
Center for Turbulence Research

Annual Research Briefs 1994

Database post-processing in

C

N95- 22465

Tensoral

By Eliot Dresselhaus

The CTR post-processing effort aims to make turbulence simulations and data

more readily and usefully available to the research and industrial communities. The

TensorM language, introduced in this document and currently existing in prototype

form, is the foundation of this effort. Tensoral provides a convenient and powerful

protocol to connect users who wish to analyze fluids databases with the authors

who generate them.

In this document we introduce Tensoral and its prototype implementation in the

form of a user's guide. This guide focuses on use of TensorM for post-processing tur-

bulence databases. The corresponding document -- the TensorM "author's guide"

-- which focuses on how authors can make databases available to users via the

Tensoral system -- is currently unwritten.

Section 1 of this user's guide defines TensorM's basic notions: we explain the

class of problems at hand and how Tensoral abstracts them. Section 2 defines Ten-

soral syntax for mathematical expressions. Section 3 shows how these expressions

make up Tensored statements. Section 4 shows how Tensoral statements and ex-

pressions are embedded into other computer languages (such as C or Vectoral) to

make Tensoral programs. We conclude with a complete example program.

1. Basic notions

Post-processing in the abstract

The post-processing of fluids data entails computing quantities derived from base

quantities such as the velocity vector field tT(i', t), scalar field ¢(37, t), or vorticity

field _7(_, t) = V × ft. Base quantities are those found in the databases output by

simulation codes and may vary from simulation to simulation. Derived quantities

are typically those commonly arising in theories of fluid mechanics, turbulence,

and in practical problems such as velocity profiles, Reynolds' stresses, probability

densities, etc.

The canonical post-processor starts with one or more base fields, computes one or

more derived quantities, and outputs the results of these computations. An example

post-processor might, given a velocity field, calculate pressure, strain, vorticity,

strain times vorticity, mean and mean square velocity, Reynold's stresses, or skin

friction, and generate tables or graphs of these quantities. In general terms, post-

processing involves calculus and statistics applied to numerical tensor data.

1.1 Tensoral in the abstract

Tensora/has been designed to apply to a very general class of numerical problems.

Tensoral applies whenever it is useful to separate the high-level coding and low-level

implementation of calculus and statistics operations on numerical data. Applied to

380 Eliot Dresselhaus

turbulence databases Tensoral programs can flexibly and efficiently serve as post-

processors. This user's guide will focus on such post-processing applications of the

TensorM language.

TensorM, like other computer languages, provides abstractions to aid the user in

understanding and using the system. There are three basic abstractions in Tensoral:

a type of variable called a tensor, operators which operate on tensors and produce

new tensors, and a general and programmable notion of state in which tensors exist

and in which operators act. These basic abstractions when combined make up the

description of a data type which is defined by an author's back-end.

1.2 Ten, ors

All mathematical quantities in Tensoral are represented by tensors. Tensora/

tensors correspond (loosely) to mathematical tensor fields. They are more use-

fully thought of as "computational" tensors -- that is, as indexed numerical arrays

(e.g. a_ij (xyz)) with two sets of indices: a set of tensor or array indices (i j) and

a set of coordinate indices (xyz). Each coordinate value (e.g. (xyz)) corresponds

to an array of numbers (e.g. a_ij) which may or may not be indexed like a mathe-
matical tensor.

1.3 Operators

Mathematical and other operations on tensors are represented by TensorM op-

erators. Certain standard operators are invoked by elements of TensorM syntax

(e.g. a+b invokes the addition operator). Non-standard operators may be introduced

by back-end authors to extend the functionality coded into Tensoral syntax. Stan-

dard operators in Tensoral include tensor assignment, algebraic operations (addi-

tion, subtraction, multiplication, division, exponentiation), differentiation, integra-

tion, and averaging. Tensoral also provides standard operators for the reading and

writing of files in various formats. Standardization is intended to allow mathemat-

ically similar operations to be coded with the same syntax even if such operations

have different back-end numerical implementations. Ideally, such standardization

would allow post-processing codes for different back-ends to be identical. In addition

to standard operators TensorM provides a highly flexible mechanism for integrating

new operators into the language. Such operators, as well as re-implementations of

standard operators, may be provided at will by database authors.

Typically Tensoral operators apply to tensors as arrays: that is, they apply to all

tensor (or array) indices and coordinate indices unless explicitly instructed other-

wise. Thus, Tensoral is an array language. Adding two tensors, for example, adds

array values for all tensor indices and at all spatial points (i.e. grid points) defined

for a given simulation. Explicit tensor or coordinate indices can be specified with

tensor indexing and coordinate indexing.

The implementation specifics of tensors and (potentially all) operators that act

upon them are also provided by database authors. The numerical representation

of an abstract tensor (e.g. as an array in memory, across processors in a multi-

computer, split between memory and disk, etc.) and how operators operate (e.g.

derivatives as finite differences or as multiplication in wave space, etc.) is completely

Post-processing in Tensoral 381

determined by a database author's back-end. Such back-ends provide all of the in-

formation necessary for the Tensoral compiler to convert high-level post-processors

into an executable computer programs. Back-ends and especially back-end pro-

gramming will not be covered in this document.

1.j State

Every tensor at every stage in a computation is in a certain state. This state con-

trois how back-ends represent tensor references and operations on them in terms

of executable computer code. The state of a tensor is represented by a set of state

variables taking a specified set of values (possibly Boolean true or false, integer,

floating point, string, or otherwise). For example, each tensor has pre-defined inte-

ger valued state variables rank and dim which respectively define the number and

range of tensor indices that may be validly used to index a tensor. Thus, a_ij is

valid reference to a rank 2 tensor with indices i and j taking integral values from

1 to dim, the dimension of a (which must be an integer). Similarly, a tensor's co-

ordinate dependencies are given by a built-in state called dep. Such dependencies

change when variables are averaged over or new coordinates are introduced in an

expression. Thus, the tensor a_ij (xyz) has state {rank 2, dim 3, dep xyz} --

we shalluse thisnotation throughout to denote state variables(here rank, dim and

dep) with values (here 2, 3 and xyz) of a tensor's state. Other state variables can

be introduced at willby database authors to encode specificationof a simulation's

grid, how a tensor is currently being represented (e.g. in physical or wave space),

the state and type of a tensor'sdata management (e.g.three-dimensional tensor in

xy planes), etc.

2. Expression syntax

Tensoral syntax is introduced here from bottom to top. First we show how to

reference tensor variables. Tensor references are the building blocks of mathemat-

ical expressions. Such expressions are themselves the building blocks of Tensora/

statements. Tensoral statements may introduce new tensors, assign tensors to ex-

pressions, read and write files, perform back-end specific operations, etc.

2.1 Ten_or variable_

Tensor references -- for example, a_12 (xyz) -- have up to three components: a

required tensor name a, optional array (tensor) indices _12 and optional coordinates

indices (xyz). The notation a_a2(xyz) corresponds to the mathematical notation

aij(_) for a tensor field of rank 2. Both array and coordinate indexing specialize a

tensor reference. That is, a refers to ai)(_) for al1 indices ij and spatial points _;

a_12 refers to a12(._) for all spatial points _; a_12(xffil0) corresponds to all values of

a12(10, y, z) for all y and z. Array and coordinate indexing will be detailed below.

Tensor variable names are given by sequences of lower and upper case letters,

underscores _, and primes '. Digits may also be used in tensor names but not

as the first character. The following are all valid distinct tensor names: u, U, v',

velocity, ul, ul', long_name, str' ange_na'me. Tensor indices are introduced by

the final _ character in a tensor name, but only if the preceding characters actually

382 Eliot Dresselhaus

refer to a tensor variable. Thus, long_name_ij either refers to an unindexed tensor

named long_name_ij or refers to the ij component of a tensor named long_na_,_e

depending on which alternative has been declared to be a tensor variable.

2.2 Coordinates

Coordinates are notated by single lower or upper case letters, optionally followed

by prime ' characters. Thus, the following are valid and distinct Tensoral coordi-

nates: x, y, z, x', X, X', r, k -- as long as they have been provided for by back-end
authors.

Tensors may depend on any unique combination of coordinates -- as long as

they have been defined by a back-end. A back-end author can provide various

coordinate systems for a single simulation as appropriate and physically meaningful.

For example, coordinates on a Cartesian grid are typically

x y z Cartesian coordinates x, y and z,

r the radial coordinate r 2 = x 2 + y2 + z 2.

Coordinates in Tensora/are special tensors of {rank 0} which depend on them-

selves and when referenced in expressions generate corresponding coordinate values.

The values taken on by coordinates are defined by back-end authors. Thus, a z co-

ordinate might go from 0 to 2rr for isotropic turbulence and from 0 to oc for a

boundary layer.

2.3 Tensor indexing

Tensor indices, introduced by the underscore character _, consist of a sequence

of coordinates or single digits or dummy indices (explicit indexing) or may not be

present at all (implicit indexing).

Explicit index values (e.g. a_12 or a__xy) may be either digits or coordinates. No

spaces are allowed before or after indices or the leading _: indexed expressions are

atomic variable references which contain no white space. If a coordinate c is used to

index a tensor, the tensor must depend on c (i.e. c must be present in the tensor's

dep state) -- otherwise a compiler error is issued; the value of a coordinate index is

the position that c takes in the dependency state of the tensor. The value of a digit

index is the specified number between 1 and dis (the tensor's dimension). Thus, if

a has {rank 2, dep xyz} state, then a_12, a_xy, a_ly, and a_x2 are all valid and

equivalent indexed expressions.

Any tensor index which is not a digit or a coordinate direction (as defined in a

particular simulation back-end) is assumed to be a dummy index. Dummy indices in
Tensorad aim for the same semantics as in standard mathematical tensor notation.

Thus, a dummy indexed expression a_ij (assuming neither i or j are coordinates)

refers to all 9 components of a (assumed to be {rank 2}). Dummy indices label

how tensor indices are to be repeated and combined in an expression -- for ex-

ample, distinguishing the assignment statements a_ij ,, b_j c_i and a_ij = b_i

c_j. Dummy indices are also used in conjunction with the summation convention:

namely, that repeated dummy indices in a product are summed over. We defer

further details of dummy indexing until we introduce the operators which control

their interpretation.

Post-processing in Tensoral 383

Tensor references need not have explicit indices; they may be indexed implicitly.

If indices are not specified, dummy indices are introduced in a standard way. Cur-

rently, this standard has not been fully decided upon. The user is encouraged (for

now) to use explicit dummy indices.

2._ Coordinate indexing

Indexing is also supported for the coordinates a tensor depends on. A tensor u

depending on coordinates xyz can be evaluated at particular x, y or z values -- for

example, at x = 17 planes with u(17,y,z) (or equivalently, u(x--17)), at x = 17,

z = 69 pencils as u(17,y,69) (or u(x-_17,z--69)), or at a single point x = y = z = 0

as u(0,0,0) (or u(x=y--z--0)). If a coordinate is either not specified or is specified

only by name (with no explicit value given), this coordinate is assumed to take on

all possible values. Thus, u(17,y, z) refers to an array indexed by coordinates yz.

2.5 Algebraic notation

Mathematical notation in Tensoral is a super-set of Vectoral notation and as with

Vectoral aims to present a syntax as close as possible to standard mathematical

notation. Numerical constants (which are tensors of rank 0 with no coordinate

dependencies) are entered as in Vectoral: as sequences of base ten digits and optional

decimal point, followed with an optional e or E for exponent and optional £ or I for

the imaginary unit (x/_--1). Numerical constants can be thought of as tensors with

zero rank and no coordinate dependencies (i.e. state (rank O, dep 0]'). Given

expressions a and b, we have the following operators:

a+b, a-b addition, subtraction,

a/b division,

a b, a.b, a,b, multiplication: juxtaposition, dot, star

a" b exponentiation,

a$ complex conjugate,

-a negation,

I a I absolute value.

Any balanced parenthesis ((), () or []) may be used for grouping mathematical

expressions. These operators -- like most operators in Tensoral-- apply to tensors

as arrays: that is, they apply to all array and coordinate indices which have not

been explicitly specified.

Precedence of operations in the above table increases from left to right, top to

bottom. To avoid ambiguity between a-b being subtraction (a-b) and juxtaposition

(a) (-b) negation is not allowed with juxtaposition: juxtaposition may be used,

however, with all other operators of lower precedence. Also, all non-commutative

operations (i.e. subtraction, division, multiplication of tensors, and exponentiation

are left-associative. Thus, the exponentiation a'b^c is grouped as (a-b)'c, etc.

2.6 Three types of multiplication?

There are three types of binary multiplication in TensorM: star *, dot . and

juxtaposition (which has no symbol). These three forms of multiplication differ in

how they treat array indices.

384 Eliot Dre_elhau_

Explicitly indexed, . and juxtaposition both imply the summation convention --

that is, repeated indices are summed, for example making a_ij b_j or a_ij b_j

equivalent to matrix multiplication. Explicitly indexed multiplication with * does

not sum repeated indices: Thus, u_i * u_j is the outer (tensor) product of u with

itself. This convention roughly corresponds to the usual tensor notation: is an

inner (dot) product (contracts indices) and * is an outer (tensor) product.

In connection with use of the summation convention, Tensoral provides the stan-

dard tensors delta and epsilon, delta_ij is the totally symmetric unit tensor

(Kronecker delta) and epsilon_il...iN is the totally anti-symmetric unit tensor:

equal to 1 for even permutations of 1 ... N, -1 for odd permutations, 0 otherwise).

Here are some illustrative examples of explicitly indexed multiplications:

c_k = epsilon_ijk a_i b_j

c = a_i b_i

c_ik = a_ij b_jk

c_ij = a_i * b_j

cross product of rank 1 a and b.

dot product of rank 1 a and b.

matrix multiplication of rank 2 a and b.

outer product of rank 1 a and b.

(Implicit indexing will in the future be different for the three multiplications. The

details of this difference is currently unresolved and are not given here.)

2.7 Operator notation

Algebraic operations and mathematical functions (e.g. sine, cosine, log, exponen-

tial), differentiation, Laplace inversion and curl operator inversion, among others,

all invoke TensoraJ operators. Such operators which are a part of standard TensoraJ

syntax, as well as those that axe non-standard, can all be invoked explicitly with
operator notation.

Operators in TensorM act from the left and apply to operand expressions on the

right. Operands are flanked by parentheses (one of (), {} or []), and operands
beyond the first axe separated by commas as in standard mathematical notation.

Additionally, if an operator takes one or zero operands these parenthesis and com-

mas may be omitted so that the operator and operand are juxtaposed. Operators

are specially introduced to Tensored, so that it is possible to syntactically differen-

tiate operator notation (e.g. o or o(0,0,0) for operator o) from tensor references

(e.g. a or a(O,O,O) for tensora). The following are examples of both types of
Tensoral operator expressions:

sqrt(x) random sqrt x f(x,y) sqrt x + y

The last expression above is equivalent to sqrt(x) + y since juxtaposition of

operands has higher precedence than addition (and other operators in the above

table).

The standard mathematical functions in Tensoral are as in Vectoral and are listed

in the following table:

random A random number between 0 and 1,

conj z Complex conjugate,

exp z, log z, logl0 z Exponential, log, log base 10,

Post-processing in Tensoral 385

sqrt z Square root,

sin z, cos z, tan z Trigonometric functions,

_rcsin z, arccos z

arctan z Trigonometric inverse functions.

All functions taking arguments z in the above table may operate on either real or

complex quantities.

2.8 Calculus, statistics, indezed operators

Like tensors, operators also have state and, therefore, rank and can be indexed.

Standard indexed operators are:

grad numerical differentiation,
int numerical integration,

ave, sum averaging, summation,

rain, max minimum, maximum.

Differentiation grad mimics the gradient operator V: it has rank 1 and can

be explicitly indexed as if it were a tensor (e.g. grad_y u_x for a_tt_). As with

products, the summation convention applies to repeated indices. In addition, a

special indexed shorthand is available for derivatives: any dummy indices following
a comma are taken as derivatives. Thus, u_i,j is short hand for grad_j u_i, and

v_j,ii generates the Laplacian V2v/.
The remaining indexed operators mentioned above do not have fixed rank. That

is, their operation is determined by how they are indexed. Consider ave as a typical

example, ave_x performs an average over the z coordinate direction (as defined by

the database back-end); ave_xy performs averaging over both z and V coordinate
directions. The remainder of the average-like operators (in*, rain, max) behave in a

similar fashion: operator indices determine which coordinates are to be integrated
and minimized or maximized over.

2.9 Operators and back-ends

Currently, new operators may only be defined or re-defined (for standard opera-

tors) by back-ends. At some point the introduction of new operators will become
standard Tensora/. The isotropic turbulence back-end iso, for example, re-defines

the three product operators *,., and juxtaposition. For iso tensors, multiplication
can either be in physical or wave (Fourier) space. To select between these two pos-

sibilities, the back-end author (in this case E. D.) has defined * to imply wave space

and juxtaposition ... to imply physical space operands: that is, if any operand of *
is not in wave space it is transformed into wave space (and similarly for physical

space and juxtaposition). This mimics the notation f * g for convolution which, of
course, is multiplication in wave space. The third multiplication . implies nothing

about the wave and physical space representations of its operands.

3. Statement syntax

There are three kinds of statement in Tensoral: declarations, assignments, and

statement level operator expressions. Declarations introduce new tensors to the

386 Eliot Dresselhaus

compiler. Assignments alter the value and state of existing tensors. Statement

level operator expressions -- whose syntax is identical to the operator expressions

described above -- allow for non-standard (i.e. back-end specific) operations to be

performed.

3.1 Declarations

As in Vectoral or C, all variables in Tensora/must be declared. A declaration

introduces a certain variable name (whose syntax is defined above) to be a tensor of

a certain type. The type of a tensor corresponds to a back-end which describes this

type. For example, the isotropic turbulence back-end defines a tensor type called

iso. Tensors may have more than one type. For example, an iso tensor a_ij may

be declared to be symmetric, indicating to the compiler that it may equate a_ij

with a_j ±.

The type or types in a tensor declaration define all of the state variables which

may control how an abstract tensor is represented by a numerical tensor field. For

example, iso tensors represent fields either in physical or in Fourier space and

have a corresponding state variable called wave which is true or false depending

on whether a given tensor is in wave or physical space at a given point in a pro-

gram. (This state variable could have more complex semantics to represent tensors

in mixed wave and physical space.) Other types may introduce other state vari-

ables or may override those already defined. For example, if a tensor is declared

syrametric iso, symmetric states and operators have higher precedence than iso

states and operators. (Such type precedence allows for back-ends to be constructed

in a modular fashion -- minimizing the duplication of effort.)

When a tensor is declared its initial state must also be declared. In particu-

lar, declarations may give values for the standard Tensoral state variables rank,

dimension dim, and coordinate dependency dep. Other back-end specific state in-

formation may also be initialized, for example, declaring a tensor to have a certain

back-end specific mesh parameters, to be in wave or physical space, etc. All state

variables have default values. The standard states, for example, might default to

values {rank 0]% (dim 3}, and {dep 0_. Back-end specific defaults are provided

and documented by back-end authors.

The general syntax of Tensoral declarations is as follows:

type 1 ... type L {initl , ... , initM} tensor1 , ..., tensorN

This declares N > 0 tensors all having the specified L > 0 types with decreasing

state precedence from left to right and initial state specified by M >= 0 initializa-

tions. Each initialization field may have two forms:

variable vMue or tensor

This first form explicitly initializes a given state variable to an optionally given value

(which defaults to true); the second uses the current state of a tensor to initialize the

state of another. In addition a tensor name (e.g. T(xyz)) may be followed by a list

post-processing in Tensoral 387

of coordinates in parentheses (), (}, or [3 to initialize its coordinate dependencies

(e.g. to xyz). Uninitialized state variables take on their default values.
An author may declare certain tensors which can themselves be referenced to

initialize other tensors. Such tensors are templates for other tensors and do not

correspond to variables in TensoraJ programs. All turbulence simulations are likely

to have definitions of the velocity and/or scalar fields (for example, called velocity

and scalar), which can be inherited by other tensors. This allows for simple dec-

larations of derived quantities, for example, the declaration

iso (velocity} a, (rank 2} du, ,[rank O} p

which might declare an iso velocity field u, its derivative du, and pressure p, a

scalar.

3._ Assignments

Tensora/assignments assign tensors on the left-hand side of an equals sign ffito an

expression on its right-hand side. Assignments can use multiple left-hand sides as

long as they are tensors whose rank is mutually compatible with the right-hand side
rank. Multiple assignments may be performed in parallel (as in Vectora/) with the &

character joining the multiple assignments. In parallel assignment, right hand sides

of all assignments linked with & characters are evaluated before any assignments

are performed, so that the statement a ffi b & b ffi a, for example, swaps tensors a

and b. Assignments transfer both the state and value of tensors.

In addition tensors may be read from and written to files with assignment no-

tation. File names in Tensora/ are delimited by double quotes "restart10'° if

constant or by angle brackets <file> if variable. Files are read if they occur on the

right-hand side of assignments and are written if they occur on the left-hand side of

assignments. Currently, file operations may not be mixed with other expressions.

This may change in the future.

4. Program syntax

Tensoral statements exist inside of a host language. Tensoral itself was designed

to be minimal: Tensoral supports tensors and operations on them -- no more,

no less. The host language is relied upon for everything else. The semantics of

how programs are organized, say into different files and different subroutines, how
variables are scoped (global versus local), etc. are all lifted from the host language.

A user is not forced to learn another computer language; instead the user must only

learn how to combine Tensora/and host code.

Back-ends also use host language code to implement operators, tensor references,

declarations, file operations, etc. Thus, eventually a TensorM program is trans-

formed into a host language program which can then be compiled by the host-

language compiler.

_. 1 Tensora/in C

In the current Tensoral prototype, C is used as the host language. This is referred

as TensorM in C. For the remainder of this section, we will take C as the host

language to explain how Tensoral codes fits into host code.

388 Eliot Dre_elhau8

Tensor variables and TensorM containing functions may be introduced anywhere

that C variables and functions may be introduced. Tensoral containing functions

have the same syntax as C functions except their declared names are prefixed by

tensor types just as they would appear in a regular tensor declaration. These types

-- with the usual precedence rule -- make up the environment of back-end template
tensors, state variables, coordinates, and operators available to the Tensoral code

in the function. Tensors as arguments to functions and as local (called "automatic"

in C) variables as in C are local to the (} block of their definition. (The user must

be careful to keep distinct names for C and TensorM variables -- use of the same

C and TensorM variable names can cause confusing results!)

TensorM statements may appear wherever C statements may. Since all tensor

variables are specifically introduced as tensors, TensorM code may be differentiated

from C code. Because of this differentiation TensorM expressions and statements

may appear anywhere C expressions and statements may. The presence of TensorM

expressions may change the semantics of C code. TensorM code may involve array
operations and hence imply iteration over coordinates. This iteration also includes

iteration over the C statement which contains the TensorM array operation. For

example, the function call printf ("_,g,,, f(xyz)) ; will print f for all coordinate

values xyz. On the other hand, some C statements such as the looping constructs

for and while are not iterated over TensorM coordinates; others (switch, if,
function calls, etc.) are iterated.

4.2 Example: the isotropic turbulence back-end

Rogallo's isotropic turbulence simulation and the corresponding iso TensorM

back-end represent tensors on a uniform computational mesh of size N 3. Since N il

here is desired to be as large as possible, tensors must have their data managed i
-- that is, since arrays of size N 3 are potentially too large to fit into a computer's

main memory, all tensors are split up into data plane groups of size MN 2 or into

groups of lines of size M'N. At one time only M planes or M' lines of a tensor's

data is operated on; the remainder of the tensor is kept on backing store (i.e. disk

or other processors of a multi-computer). Data management code is automatically
generated by the iso back-end.

Derivatives are computed by transforming into wave space; certain products are

formed in physical space. Fourier transforms (whether 1, 2, or 3 dimensional) are

automatically coded when derivatives are taken or when physical space products

are requested. For iso tensors recall that star * implies wave space, juxtaposition
implies physical space, and dot . implies neither. Thus, a * b will transform a

and b to wave space if necessary before multiplying them; a b will transform both

to physical space (as necessary); a. b will simply multiply a and b as is. ._

iso tensors have special state variables associated with them. The standard

states rank, dep, and dim default to 0, 0 and 3 -- by default, tensors are scalars, i
are not dependent on any of the coordinates, and have indices that range from 1 to i

3. Tensors can be either in wave space (for state {wave true}) or in physical space i

({wave false}). Currently, tensors are represented either in groups of xy planes
(for state {memxy true}) or xz planes (_memxy false}).

Post-processing in Tensoral 389

The mesh size and planing factor are given by the state variables mesh (which

corresponds to N above) and plane (which corresponds to M). These state variables

may take on integer values, specifying a constant size mesh and constant planing

factors; for example,

iso {rank I, mesh 32, plane 2, wave} u

declares a 323 wave-space velocity field which is split into groups of data planes of

size 2 x 322. Similarly, mesh and plane may take on values that are the names of

external C variables which contain the mesh size and planing factors at run time;

for example,

iso {rank I, mesh N, plane M} u

declares u to get its run time size and planing from C variables N and M (which had

better exist!). Also, mesh and planing factors can be initialized when a field is read
from a restart file.

The iso back-end a/so provides template tensors which can be used to initialize

tensors in user's programs. The tensor velocity sets up a velocity field which can
be read from a simulation restart file.

4.3 A complete ezample

Here we illustrate a simple post-processor written in Tensoral. Let's suppose --

for the sake of example -- we want to compute pressure statistics for a series of

restart files runl, run2, One codes the following Tensora/(in C) program in a

file p.tlc:

1 iso main (int argc, char * argv[]) {

2 int f ;

3 iso {velocity} u, {u, rank 2} A, {u, rank O} p;

4 iso {} mean, rms;

5 for (f = i; f < argc; f++) {

6 u = <argv [f]> ;

7 A_ij = u_i,j;

8 p =-unlaplacian (A_ij A_ji);

9 mean = ave_xyz (p) ;

I0 rms = sqrt (ave_xyz (p'2) - laean^2);

11 printf ("pressure: min _,g, max _,g, mean _,g, rms _,g\n",

12 min_xyz (p), max_xyz (p), mean, rms);

13 }

14 }

According to C standards main is the function which is called by the operating

system with string arguments argv of size argc. main has been declared with type

iso to indicate that it contains Tensoral code; iso has been previously introduced

to the compiler as part of its library of back-end types. Line 2 declares a C integer

variable which is used to loop through the restart files assumed to be given on

the command line array argv. Line 3 declares the tensor variables we need. The

velocity field u is initialized using the iso template velocity. A is the velocity

390 Eliot Dresselhaus

derivative tensor, declared to be like u but with rank 2. p is the pressure and mean

and rms are both scalars ({rank 0, dep 0_) used for statistics. Line 5 loops over

restm't files; array operations inside this loop are iterated inside the loop (as for

all for and while statements). Line 6 reads in a velocity field from the command

line argument argv [f]. Line 7 forms the velocity gradients and line 8 forms the

pressure. Lines 9 and 10 compute simple statistics and lines 11 and 12 print them
out.

To execute this TensorM program one first compiles it with the command

tl -o p p.tlc

This produces an executable file p (the -o f flag names compiler output). Now p

can be applied to the restart files runl, run2, ...

p runl run2 ...

and will output the desired statistics.

Center/or Turbulence Research

Annual Research Briefs 199_

C J _ V ,5 S :_'_)

391

Appendix

NAME/TERM

POSTDOCTORAL

FELLOWS

ADAMS, Dr. Nikolaus

10/93-present

CARATI, Dr. Daniele

10/93-9/94

CHOI, Dr. Haecheon

1/94-8/94

GHOSAL, Dr. Sandip

2/92-present

JANSEN, Dr. Kenneth

9/93-present

KALTENBACH,
Dr. Hans-Jakob

9/92-present

KOUMOUTSAKOS, Dr. Petros

8/94-present

LEBOEUF, Dr. Richard L.

9/91-5/94

MANTEL, Dr. Thierry

7/93-10/94

RUETSCH, Dr. Gregory

9/93-present

ROSTER

(Ph.D, Theoretical Fluid
Mechanics, 1993, DLR,

GiSttingen)

(Ph.D. Physics, 1991,

University of Belgium)

(Ph.D. Mechanical

Engr., 1992, Stanford)

(Ph.D. Physics, 1992,
Columbia University)

(Ph.D. Mechanical

Engr., 1993, Stanford)

(Ph.D. Atmospheric

Physics, 1992, DLR)

(Ph.D. Aero & Applied
Mathematics, 1992,

CALTECH)

(Ph.D. Mechanical

Engr., 1991, SUNY at
Buffalo)

(Ph.D. Physics, 1993,

University Rouen)

(Ph.D. Applied
Mathematics, 1991,

Brown University)

AREA OF RESEARQH

Boundary layer
interaction with shocks

Large-eddy
simulation/RNG

Large-eddy simulation of

complex flows

Subgrid-scale modeling

Large-eddy simulation of

complex flows

Large-eddy simulation

Numerical simulation via

vortex methods

Experimental study of
turbulent mixing layer

Turbulent combustion

Turbulent combustion

392

SADDOUGHI, Dr. Seyed G.
6/91 -present

SAMANIEGO, Dr. Jean-Michel
4/92-12/94

WANG, Dr. Meng
9/92-present

RESEARCH ASSOCIATES

CABOT, Dr. William H.

3/88-present

DRESSELHAUS, Dr. Eliot

9/91-present

LUND, Dr. Thomas S.

11/90-present

SR. VISITING FELLOWS

BILGER, Prof. Robert W.
1/94

BLACKWELDER, Prof. Ron F.
9/94-12/94

FOSS, Prof. John F.
11/93

GEORGE, Prof. William K.
9/94

SR. RESEARCH FELLOWS

BROADWELL, Dr. James E.

1/94-present

DURBIN, Dr. Paul

1/90-present

Appendiz

(Ph.D. Mechanical

Engr., 1989, Univ. of
Melbourne)

(Ph.D. Combustion,
1992, Ecole Centrale

Paris)

(Ph.D. Mechanical

Engr., 1989, Univ. of
Colorado)

(Ph.D. Physics, 1983,
University of Rochester)

(Ph.D. Applied
Mathematics, 1991,

Columbia University)

(Ph.D. Aero-Astro,
1987, Stanford)

University of Sydney

University of Southern
California

• Michigan State
University

SUNY-Buffalo

Experimental
investigation of local

isotropy in high-
Reynolds-number
turbulence

Reacting flows

Aerodynamic noise

Large-eddy simulation
and convection

Postprocessing and

computer languages

Large-eddy simulation

Turbulence combustion

Control of bounded shear

flows

80x 120 wind tunnel

measurements

80x120 wind tunnel

measurements

Turbulence combustion

Turbulence modeling

Appendiz 393

HILL, Dr. D. Christopher
5/92-5/94

JIMENEZ, Prof. Javier

7/94-11/94

ZEMAN, Dr. Otto
3/1/89-9/94

GRADUATE STUDENTS

LOULOU, Patrick

1/94-12/94

TIMSON, Stephen
10/93-9/94

Flow control

Small scales in turbulence

Turbulence modeling

DNS of incompressible

axisymmetric flows

LES of a statistically
stationary turbulent free
shear flow

394 Appendiz

1994 ADVISORY COMMITTEE

Prof. Ronald J. Adrian (Co-Chair)

University of Illinois

Prof. George K. Batchelor
DAMTP, Univ. of Cambridge

Dr. Richard G. Bradley, Jr.
Lockheed

Dr. James M. McMichael
Air Force Office of Scientific Research

Dr. Robert Melnik

Grumman Corporation

Prof. Norbert Peters

RWTH - Aachen

Dr. Dennis M. Bushnell

NASA Langley Research Center

Prof. Eugene Covert (Co-Chair)
Massachusetts Institute of Technology

Dr. Coleman Donaldson

Gloucester, VA

Dr. Marvin E. Goldstein

NASA Lewis Research Center

Prof. Stephen B. Pope
Cornell University

Prof. Richard A. Seebass
Univ. Colorado at Boulder

Dr. Ron Bailey (Ex-officio)
NASA Ames Research Center

Mr. John T. Howe (Ex-officio)
NASA Ames Research Center

Dr. Spiro Lekoudis
Office of Naval Research

1994 STEERING COMMITTEE

Prof. Dean R. Chapman
Dept. of Aeronautics & Astronautics

and Mechanical Engineering, Stanford

Dr. Dochan Kwak

Chief, Computational Algorithms and

Applications Branch
NASA Ames Research Center

Prof. Javier Jimenez

Senior Visiting Fellow, 7/94-11/94
Center for Turbulence Research,

Professor, Fluid Mechanics, University of
Madrid

Dr. N. N. Mansour

Turbulence Physics Section
NASA Ames Research Center

Mr. Joseph G. Marvin
Chief, Modeling & Experimental
Validation Branch,
NASA Ames Research Center

Prof. Parviz Moin

Director, Center for Turbulence Research

Professor, Mechanical Engineering,
Stanford,
Sr. Staff Scientist, NASA Ames Research
Center

Prof. William C. Reynolds

Program Coordinator, Center for
Turbulence Research,

Professor, Mechanical Engineering,
Stanford,

Sr. Staff Scientist, NASA Ames Research
Center

