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A method for obtaining a statistically
stationary turbulent free shear flow

By S. F. Timson, S. K. Lele AND R. D. Moser

1. Motivation and objectives

The long-term goal of the current research is the study of Large-Eddy Simulation

(LES) as a tool for aeroacoustics. New algorithms and developments in computer
hardware are making possible a new generation of tools for aeroacoustic predictions,

which rely on the physics of the flow rather than empirical knowledge. LES, in con-

junction with an acoustic analogy (Lighthitl 1952), holds the promise of predicting
the statistics of noise radiated to the far-field of a turbulent flow.

While there have been preliminary studies where LES was used in aeroacoustic

calculations, a thorough examination of LES's predictive capabilities has not been

undertaken. Recent advances in subgrid-scale models (Ghosal et al. 1992) have

shown promising results, but accurate acoustic predictions present a far more strin-

gent test of LES's fidelity. LES does not resolve all scales in the simulated flow, and

results of a given simulation depend on the subgrid-scale model employed. Previous

verification of LES results has focused on one point statistics. The application of

an acoustic analogy requires a two point space-time correlation, and it is unclear

how accurately LES will reproduce this quantity.

It has been shown that the dominant features of far-field noise are associated with

the energy containing range of scales in the near-field, offering hope that LES can

supply accurate predictions. However, in practical applications, the subgrid-scale

energy can represent a significant fraction of the total. Further, as Crighton (1988)

points out, care must be taken when applying acoustic analogies. Computation-

ally, spurious but efficient low order acoustic sources may result from discretization

errors, boundary conditions, etc. It is important to assess whether or not the

subgrid-scale model acts as such a low order acoustic source.
LES's predictive ability will be tested through extensive comparison of acoustic

predictions based on a Direct Numerical Simulation (DNS) and LES of the same

flow, as well as a priori testing of DNS results. The method presented here is aimed

at allowing simulation of a turbulent flow field that is both simple and amenable to

acoustic predictions. A free shear flow that is homogeneous in both the streamwise

and spanwise directions and which is statistically stationary will be simulated using

equations based on the Navier Stokes equations with a small number of added terms.

Studying a free shear flow eliminates the need to consider flow-surface interactions

as an acoustic source. The homogeneous directions and the flow's statistically sta-

tionary nature greatly simplify the application of an acoustic analogy.

2. Accomplishments

A method allowing simulation of a statistically stationary free shear flow has been

developed. The method is an extension of that presented by Spalart (1988) to the
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case of a wake or coflowing jet in the small deficit limit. The results are similar to

those for the sink-flow boundary-layer presented in Spalart (1986). The derivation is

more rigorous than either of the above analyses due to the simplification introduced

by explicitly considering the small deficit limit. Some limited testing of the method

has been carried out, and a more detailed validation is in progress.

2.1 Mathematical formulation

The flow to be simulated is that of a plane wake or coflowing jet. Self similar

behavior is assumed and forms the basis for the rest of the analysis. The classical

conditions necessary for self-similarity in a plane wake (in the small deficit limit)
are

6(xv f_ (1)

1 1

Uoo( ,/7 (2)

where 6 is the wake thickness, Uo = Aumax is the maximum velocity deficit, and x
denotes the streamwise direction.

A coordinate transformation is defined such that

(x, y, z, t) ---* (x, 77, z, t) (3)

where rl = y/6(x). The spatial coordinates have been normalized by some initial

length scale Lo, and time is normalized by some initial time scale to. Thus all

quantities are non-dimensional. In the new set of coordinates, the profile thickness

is independent of x. Lines of constant r/have slope 5" where for the above coordinate
system

d6

5" = q_- (4)

The Jacobian of the coordinate transformation in space may then be written

1 0 O)
J= S T 0 (5)

0 0 1

where T = 6 for the coordinate change given in (3). The actual Jacobian is a

4x4 matrix, but as no transformation is carried out in time, the extra elements are

deleted for simplicity.

Following Spalart (1988), a transformation is made to the dependent variables as

well. Let the Cartesian velocity components be denoted by (u*, v*, w*), then the

contravariant velocity components will be denoted by (fi, _3,zb). The two sets are
related through j-l, giving

(00)(.)= 1 0 v* .

O 1 w*
(6)
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Use of the eontravariant velocity components preserves the form of the transport

terms in the new coordinate system, i.e.

u* 0 v*0 0 =t20 _0 _0
_+ _+w'_ _+ _+ _. (7)

As Spalart shows, the continuity equation becomes

S.. T__
fix + _. + _ + -_u + _-v = O. (8)

The x-momentum equation becomes

S

fit + fifix + _3fi. + v3fiz = -px + _p.

+-_e - + T2 -7,-5 ] fi, + u,x

1 + S 2 2S. h

+ T_.. - -_-u=. + f_z_) •
(9)

where p is the kinematic pressure.
Normalized velocity components are introduced, and the equations are expressed

in terms of the velocity deficit. The variable change is

a(z,,1, z, t) \ / u_ + uo(z)u(z, ,7,z, t) \
_(x,,,z,t) | -_ [ Uo(x),,(x,,7,z,t) )(,,(x,,_,z, t) I | Uo(z)w(_,,1,z, t)
g_,_,_,t) / \ v2o(x)gz,,7,z,t)

(10)

The maximum deficit is used to scale the velocity components so that the mean

and r.m.s of the velocity components are independent of downstream location in

the new coordinate system.

The resulting equations axe not presented as they are quite cumbersome. One

should note that new terms involving x derivatives of the velocity scale are intro-
duced. These terms are recast in terms of the undifferentiated velocity deficit using

the assumed self-similar streamwise evolution. Using Eqs. (2) and (4) and recalling

that T = 5, it can be shown that

dUo S. (11)
d----_-= "_Uo,

and

d2g° 9 -_ Uo. (12)
"T _

The equations are further simplified by choosing the length scale Lo to be 6o, the

dimensional value of the layer thickness at the downstream station to be simulated.
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This implies the dimensionless quantity 6 is 1. Then T = 1, 77 derivatives of T are

zero, and x derivatives are removed through the identity

Tx = S_. (13)

Further, if 6 is unity, 7/ and y become equivalent, and all instances of 71 in the

equations may be replaced with y. Then defining the parameter

Uo

e = _--_, (14)

the continuity equation becomes

S_
--+u_+vy+wz =0. (15)

The x-momentum equation becomes

ut + uux + vuy + wuz

+ (uz S_Ue Syu2) = -pz + Spy + visc°us terms" (16)

The viscous terms are quite complicated and are omitted for simplicity.

A Galilean transformation is now applied. A new coordinate x' is defined such
that

z' = x - UoJ. (17)

Applying this transformation, the terms in the momentum equations resulting from

convection at Uc¢ (e.g. the ux/e term in (16)) vanish.

The slope of the new coordinate lines S will now be expressed in the new coor-

dinate system. Returning to the unmoving coordinate system, using (2) and (4) it
can be shown that

2 dz u. (18)

A quantity that was only a function of x in the stationary frame becomes a function

of both x' and t in the moving frame, i.e.

F(z) = F(x' + Uoot). (19)

Differentiating with respect to time in the new frame shows

1 OF dF
-- = f' = --. (20)

Uoo Ot dx

Applying (20) to (18) gives S in the new coordinate system as

20t ey. (21)



A me_hod for a _tatin_ieall_ 8_ationary free shear flow 360

A parameter a is defined by

and the scaling of Uo in (2) implies that a is constant. It follows that S = aey.

The small deficit limit is then enforced, letting e _ 0, giving for the continuity

and momentum equations
V. ff = -a, (23)

and

fit + J × ff = -Vp + a + V2ff. (24)

These are the equations that will be integrated to yield the turbulent flow field. Note

that (20) indicates that V = -ay, and that the fluctuating velocity components

are divergence free. Also note that all added viscous terms dropped out when the

limit was taken.

_. $ Implementation

The modified equation set was implemented in the spectral code used by Rogers

and Moser (1993) in their study of self-similar turbulent mixing layers. The nu-

merical method (Spalart, Moser and Rogers 1991) employs Fourier analysis in con-

junction with periodic boundary conditions in both the streamwise and spanwise

directions. The application of periodic conditions in the streamwise direction is an

approximation as the length and time scales for the fluctuating quantities are x de-

pendent. The approximation should be a good one for the normalized components

in this coordinate system as the variation of these scales is slow compared with the

variation of 6. The non-homogeneous direction is handled through the use of rapidly

decaying spectral basis functions in conjunction with two slowly decaying additional

functions that exactly represent the irrotational component of the solution far from

the vortical region.

The major question in implementing the modified equations is how to evaluate a.

An initial value may be calculated for a by taking the second moment of the mean

x-momentum equation, setting Ut to zero, and solving for o_. Making use of the fact

that the mean field is a function only of y, and integrating by parts, discarding the

boundary terms, gives

f ½Y_(_ × _)x + -_Vdy

= f u Udu (25)

This value is then held, and the mean flow is allowed to evolve until a statistical

steady state is reached. The flow in the interim has no physical meaning.

It may appear that a similar scheme may be used to constantly update a as

the flow is evolving, in effect setting a to the value it would have if the flow was

stationary at that moment, hopefully speeding evolution to the stationary state. In

practice, however, this presents problems. It appears that a feedback loop involving
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the Reynolds stresses results. Further investigation in this area is clearly needed.

For the present work this is not critical as the initial conditions to be used are fully

developed wakes simulated by Moser and Rogers (1994). Calculating a based on the

initial condition and fixing it should not result in a significant evolutionary period.

2.3 Testing

The first test case was a laminar wake. The initial condition was simply a Gaus-

sian. The flow evolved into a shape that was nearly Gaussian (a Gaussian does not

solve the modified equation set) and remained stationary. A second test consisted

of an initial condition of y2 times a Gaussian, such that the profile had the same

mass flow and second moment. The flow evolved to the same steady solution as was

reached starting with a Gaussian.

The first turbulent test case is that of a low Reynolds number turbulent wake.

This test is currently underway. The initial condition was taken from a temporally

evolving simulation done by Moser and Rogers (1994). The results will be compared

qualitatively to the results obtained from the temporal simulation to ensure that

the results produced by the modified equation set are reasonable.

3. Future plans

Upon completion of the testing with the low Reynolds number wake, a higher

Reynolds number DNS will be carried out, building the database necessary for

aeroacoustic predictions. A priori testing of the DNS results will be carried out,

comparing the acoustic prediction from the DNS data and a filtered version of the

same flow-field. It has been seen previously that LES simulations are capable of

producing better results than indicated by a priori tests. Therefore, the code will

also be modified, and an LES of the same flow will be carried out. Using these

databases, the issues discussed in section 1 will be investigated.
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