Fig. 1, and the pdf's for the velocity and for the longitudinal and trans-

verse velocity gradients are given in Fig. 2. It is clear that there is little difference

in any of these properties for resolutions better than kmaxrl _ 2, while there is some

divergence in the pdf's at km_xr 1 ,_ 1 and a rapid deterioration thereafter. Since

higher moments are dominated by the extreme probability tails of the pdf's, Fig. 2d
shows that those tails are the first ones affected by the lack of resolution, which is

also consistent with the qualitative aspects of the other three parts of Fig. 2. It is

noteworthy that even the velocity pdf, which is usually assumed to be dominated by

large-scale events, is slightly affected by low resolution. The sub-Gaussian character
of that distribution has been observed by other investigators at different Reynolds

numbers, and is believed to be real (Anselmet et al. 1984, Vincent and Meneguzzi

1991).
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FIGURE 2. Dependence of the probability distributions on numerical resolution.

(a-c) Pdf's of velocity and velocity gradients, Rex = 66 . Lines are as in Fig. 1

and symbols in (c) are the Gaussian distribution. (d) Dependence of the velocity
gradient flatness factors on Ax/q = 7r/kmaxr 1. All moments are normalized with

their value at kmaxq = 2. o : Fat, A : F4t, o : F6t, o : F4t, v : F_t. Solid symbols
are Rex = 66, open ones, Rex = 92.

3. Probe size effects

The resolution effects documented above represented a more strict test than the
effect of observing the flow with a probe of finite size. While in the former case the

dynamics of the smM1 scales are presumably disrupted by the lack of resolution,

that is not true in the latter, in which the only effect is a smoothing of "properly

computed" quantities. The classical model for the effect of a hot wire of finite length
is that in (Wyngaard 1968). It is assumed that the hot wire is only sensitive to one

velocity component and that it averages the true velocity signal along its length. No
other measurement errors are considered. Whenever a spatial derivative is needed,

it is computed as a centered difference from the signal at two neighboring wires. If

homogeneous turbulence is assumed and the velocity is represented by its Fourier
components,

It(X) = Z Uk eik'x,

the averaging effect of a hot wire of length h, oriented along z, is equivalent to



Resolution requirements in turbulence 361

io_,_

10

16

16

lO

1

io 'o 2 4

(a)
!0'|

1o'|

,oq

loq

,oq
.1_1

6 10 -4 -2 0 2

(OuhlO lhl' '

(b)

lOn!

10"

10"_

I0

c)

o i _ _

tLh/U t

I

,o1

_0_

1o

-t

IO

.$

lo
l

-2 0 2

(Ouh/Ox)lJ

d)

FIGURE 3. Dependence of the probability distributions on experimental resolu-
tion. Lines correspond to h/rl = 0(1.5)7.5, in order of decreasing intermittency of

distributions. Rex = 92. (a) Filtered transversal derivatives of filtered velocity. (b)

Filtered longitudinal derivatives of filtered velocity. (c) Filtered velocity. (d) True

longitudinal derivatives of filtered velocity.

multiplying each Fourier components by a filter (Wyngaard 1968)

sin(kzh/2)

F(k) - kzh/2

In the same way, the effect of taking a derivative over a finite distance h is equivalent

to multiplying the Fourier components of the derivative by the same filter function

(Wyngaard 1969).
We applied this procedures to our numerical fields, using for each Reynolds num-

ber the highest available resolution. First the "wire" was oriented along the x-axis
and used to obtain filtered values for v and w. The transverse derivatives, Ot,/Oz

and Ow/py, were obtained by filtering the derivatives obtained from the filtered
velocities. This was intended to model the effect of two parallel sensors of length

h spaced by the same distance. The longitudinal derivatives, Ov/Oy and Ow/Oz,
were obtained in two different ways. In experimental practice these derivatives are

usually not derived from two separate sensors, but deduced from a single time trace
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FIGURE 4. Dependence of the velocity gradient flatness factors on the experimental

resolution. Left: Filtered derivatives of filtered velocities. Right: True longitudinal
derivatives of filtered velocities. Symbols as in Fig. 2d.

using Taylor's approximation. Without taking into account the errors introduced

by that procedure, it is in principle possible to sample the time trace fast enough

to obtain "true" time derivatives of the signal. The sampling rate is limited by

factors such as thermal inertia of the hot wire, seeding density in an LDV signal,

or electronic limitations, all of which are essentially unrelated to sensor size. Two

sets of longitudinal derivatives were thus obtained. The first one contains "true"

derivatives of the filtered velocities, while the second one uses filtered derivatives

with a sampling interval h, to make them comparable to the transversal gradients.

The whole procedure was repeated with the "wire" oriented along the y and z axis,
and pdf's were compiled for all the quantities. The results, as a function of sensor

length relative to the Kolmogorov scale, are shown in Figs. 3 and 4.

There are several interesting aspects in those figures. First, as expected, the effect

of experimental averaging is somewhat milder than that of numerical underesolu-

tion, but the magnitude of the effect is different for the different moments. While

the degradation of the sixth order moments is comparable for a wire of length 8q

and for a grid pitch of 5r/, the third and fourth order moments are never degraded

too much by filtering and remain with 20% of their true values even for the longest

wire tested in our computations. Also, Wyngaard's criterion for wire length, h < 3r/,
is seen to be reasonable for the lowest order moments, but to lead to sizable errors
for the sixth order flatness.

Perhaps the most unexpected results of Figs. 3 and 4 is the very mild degradation

of the longitudinal gradients when only the velocities are filtered while the gradients

themselves are computed with spectral accuracy. This indicates that the extreme

tails of the pdf's are dominated by events, fronts, or filaments whose size in the

direction normal to the gradient is comparatively large. This is of course consistent

with modern observations of vorticity filaments in turbulent flows and suggests

that reasonably accurate measurements of longitudinal gradients can be obtained

by rapid sampling of velocity signals from fairly large sensors.

Another totally unexpected result was the tendency in Fig. 4b for the skewness
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of the longitudinal derivatives of the filtered velocity to increase with the size of the

filter. We have no explanation for this puzzling phenomenon, although it brings to
mind the recent observations of persistent skewness in passive scalar fields associated

with sharp fronts whose scale is similar to the integral length of the flow (Holtzer

and Siggia 1994, Pumir 1994).

4. Conclusions

We have shown that the numerical resolution needed to simulate isotropic turbu-

lence to the level of the sixth moment of the velocity gradient probability distribu-

tions is Ax/rl _ 1.5, for properly de-aliased spectral simulations at Rex ",_O(100).

Using post-processing filtering of fully resolved numerical fields, we have shown
that the classical limit on the size of experimental sensors (3r/) is sufficient for third

or fourth order moments of longitudinal or transverse velocity gradients, but that
the sixth order moments require shorter wires. It is shown that most of the degrada-

tion in the higher moments results from the discretization of the differential operator
and that fairly accurate longitudinal gradients can be obtained from large sensors

by rapidly discretizing the time signal. As the discretization distance is extended
into the inertial range (h/r I ,_ 10), the computation of the gradients merges into
that of the normalized structure functions (see Anselmet et al. 1984, for a review),
whose variation with distance is associated with the intermittency properties of the

turbulent field. Our experiments show, however, that the degradation of the higher

moments (n < 6) is substantial even when the discretization distance is kept in the

dissipation range.
Finally, we have observed that the skewness of the filtered fields tends to increase

with decreasing resolution, suggesting a large-scale origin for this quantity.
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