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ABSTRACT

The NASA Dryden Flight Research Center has flight
tested two X-29A aircraft at low and high angles of

attack. The high-angle-of-attack tests evaluate the fea-

sibility of integrated X-29A technologies. More specif-

ic objectives focus on evaluating the high-angle-of-

attack flying qualities, defining multiaxis controllabili-
ty limits, and determining the maximum pitch-pointing

capability. A pilot-selectable gain system allows exam-
ination of tradeoffs in airplane stability and maneuver-

ability. Basic fighter maneuvers provide qualitative

evaluation. Bank-angle captures permit qualitative data

analysis.

This paper discusses the design goals and approach

for high-angle-of-attack control laws and provides
results from the envelope expansion and handling qual-

ities testing at intermediate angles of attack. Compari-

sons of the flight test results to the predictions are made

where appropriate. The pitch rate command structure

of the longitudinal control system is shown to be a val-

id design for high-angle-of-attack control laws. Flight
test results show that wing rock amplitude was over-

predicted and aileron and rudder effectivenesses were
underpredicted. Flight tests show the X-29A airplane

to be controllable in all axes, with no nose wandering,

up to 40 ° angle of attack.

INTRODUCTION

The NASA Dryden Flight Research Center (NASA
Dryden) X-29A program was structured to test the

X-29A no. 1 airplane at low angles of attack and the

no. 2 airplane at high angles of attack. The low-angle-

of-attack testing included evaluating and improving
handling qualities, l' 2 The high-angle-of-attack tests

assessed the predictive techniques for high angle of
attack and the feasibility of the integrated X-29A tech-

nologies. These technologies include a 4.9 percent-

thick supercritical wing with no leading-edge devices

but with variable-camber control trailing-edge devices.
In addition, the aircraft has a close-coupled canard and

large negative static margin. More specific objectives

focused on evaluating the high-angle-of-attack flying

qualities, defining multiaxis controllability limits, and
determining the maximum pitch-pointing capability. 3' 4

Recent emphasis has been placed on the ability of an

aircraft to operate beyond maximum lift. It has been

theorized for some time that the forward-swept wing

has several advantages in this flight regime. 5' 6 The

configuration was designed to be departure resistant
and to maintain significant roll control at high angles of

attack. To further investigate the potential of a forward-

swept wing at high angles of attack, the X-29A military

utility and agility test program was initiated in 1986 as
a follow-on to the low-angle-of-attack program, l' 2 7-10

This paper provides results from the envelope expan-

sion and handling qualities testing at intermediate

angles of attack. Topics include envelope expansion,

flight test techniques, and flight test results. Compari-

sons of the flight test results to the predictions are made

where appropriate.

AIRCRAFT DESCRIPTION

The X-29A aircraft is a single-seat, single-engine

fighter class aircraft (fig. 1). An F-5 forebody is used

forward of the pilot station, and F-16 integrated servo-
actuators are used for all except the strake actuators.

The cockpit has conventional dial display gauges

(fig 2). No cathode-ray-tube screens or head-up dis-

plays are used.
The wing has a thin, 4.9 percent-thick streamwise

supercritical airfoil section with a 29.27 ° forward

sweep along the leading edge and a -33.73 ° quarter-

chord sweep. The wing structure includes aeroelastical-

ly tailored graphite-epoxy covers to help provide the
stiffness needed to overcome the torsional divergence

problems associated with forward-swept wings. The

wing is relatively simple, employs full-span trailing-

edge flaps, and does not use leading-edge devices.
These double-hinged flaps also provide discrete vari-
able camber.

The three surfaces used for pitch control are the all-

moving, close-coupled canards; symmetric wing flaps;

and aft-fuselage strake flaps. The lateral-directional

axes are controlled using differential wing flaps and a

conventional rudder. Table 1 shows critical airplane ge-

ometry and mass characteristics. A more complete de-
scription of the aircraft has previously been provided. 10

The second X-29A airplane, built concurrently with

the first, was modified for high-angle-of-attack flight

research by adding support structure to the tail and a

spin chute (fig. 3). 11 The chute is designed to recover

the aircraft from an upright or inverted spin or deep
stall and is contained in a canister installed at the base

of the vertical tail. The chute measures 19 ft in diame-

ter with riser lengths of 75 ft. The chute mechanism



wastestedon thegroundandin theair.Deployment
speedis limitedto a maximumof 180kn equivalent
airspeedandis accomplishedby a redundantsetof
pyrotechnics.Afterdeployment,thechutecanbejetti-
sonedby unlockingthemechanicaljawsthatholdthe
chuteto theaircraft.If thatmechanismfails,explosive
boltsthatwouldreleasethejawscanbefired.

The cockpitwasalso modifiedfor high-angle-of-
attack testing.Large angle-of-attackand yaw rate
gauges,spinchutestatusdisplays,andspinrecovery
indicatorswereaddedto thecockpit.Figure2 shows

the spin recovery indicators, which consist of four

arrows showing stick positioning and two dots indicat-

ing rudder pedal positioning. A single-needle pressure
altimeter replaced the clock. For high angles of attack,

a yaw string was placed on the windshield to aid the

pilot.

Commands generated on the ground and uplinked to

the horizontal and vertical flightpath command needle
in the attitude direction indicator instrument were used

for flightpath targeting. 12 This instrument allowed the

pilot to easily capture and hold angles of attack for

high-angle-of-attack test points. The needle deflection

was proportional to the error between the target angle
of attack and the measured angle of attack. Similarly,
the vertical needle showed the error between the mea-

sured and the targeted sideslip angle. The horizontal

and vertical needles were important in high-angle-of-

attack maneuvers, assisting the pilots in flying more

precise test points. The pilots were able to concentrate

on a single instrument to receive attitude, target-angle-
of-attack error, and target-sideslip error information.

The upper surface of the right wingtip and the left

side of the vertical stabilizer tip had stripes painted on

them. The stripes were added in case a spin necessitat-
ed aircraft orientation identification from long-range

optics.

Flight Control System

This subsection describes flight control system (FCS)

modifications that were made to allow exploration of

the high-angle-of-attack envelope. The architecture of

the FCS was largely unchanged from that developed

and tested in the low-angle-of-attack program.

The FCS was designed to allow maneuvering of the

airplane at high angles of attack without using rudder

pedal inputs. The lateral stick commanded stability axis
roll rate, and the longitudinal stick commanded a

2

combination of _itch rate, normal acceleration, and an-
gle of attack. 13' 14 Rudder pedals commanded washed-

out stability axis yaw rate.

Mode Logic

The X-29A FCS uses two basic modes. The primary

mode is a normal digital (ND) mode; the backup mode

is an analog reversion (AR) mode. Several degraded

modes are also possible when sensor failures prompt a

reconfiguration. A new digital mode, NORMHI, was

created for high-angle-of-attack testing. This mode is

identical to the ND mode, but it prevents the automatic

downmoding to the AR mode that occurs when surface

commands exceed predetermined rates.

The new NORMHI mode prevents the reasonability

test from causing the downmode to the AR mode dur-

ing critical high-angle-of-attack maneuvers or out-of-

control situations. The reasonability test is a logic that
was developed in an attempt to prevent generic soft-

ware errors from leading to loss of the airplane. For

high angles of attack, the commands in the digital com-
puters are still limited to reasonable rates; only the

automatic downmoding to the AR mode is precluded.

Pilot action is required to select the backup mode in the

event of a generic software failure.
The AR mode was unchanged for the second X-29A

airplane. Six-degree-of-freedom nonlinear simulation
found that the AR mode would provide marginal recov-

ery capability at high angles of attack. Simulation stud-
ies showed that this FCS would have poor damping of

the predicted wing rock. The simulation showed that if

the pilot were to allow the wing rock motion to fully

develop, the inertial coupling would be strong enough

that the angle of attack could not be reduced below 40 ° .

Previous low-angle-of-attack envelope expansion phi-

losophy was to test the primary ND and backup AR

modes under all flight conditions. This philosophy was

not followed for the X-29A high-angle-of-attack enve-

lope expansion, and only the NORMHI mode was
tested.

Design Requirements

The FCS was required to retain the low-angle-

of-attack flight characteristics and control law structure
that had been used previously on X-29A no. 1. The

FCS was also required to ensure that spins would not

be easily entered. An active spin prevention system

was incorporated into the FCS to meet that

requirement.



Additionaldesignguidelinesweredevelopedusing
the Langley differential maneuveringsimulation.
Table2 showstheseguidelines.Theaircraftdynamics
fromthesix-degree-of-freedomsimulationwerecom-
paredto theguidelines.Theguidelineswerenotused
for linearmodels.Generally,theX-29AFCSmetthese
designguidelines.Yawratesfor neutrallateralcontrols
werepredictedtobesmallbaseduponthesmallasym-
metriespresentin thesimulationdatabase.Predicted
angle-of-attackrecoverywasfavorable,exhibitinga
smoothonsetfrom high-angle-of-attackconditions.
Adversesideslipduringrolling maneuversandwing
rock werepredictedto be within theLangleyguide-
lines.Proversesideslipwasexpectedto sometimesex-
ceedtheguideline.Theangle-of-attackvariationwas
alsopredictedto bewithin theguidelineseventhough
thecontrollawsdid notcompensatefor inertialpitch-
ingmomentscausedbycommandedroll rates.

Design Technique

The high-angle-of-attack control laws were designed

using conventional techniques combined with the
X-29A nonlinear batch and real-time simulations. Lin-

ear analysis was used to examine stability margins and

generate time histories that were compared with the
nonlinear simulation results to validate the margins.

The linear analysis included conventional Bode stabili-

ty margins, time history responses, and limited, struc-
tured singular-value analysis in the lateral--directional
axes.

In the pitch axis, stability margins at high-angle-of-

attack conditions were predicted to be higher than the

stability margins at equivalent low-angle-of-attack
conditions. In the lateral-directional axes, however, the

unstable wing rock above 35 ° angle of attack dominat-

ed the response in linear and nonlinear analysis. Feed-
back gains that stabilized the linear airplane models

showed an unstable response in the nonlinear simula-

tion. This unstable response was caused by rate satura-

tion of the ailerons. The FCS configuration kept the

feedback gains at a reasonable level to control the high

frequency instability but did not completely control the

low-frequency (bounded) lateral--directional instabili-

ty (wing rock).

Longitudinal Control Law Design

At high angles of attack, the X-29A pitch stick com-

manded a blend of pitch rate and angle of attack. The

choice of the controlled variable followed a different

philosophy than that of other high-angle-of-attack

aircraft that6PrimarilYl use angle-of-attack command
systems. 15' The combination of feedbacks used in

the X-29A FCS provided more of a pitch rate com-

mand system with weak angle-of-attack feedback. The

pitch axis trim schedule provided small positive stick
forces at l-g, high-angle-of-attack conditions. Approx-

imately 1-in. deflection, or 8 lbf, was required to hold

40 ° angle of attack.
For the most part, the basic low-angle-of-attack ND

longitudinal axis control laws remained unchanged for

the NORMHI mode at high angles of attack. No gains

in the longitudinal axis were scheduled with angle of

attack, but several feedback paths were switched in and

out as a function of angle of attack. The following

changes were made in the design of the high-angle-of-

attack control laws for the X-29A longitudinal axis

(fig. 4):

• The automatic

were modified

and to provide

camber control (ACC) schedules
to reduce transonic canard loads

optimum lift-to-drag ratio canard

and strake flap positioning by increasing slightly
the reference canard position in a 20 ° to 38 °

angle-of-attack range.

• Airspeed feedback was faded out and angle-of-
attack feedback was faded in to control a slow,

divergent angle of attack. Airspeed feedback was

not appropriate to control the instability that

developed at high angles of attack; angle-of-

attack measurement provided the best feedback

because the divergence was almost purely angle
of attack.

• Active negative angles of attack and g-force limit-

ers were added to prevent potential nosedown

pitch tumble entries or inverted hung stall

problems.

• The single, redundant, attitude-heading reference

system feedbacks were faded out because the

attitude information only provides gravity com-

pensation for pilot inputs and normal acceleration

feedback. The lack of redundancy and the rela-

tively small benefit did not warrant the risk of

system failure at high-angle-of-attack conditions.

• Symmetric flaperon limit was reduced from 25 °

to 21 ° . Because high-gain roll rate feedback is

required to prevent wing rock and the wing flaper-

ons are shared symmetrically and asymmetrically,

4 ° of flaperon deflection were reserved for aileron



commands. The flaperons were commanded with

differential commands that had priority. Other-
wise, the ACC schedule would have commanded

the wing flaperons on the symmetric limit at high

angles of attack and resulted in a coupling of the

wing rock and longitudinal control loop through

the symmetric flaperon.

Roll and Yaw Control Law Design

In the lateral axes, the airplane was controlled with

conventional ailerons and rudder. The ailerons had pri-

ority over symmetric flaperon deflections in the control
laws. The control laws were designed in this manner

because all roll control is provided by the ailerons

while pitch control is provided by canards, strake flaps,
and symmetric flaperons.

In the lateral-directional axes, the control laws were

changed significantly for high angles of attack from the

original low-angle-of-attack FCS. Figure 5 shows a
full-state type feedback structure. The high-angle-of-

attack changes, for the most part, simplified the control
law structure flown on X-29A no. 1. The new control

laws required many gains to be scheduled with angles
of attack. Several were just faded to constants, while

four command and feedback gains used three angle-of-

attack breakpoints for table lookup. These three angle-

of-attack breakpoints were the maximum allowed

because of computer space limitations. Computer
speed limitations required that a multirate gain lookup

structure be incorporated.

Because the angle of attack was expected to change

rapidly, the angle-of-attack portion of the gains was
updated to 20 Hz. Mach number and altitude were

updated to 2.5 Hz. The control law changes and rea-
sons for them are as follows:

• The forward-loop integrator in the lateral axis was

removed at high angles of attack. This removal

eliminated a problem with the integrator saturat-

ing and causing a pro-spin flaperon command.

• The majority of lateral--directional feedbacks
were eliminated. This feedback elimination left

only high-gain, roll-rate-to-aileron feedback and

washed-out stability axis yaw rate feedback to

rudder paths. The high-gain roll damper was used

to suppress the wing rock that developed near

maximum lift. The washed-out stability axis yaw

rate feedback helped control sideslip during

maneuvers under high-angle-of-attack conditions.

• Pilot forward-loop gains were simplified, leav-

ing only lateral-stick-to-aileron, lateral-stick-to-

rudder, and rudder-pedal-to-rudder gains. The

lateral stick gearing was changed from second-
order nonlinear gearing to linear gearing at high

angles of attack. A washout filter was used in par-
allel with the aileron-to-rudder interconnect (ARI)

gain to provide additional initial rudder deflection
in response to rudder command.

• Spin prevention logic was added. The logic com-

manded up to full rudder and aileron deflection if

the yaw rate exceeded 30 deg/sec at an angle of

attack > 40 ° for upright spins or an angle of attack

<-25 ° for inverted spins. The pilot command

gain was increased to allow the pilot sufficient

authority to override any of these automatic

inputs.

Pilot-Selectable Gain

To aid in research and allow for unexpected prob-

lems in flight testing, several changes were incorporat-

ed in the FCS. These changes included a pilot-

selectable gain capability to allow two gains to be inde-

pendently varied. These two gains could each have five
values. This feature was used to evaluate, in flight, gain

modifications to the control laws. Initially, the roll-rate-

to-aileron gain, K2, and ARI gain, K27, were varied.

Later, the lateral roll command gain, K13, and the K27
were varied.

Concerns about severe wing rock led to a slow build-

up in angle of attack using the pilot-selectable gain

variations. The airplane roll response was heavily

damped, and the pilot-selectable gain system was used

to examine reductions in feedback gain. The response

of the airplane was approximately 20 percent faster

with the reduced roll-rate-to-aileron feedback gain than

with the baseline gain. No objectionable wing rock de-

veloped because of the lower gain.

Pilot-selectable gain was also used to increase the
roll performance of the X-29A airplane at high-angle-

of-attack conditions. 17 The stability axis roll rates

almost doubled in the 20 ° to 30 ° angle-of-attack region

at 200 kn. This increased roll performance was accom-
plished using a 75 percent increase in the K13 and an

80 percent increase in the K2Z Increases in rates were

possible throughout much of the high-angle-of-attack

envelope but usually were not as dramatic as this

example. Only small degradation occurred in the roll

4



coordination.Above this angle-of-attackregion,
uncommanded reversals occurred. These uncommand-

ed reversals were caused by control surface saturation

and a corresponding lack of coordination that manifest-

ed as increased sideslip.

The pilot-selectable gain concept proved to be a

valuable research tool for testing simple control law

changes before the full FCS changes were made. The

ability to fly different FCS gains, back-to-back, on the

same flight resulted in more accurate comparisons.

This ability was especially important when the changes

resulted in subtle flying qualities differences.

Flow Angle and Pitot-Static Measurement

Systems

Accurate angle-of-attack measurement was very
important because this measurement was a primary

gain-scheduling parameter as well as a feedback to lon-
gitudinal and lateral-directional axes. Accurate air-

speed information was also important to control

conditional stability of the lateral and longitudinal axes

at high angles of attack. Stability margins would be

compromised if errors were large.

Two of the three angle-of-attack sensors were located
on each side of the airplane and had a range limited to

35 ° . The location and range of these sensors were con-

sidered inadequate for testing, and two options were

considered to solve the inadequacy. The first option

was to mount two additional angle-of-attack vanes on

the noseboom. This option was mechanized and flown
on X-29A no. 1 for evaluation and was found to have

excellent characteristics. The second option was to
install NACA booms and angle-of-attack vanes on the

wingtips. This option was not implemented because
roll rate corrections for the large lateral offsets would

have been required, and the flight control computers
did not allow such corrections.

The modification to include two additional angle-of-

attack vanes on the noseboom proved to be a good one.

Only once during the high-angle-of-attack program did

the three vanes not compare. This anomaly occurred

during a recovery from a high-angle-of-attack test

point. Figure 6 shows the time history of the recovery

maneuver. The figure reflects that as sideslip exceeded

20 ° , the left rear angle-of-attack vane exceeded the
sensor tolerance of 5 ° and was declared failed. This

incident occurred during a recovery from 50 ° angle of

attack. The airplane continued to operate on the two

remaining sensors and was in no danger. The nose-
boom angle-of-attack measurements became less reli-

able above 35 ° angle of attack.

To obtain accurate measurement of airspeed at high-

angle-of-attack conditions caused by local flow effects,

three pitot probe locations were investigated. Belly

probes were tested on a wind-tunnel model and were

found to change the aerodynamics. Swivel probes
could not be used on the noseboom because they were

unable to be flight qualified for installation forward of

engine inlets on a single-engine airplane. Side probes

were expected to have poor characteristics at high an-

gles of attack. Because an alternate location could not
be found, the decision was made to use a single-string

noseboom pitot-static probe at high angles of attack.

The high-angle-of-attack FCS had to be highly reli-
able. Three or more sensors were generally used to

provide redundancy, but for impact pressure at high

angles of attack, the FCS relied on a single noseboom

probe with two independent sensors. For most of the
high-angle-of-attack region, the side pitot-static probes

performed as they had on the X-29A no. 1. Discrepan-

cies were observed in the 7 ° to 12° angle-of-attack

region. As angle of attack increased above 30 °, mea-

surement of impact pressure became less reliable.

Above 45 ° true angle of attack (52 ° indicated), the side

probes stalled, resulting in impact pressures of

zero inches of mercury.

Simulation

Simulations were used extensively for evaluating the

high-angle-of-attack control laws. A high-angle-of-

attack aerodynamic database was obtained from many

X-29A wind-tunnel tests. Wind-tunnel rotary balance
data and forced oscillation data 18 were combined with

spin-tunnel data to provide dynamic derivative esti-
mates for inclusion in the simulation model. The aero-

dynamic model was valid for an angle-of-attack range

from -50 ° to 90 °, a sideslip range from -30 ° to 30 °,
and transonic speeds. 19' 20

The simulations included a full, nonlinear, real-time

piloted simulation consisting of hardware-in-the-loop,

airplane-in-the-loop, and all FORTRAN implementa-

tions; batch-processed simulations; and linearized
equations of motion simulations. Each of these simula-
tions was essential to verification and validation of the

control laws.



Thepilotedsimulationswereusedfor designingand
testingthe FCS as well as for training pilots during the

high-angle-of-attack envelope expansion. The batch

simulations were used to generate time history and

frequency response comparisons to the hardware-in-

the-loop results and to conduct an engineering analysis

between high-angle-of-attack flights. The linear analy-

sis results were compared with the nonlinear simula-
tions and provided stability margin estimates for the

rigid and aeroservoelastic models.

The aircraft-in-the-loop simulation was used during

initial verification and validation of the high-angle-of-

attack control system to accomplish the following:

• Verify the open-loop frequency response charac-

teristics of sensor-to-control surface paths

• Verify the FCS-rigid body stability open-loop
characteristics

• Verify that no closed-loop resonance exists on

rigid jack supports

• Verify that maximum hydraulic demands of the
high-gain FCS would be met by the normal and

emergency airplane hydraulic systems

• Perform a complete end-to-end confidence check

of the airplane systems

TEST AND PROCEDURES

Figure 7 shows the aircraft flight envelope. The orig-

inal high-angle-of-attack control laws were designed

for speeds up to Mach 0.6 and were later cleared to

Mach 0.75. The envelope was intended to be expanded

to Mach 0.9, but time constraints did not permit the
necessary design, verification, and validation efforts.

Envelope Expansion

Maneuvers were developed to carefully expand the
high-angle-of-attack envelope. These maneuvers were

referred to as integrated test blocks (ITBs). Each ITB

consisted of a series of test maneuvers at a given angle

of attack. The ITBs were designed to obtain concurrent

test data for several research engineering disciplines,

including flight controls, aeroservoelastics, and

aerodynamics.

Three ITBs were initially defined for the high-angle-

of-attack envelope expansion with progressively more

aggressive maneuvers in each. After five expansion

flights, the ITBs were modified to obtain the necessary
data more efficiently. The modified ITBs were as
follows:

ITB 1 Pitch authority check

Stabilized point

Large input, 3-axis raps and pulses
Half-throw aileron and rudder rolls

Steady heading to 5 ° sideslip

ITB 2 Steady heading to 10° sideslip or full input
Full input aileron and rudder rolls

Full stick, 360 ° aileron roll

The high-angle-of-attack envelope expansion above

10° angle of attack began with ITB 1 flown from 1-g
entries in 5 ° angle-of-attack increments. When neces-

sary, intermediate trim points were flown at 2.5 ° incre-

ments. The ITB 2 for a given angle of attack was flown

when the ITB 1 expansion had been completed for an
angle of attack of 10° higher than the given angle of

attack. Above 40 ° angle of attack, the entire ITB 1 was

not performed but was replaced by a directional control

check maneuver. The pilot stabilized the airplane at the

target angle of attack for as long as possible before the

forebody yawing exceeded limits. The l-g expansion
was completed to a target angle of attack of 55 °, and

the ITB 2 was performed to 45 ° angle of attack.

Windup turn or split-S entries were performed at

160, 200, 250, and 270 kn calibrated airspeed. For all

airspeeds, the envelope was expanded above 10° angle

of attack by the same process used for the 1-g

expansion. The ITBs were essentially the same. During

the initial accelerated expansion, the aft stick limit was

reached at approximately 25 ° angle of attack. Further

expansion was not possible without sacrificing air-
speed, so the pitch stick authority was increased to

allow the accelerated expansion to continue.

Piloted Simulation and Updates

Extensive use was made of piloted simulation during

the high-angle-of-attack expansion. Before each flight,

the pilot used the simulator to become familiar with the

test points and the predicted behavior of the aircraft.

Changes were made to the test maneuvers as required.

Engineers monitored strip charts at the simulator to

watch for any unusual aircraft behavior and set flight

limits accordingly. This monitoring also allowed the

engineers to become familiar with the anticipated air-

craft behavior. The strip charts were often used in the
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control roomto verify the simulation and the test

team's understanding of the dynamics of the aircraft.

The piloted simulation was updated based on the

flight data. This update process consisted of several

steps. The first step involved analyzing the data to sep-
arate force and moment contributions caused by aero-

dynamics, inertias, kinematics, and gyroscopics. From
these data, initial surface derivative estimates were

made. The second step involved using these estimates
to run the parameter estimation program, pEst, 21 to

refine estimates of the aircraft aerodynamic derivatives

for small rates and sideslips. The third step involved

using a batch simulation to verify estimates for large

amplitude maneuvers. In this step, derivatives were

adjusted in the simulation until the desired degree of

accuracy in matching the aircraft and simulation

responses was achieved. No rotary derivatives were

updated. Once the estimates were judged to be satisfac-
tory, a parameter variation study was conducted to help

define real-time operating limits. The data were also

extrapolated to the next flight condition.

A more detailed explanation of the updating method
has previously been described. 4' 22 The updates were

easily added or deleted without altering the baseline

aerodynamic data. This technique of updating the sim-

ulation was a powerful tool during the envelope clear-

ance and postflight analysis. The simulator was always

able to keep the response of the aircraft bounded even

though it was unreliable for accurately predicting the

flying qualities of the vehicle. When the aircraft did not

behave as predicted, the cause could quickly be deter-

mined by using the parameter variation study that had
been conducted before each flight.

The challenge for the test team was to perform the

sensitivity study so that any undesirable aircraft

responses were bounded by the simulation. The flight

data would then indicate how to modify the simulation.

Using the simulation in this way was invaluable for

reducing the risk during the high-angle-of-attack enve-

lope expansion.

RESULTS AND DISCUSSION

This section discusses the flight test results and is
divided into three subsections. The first subsection doc-

uments the observed characteristics and compares

them, where appropriate, with the preflight predictions.

The second subsection addresses the flying qualities

research accomplished. The third subsection discusses
a structural interaction with the FCS.

Flight Characteristics and Correlation With

Preflight Predictions

This subsection documents the observed characteris-

tics of the X-29A airplane at high angles of attack.

Where appropriate, the flight test results are compared

with preflight predictions. The preflight predictions

were generated from both wind-tunnel and dynamical-

ly scaled dro[?-model tests. The drop model for the X-
29A airplane 23 was an unpowered, 22 percent-scaled

geometric replica that was dropped from a helicopter.

The model was dynamically scaled to the weight, cen-

ter of gravity, and inertia of the full-scale vehicle.

Wing Rock and Lateral Control Power

Much attention was given to the predicted wing rock

characteristics during design and verification of the

flight control laws. These predictions were based upon
wind-tunnel estimates 24' 25 and were supported by

drop-model flight tests. The unaugmented drop-model

roll departed at 32 ° angle of attack. A roll damper was

added to the FCS to prevent the departure. A gain of

0.88 deg/(deg/sec) reduced the wing rock magnitudes
over the unaugmented model (fig. 8). 23 However, roll

rates as high as 30 deg/sec existed for angles of attack

below 40 °. Rates reported for subscale tests are equiva-
lent full-scale values.

Above 40 ° angle of attack, roll rates approached
150deg/sec. Large noseup pitching moments were

generated as a result of the large oscillations by a com-
bination of inertial and aerodynamic coupling. A gain

of 2.0 deg/(deg/sec) was finally used in the drop model

to suppress the high roll rates in the 40 ° angle-of-attack

region. Additional details about the tests and their
results have previously been given. 23' 24

These results, along with the results from ground-

based testing, were used to develop the aerodynamic

models for the control law design simulation used at

NASA Dryden. The simulation at NASA Dryden pre-

dicted that wing rock would occur between 30° and 45 °

angle of attack and at approximately 60 ° . Wing rock

magnitude was predicted to be composed of _-t30

deg/sec of roll rate, +10 ° to 15° of bank angle, and

+10 ° of sideslip. Preflight predictions were that 35 °



angleof attackwould be the maximumattainable
beforewingrockwoulddominatetheflight character-

istics and prevent additional expansion.

For the full-scale airplane, buffet began at approxi-

mately 12° to 15 ° angle of attack. The buffet was light,

becoming moderate at approximately 20 ° angle of

attack. Above 20 ° angle of attack, the buffet was once

again light.
Wing rock began at approximately 16° angle of

attack and was characterized by bank-angle changes of
less than 5° at 0.9 Hz. Because of the randomness of

the frequency and magnitude, the pilots characterized

this motion as wing drop rather than wing rock.

Because of the small magnitude of the motion, the

wing rock did not detract from the handling of the air-

craft in the 16° to 20 ° angle-of-attack region. In fact,

while maneuvering, the pilots commented that they

were unaware of its presence.
Figure 9 is a time history of the wing drop character-

istic. At 40 ° angle of attack, the wing rock had

increased to a +14 deg/sec roll rate at 0.4 Hz. This rate

was considerably less than the :_.30 deg/sec roll rate

predicted for that angle-of-attack region. In fact, the
wing rock was absent in the presence of 1° to 2° side-

slip. Figure 10 shows a time history of the wing rock

experienced near 40 ° angle of attack. Figure 11 shows

the magnitude of the bank angle oscillation as a func-

tion of angle of attack during wing rock.
The reduced wing rock is attributed to the higher-

than-predicted (less unstable) roll damping and

increased aileron control power. Preflight predictions

for roll rate in the 30 ° angle-of-attack region were 10 to

15 deg/sec. Actual roll rates were 40 deg/sec, support-

ing the belief that aileron effectiveness had been under-

predicted. As a result, however, some of the FCS gains
were inappropriate. The pilot-selectable gain feature of

the FCS proved to be valuable in assessing what more

appropriate gains might be. Analysis determined that

roll-rate-to-aileron gain could be reduced to a maxi-
mum of 0.48 deg/(deg/sec) without significantly

increasing wing rock. Lowering this gain resulted in

approximately 20 percent faster-than-predicted roll
rates.

Rudder power was predicted to begin decreasing at

approximately 20 ° angle of attack. 4 Testing showed

that rudder power between 20 ° and 40 ° angle of attack

was larger than predicted. 22Above 40 ° angle of attack,
rudder effectiveness decreased to predicted values. In

general, roll coordination was better than expected.
Pilot comments were favorable relative to other

aircraft. The airplane showed no differences between

rolling left and rolling right. The better-than-predicted
rudder effectiveness above 20 ° is believed responsible

for the good lateral--directional characteristics above

20 ° angle of attack. As a result of the reduced magni-

tude of the wing rock and better-than-expected roll
coordination, all axis maneuvering was performed

through 45 ° angle of attack.
Aileron control power was greater than predicted for

large aileron deflections, but the opposite was true for

small deflections. During the aerodynamic update pro-

cess, a breakpoint was added at 6° of deflection. This

inclusion of a breakpoint had an interesting effect when

linear analysis was conducted. If the linearization was

performed over a small step size (for example, +1°),
the lesser effectiveness was used. In the case of the

X-29A airplane at 30 ° angle of attack, using the small

step size resulted in the open-loop poles being unsta-

ble. If the step size of the linearization for the aileron
was increased so that the greater effectiveness was

used (in this case, +8°), the open-loop poles became

stable. Figure 12 shows the pole locations. The linear-

ization was performed using the updated aerodynamic
data set.

Having an unstable system for small deflections and

a stable system for large deflections leads to a bounded

limit cycle. Small aileron deflections resulted in an
unstable dutch roll mode, allowing wing rock to occur.

During maneuvering, larger aileron deflections were

applied, resulting in a stable dutch roll mode and elimi-

nating the wing rock. This result is consistent with the

pilots' comments that the wing rock and drop were un-

noticeable while maneuvering.
This event illustrates the importance of obtaining

accurate estimates of control effectiveness over reason-

able control deflection ranges. For the X-29A airplane,

the original aileron effectiveness was determined in the
wind tunnel from +10 ° deflections, resulting in predic-

tions of larger effectiveness at lower deflections than
existed. Caution must also be used when conducting

linear analysis to ensure the step size of the lineariza-

tion is appropriate.

Pitching Moment Characteristics

The pilots consistently found the pitch rate capability

of the X-29A airplane inadequate. Figure 13 shows the

predicted maximum noseup and nosedown pitch rates

as a function of Mach number. Three low-speed points

from these data were flown. Figure 14 shows the



comparisonof theflight datawith simulationpredic-
tionsmadeusingthebaselineaerodynamicmodel.The
closeagreementbetweenthedataandthepredictions
leadsto high confidencein thepredictedmaximum
pitch rates for this angle-of-attack range. The pitch

rates in figure 13 are highly dependent upon the stick

inputs. For the simulation runs, two types of inputs

were made: a full-aft stick step and a doublet. The dou-

blet input consisted of full-aft stick followed by full-

forward stick timed to try to force the control surfaces
to maximum rates.

Figure 13 clearly shows that the X-29A aircraft

would require rates approximately 50 percent higher to

be comparable with the F-18 aircraft at low-speed con-

ditions. Examination of peak actuator rates shown in

figure 15 reveals that the X-29A airplane was using

nearly all of its capability with the current gains.
Increases in the canard actuator rates commensurate

with the increases in pitch rate would be required to
achieve higher pitch rates. Similar increases in the flap-

eron and strake flaps might also be required, but these

surfaces are less significant in the X-29A pitch

response. In fact, flight experience has shown no degra-

dation with the rate limiting.

Other flight data showed that the simulation was con-
servative and that the actuators showed higher rate

capability than that modeled in the simulation. The
FCS did not use software rate limiters. All control sur-

faces were allowed to move at the hardware rate limits.

The asymmetric behavior of the strake rate is believed

to be caused by hinge moments that opposed the

noseup behavior and helped during the nosedown
command.

The simulation showed that most of the actuator rate

was used controlling the unstable airplane response
(fig. 14). Close examination shows that for the full-aft

stick input, the initial response is trailing-edge-down

for the canard and trailing-edge-up for the flaperon and

strake flap. As is typical for an unstable pitch response,

the surfaces then move quickly in the opposite direc-

tion to unload and control the unstable response. This

subsequent movement is typically much larger than the

initial motion and more demanding of the actuator

rates, especially at low dynamic pressure where large

control surface motion is required.

Figure 16 shows the lower-than-predicted pitch
control capability as the difference between the solid

lines and flight data points. As a result of the lower-

than-predicted pitching moment coefficient, Cm,
nosedown capability was carefully monitored during

the expansion and was the first item checked at each

new flight condifion_ Minimum nosedown aerodynam-

ic pitching moment for the X-29A airplane was pre-

dicted to be nearly twice that recommended for a class
IV fighter. 26 The actual nosedown capability was only

slightly better than the guideline.

Despite this, the X-29A airplane experienced nose-
down recovery hangup because of inertial coupling

from yaw asymmetries. During several recoveries,

pitch rate was momentarily reduced to 0 deg/sec.

Based on the data available where all three pitch sur-

faces were saturated and the aircraft continued to pitch

down, it is believed that the aircraft achieved neutral or

slightly positive static stability at high angles of attack.

Angle-of-attack expansion, however, was limited
above 60 ° because of the limited nosedown moment

capability. Also, above 50 ° angle of attack, more strin-

gent center-of-gravity limits were imposed. Despite

these restrictions, pitch pointing was demonstrated to

67 ° angle of attack.

One problem encountered during envelope expan-

sion was limited pitch authority at 25 ° angle of attack
during 160- and 200-kn entries. The original FCS de-

sign allowed the pilot to command 5.4-g increments at

high speed and 1.0-g increments at low speed. To

counter the limited pitch authority problem, the incre-

mental g was increased to 7.0 g at high speed and 2.0 g

at low speed. These increases greatly improved the sit-

uation, but the pilot still had insufficient control author-

ity at high-speed, high-angle-of-attack points above

200 kn. Another gain change would have been difficult

because such a change would affect the pitch sensitivi-

ty. The X-29A pilots noted that, during 1-g flight at an-

gles of attack of 35 ° and 40 °, an increased sensitivity of

the longitudinal control was evident, but compensation
for this sensitivity was easily accomplished. Table 3

provides stick displacement and force data.

Yaw Asymmetries

Preflight predictions anticipated a slow yaw diver-

gence at approximately 60 ° angle of attack. In flight,

the characteristics were quite good up to 40 ° angle of

attack. Above 40 ° , however, several asymmetries were

noticed. Starting at approximately 43 ° angle of attack,

a nose-right asymmetry (Cno = 0.02) developed. This

asymmetry could be countered by applying the stick

and rudder in advance of the yaw. At 47 ° angle of

attack, a left yaw developed of the same magnitude as



theyaw to the right. The left yaw could not be com-

pletely halted with stick and rudder application, but

sufficient pitch and roll control was maintained.
Above 50 ° angle of attack, the direction of the asym-

metry was difficult to determine. Rudder control power

was essentially nonexistent above 45 ° angle of attack.

Aileron control power above 40 ° angle of attack was

positive but weak. The aircraft exhibited a graceful

degradation of controllability. The pilots were easily

able to recognize this degradation and compensate for

it by simply pushing forward on the stick to decrease

the angle of attack. This characteristic allowed guest

pilots to fly the aircraft to the limits of the cleared enve-

lope on their first flight after a limited amount of simu'
lation time.

Flying Qualities Research

Every control system designer faces the challenge of

providing sufficient control without compromising

basic system stability. Using aerodynamic models de-

veloped through extensive wind-tunnel testing, an

acceptable FCS was developed for the X-29A airplane.
However, differences between the aerodynamic predic-

tions and the airplane's flight characteristics allowed

for significant improvement in maneuverability with-

out compromising stability margins. The objective of

the handling qualities research was to examine the
tradeoff between maneuverability and controllability in

the high-angle-of-attack control laws of the X-29A

airplane.

Early results from the envelope expansion phase
showed room for improvement in the 15° to 30 ° angle-

of-attack region. The improvements were made using

the pilot-selectable gain capability. This test mode al-
lowed back-to-back comparisons among several FCS

gain configurations that often showed subtle differenc-

es in flight characteristics. Appendix A shows the lin-

earized aerodynamic and FCS characteristics for 15°,

25 °, and 30 ° angles of attack at 200 kn. Appendix B is

a summary of pilot comments.

Both qualitative and quantitative maneuvers were
used. Qualitative maneuvers consisted of basic fighter

maneuvers (BFMs) and were used to determine which

set of gains were preferred by the pilots. 27 The BFMs

were viewed as more representative of the way the air-

craft might be flown in an air combat engagement. The

quantitative maneuvers were used to identify response

characteristic trends between the different gain combi-

nations. The gains varied were the roll command and

the ARI gains. Figure 17 highlights these gains. The

gains were varied as follows:

Roll command Aileron-to-rudder

Group gain, percent gain, percent

A 100 100

B 150 140

C 175 180

Three BFM conditions were tested. The BFMs

included one-circle fight, rolling scissors, and lateral

gross acquisition maneuvers. 28 These maneuvers have

previously been explained in detail. 27 The quantitative
maneuver was a 180 ° bank angle capture starting at a

90 ° bank angle and rolling over the top. This maneuver
was selected because earlier work determined that

maximum roll rates would be reached during a roll

through 180 ° of bank angle.
The earlier work also provided information on agili-

ty, defined here as the time to roll through 45 ° and 90 ° ,
and on time to roll and capture 180 °. A matrix of air-

speeds (160, 200, and 250 kn) and angles of attack (1 g;
15° , 25 °, and 300 ) was used for the quantitative maneu-

vers (table 4). Because of limited flight time, only the

200-kn column and 25 ° angle-of-attack row of the

matrix were successfully completed. Two maneuvers

per gain setting at each condition were selected for
analyses. Each maneuver had to satisfy angle-of-attack,

airspeed, and altitude limits in order for it to be used.
The requirements were relaxed for the 250-kn points

because at high angles of attack, airspeed could not be

maintained during the roll.

The pilots were expected to prefer the gain set with

the highest roll command, group C. In figure 18, the

quantitative data show group-C gains had slightly high-

er stability axis roll rates than group-B gains had, as

expected. Figure 19 shows group-C gains also had cor-

respondingly higher body axis yaw rates than were

seen using group B-gains. To determine if the amount

of body axis yaw rate generated to coordinate the rolls
for group C was excessive, the amount of body axis

yaw rate required to coordinate the stability axis roll

rate in figure 18 is plotted in figure 19.

For groups B and C, the amount of yaw rate was

adequate to provide the required coordination.

10



Coordinationwasexaminedindetailbecauseit wasbe-
lievedthatcoordinationwouldhavea significantim-
pactonthepilots'comments.Emphasiswasplacedon
groupsB andC becausethe roll ratecapabilityof
groupA wasrecognizedasinadequateforthetask.The
roll commandgainwastoolow.

Figure20showsa typical180° bank angle capture.

This particular maneuver used group-B gains. At

approximately 2 sec, the pilot commanded full-fight

stick to roll to the opposite 90 °. As the aileron respond-

ed, roll rate and sideslip began to build to positive val-

ues. Roll rate built to approximately 30 deg/sec before

the angle of sideslip reached a positive value. Once

sideslip became positive at approximately 2.5 sec, roll

rate began to decrease. In this case, sideslip built to

approximately 2.0 ° as roll rate decreased to approxi-

mately 15 deg/sec.

This reduction in roll rate is caused by the adverse
sideslip and the large positive dihedral. 22 Adverse side-

slip is defined as sideslip where roll rate and sideslip

have the same signs. Rolling with adverse sideslip
tends to reduce angle of attack. 29As roll rate decreases,

sideslip decreases and eventually becomes negative, re-

suiting in proverse sideslip accelerating the roll to al-

most 50deg/sec. During this period, the pilot
maintained full-lateral stick.

The trends discussed in regard to figure 20 are the

same for group-B and group-C maneuvers. Using

group-C gains, slightly larger sideslips developed than

had with group-B gains (fig. 21). In 1-g maneuvering

above 30 ° angle of attack, roll hesitation and some

reversals were encountered when using roll command

gains higher than baseline gains. As airspeed increased,
the hesitation and reversals subsided. The hesitation

and reversals were caused by rudder position-limiting
permitting adverse sideslip to build.

Figure 21 shows sideslip as a function of angle of
attack for rolls at various angles of attack. These data

were tabulated as though the roll were to the left, when

in actuality data from both left and right rolls were

used. Even though rudder effectiveness was higher

than expected, it was insufficient to generate the re-

quired yawing moment to coordinate the rolls at high

angles of attack and roll rates (fig. 22). The rudder

reaches its position limit at 25 ° angle of attack for

group-C gains and at 30 ° angle of attack for group-B
gains. The rudder does not reach its position limit for

the baseline gains.

Because the rudder was consistently position-
limiting for group-C gains, an attempt was made to

determine what effect this position-limiting might have

on the sideslip buildup. For this investigation, position-

limiting of the ailei'ons was also considered. Figure 23
presents maximum absolute value for the aileron

positions at the 200-kn test points. All of the instances

of position-limiting occurred during the capture part of
the maneuver.

Figure 24 shows a time history for group C at a
200-kn, 25 ° angle of attack where both rudder and aile-

ron position-limiting occurred. The rudder position-

limited for approximately 0.4 sec during the roll initia-

tion when an attempt to generate coordinating yaw rate

was made. Sideslip reached only 2 ° adverse during this

portion of the maneuver. This magnitude is the same

magnitude of sideslip that developed during the
group-B maneuver at 30 ° angle of attack (fig. 20). In

that case, the rudder position-limited for 0.2 sec during

the roll initiation. Interestingly, the rate of change of

sideslip is greater for the group-B gains than for

group-C gains.

As figure 24 shows, the largest sideslip excursions

occurred when the ailerons and rudder were position-

limited. This condition only occurred when the pilot at-

tempted to stop the roll rate and capture position. A sig-

nificant increase in the rate of sideslip change does not
occur because the surfaces reached their position lim-

its. Therefore, it was concluded that position-limiting

did not significantly detract from aircraft coordination.

The reason a significant change in sideslip did not

result is that both the rudder and aileron position-

limited. At the beginning of the maneuver (approxi-

mately 4.5 sec) only the rudder position-limited. The

change of sideslip rate changed sign, although sideslip

did not reach a large value. This change of sign indi-

cates the need to limit roll capability when the rudder
position-limits in order to maintain roll coordination.

Rate limiting was also investigated as a potential
cause of coordination problems. In all cases examined,

only a very small percentage exhibited rate limiting.
When rate limiting did occur, it did not last longer than

0.2 sec. Therefore, it was concluded that rate limiting

had no effect on aircraft coordination during these
maneuvers.

To determine the preferred combination of gains,
pilot comments were studied. Comments were record-

ed during flights, postflight debriefings, and discus-

sions with the pilots after testing was concluded.

Appendix B contains a compilation of pilot comments.

Emphasis was placed on their comments regarding the

BFMs (not the 180 ° bank angle captures) because it

was believed that these tasks represented more realistic
maneuvering of the aircraft.
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Basedoncommentsrecordedduringtheflightsand
postflight debriefings,no clear preferenceexisted
betweenthetwohighestroll commandgains,groupsB
andC.A desirefor evenhigherroll rates,however,was
expressed.Independentinterviewswith the project
pilotsaftertestphasecompletionrevealedthepilots'
preferencefor group-Bgains(thenext-to-highestroll
commandgain).The consensusseemedto be that
groupsB andC exhibitedthesameamountof roll rate
but thatgroupC hadanoticeableamountof yawrate
makingit lessdesirable.Notethatthemajorityof the
rollingduringtheBFMsoccurredbetween160and180
knandat25° angle of attack. Some rolls were initiated

above 200 kn, but as angle of attack was maintained,

the airspeed bled down to below 200 kn. One interest-

ing trend was noticed in the BFMs. Of the rolls per-
formed at airspeeds in excess of 200 kn, the majority

were for group-C gains.

The problem for the control system designer is that

the pilots preferred additional roll capability but object-

ed to the amount of yaw rate present with the group-C

gains. To provide roll rates higher than those group C
provided, greater yaw rates would be required to coor-

dinate the aircraft. The high yaw rates were precisely

what was disliked about group-C gains. In response to

pilot comments about the yaw rate associated with

group-C gains, an investigation of lateral acceleration

at the cockpit station was made.

The comments regarding yaw rate were believed to
actually be complaints regarding the lateral accelera-

tion at the cockpit station. Because lateral acceleration

could not be measured at the cockpit station, the mea-

sured acceleration near the aircraft center of gravity

was used and corrected to the pilot station. The noise
level of the pitch, roll, and yaw accelerometers was too

high in the angle-of-attack range of interest, so the rate
sensor information was differentiated to compute ac-

celerations. These signals were also noisy and thus

were heavily filtered. The filtering allowed for peaks

and trends to be more easily identified; however, it cor-

rupted the data to the extent that quantitative assess-

ment of the acceleration was not possible. All signals

were filtered in the same way to avoid time skews.

These data should only be used to identify trends.

Figure 25 shows an example of the filtering effects.
The top trace represents cockpit acceleration with lim-

ited filtering. The bottom trace is the same data after

additional filters were applied. Note the reduction in

magnitude. The bottom trace was used to identify the
trends in these data.

The lateral acceleration analysis was conducted by

computing the lateral acceleration at the pilot station

and the individual components of that acceleration.
Peak accelerations were examined for the entire

maneuver and for just the roll initiation. Figure 26

shows the data for the 200-kn points at roll initiation.

From these data, no clear trend with gain set is evident.

Figure 27 shows the peak lateral acceleration at the

cockpit for the 200-kn maneuvers. Below 25 ° angle of
attack, no consistent trend was evident. At 30 ° angle of

attack, however, a clear trend between the groups was

apparent. In general, these peaks in lateral acceleration

occurred during the capture task. Without more evi-

dence of lateral accelerations consistently larger with

group-C gains than with group-B or baseline gains, it

was concluded that the pilots were not confusing lateral

acceleration with yaw rate cues.

During the guest pilot portion of the program, a pilot

with considerable high-angle-of-attack experience had

the opportunity to fly group B-and group-C gains. The
resulting comments were consistent with engineering

expectations. Specifically, the pilot commented that

group C provided greater roll rates and the levels of

yaw rate were not discomforting. During the earlier

high-angle-of-attack program, the pilot had the oppor-

tunity to regularly experience high levels of yaw rate.

A certain amount of "'conditioning" is believed to be

required before a pilot becomes comfortable with

these, and higher, yaw rates. Experience during this

earlier hi_h-angle-of-attack program supports this30 31
belief. ' Pilots with experience flying maneuvers at

high angles of attack that generated large amounts of

yaw rate had become conditioned to it. Guest pilots

evaluating the system who were not accustomed to

those levels of yaw rate were uncomfortable with the

system.

The logical next step in this work will be to under-

stand how to deal with the yaw rate during a tracking

task. A metric for high-angle-of-attack flying qualities
at 30° angle of attack has already been proposed 32 and

examined using the available X-29A data. The metric

design criterion is based on the roll mode time constant

and wind axis roll rate. The criterion was developed us-
ing piloted simulations with a perfectly coordinated (0 °

sideslip) control system. The task was to aggressively

acquire the target aircraft within the allowed 65-mil lat-
eral error with no overshoot and within the desired

time. Ratings for the X-29A airplane were obtained

from a lateral gross acquisition task modeled after this
task. Because the X-29A airplane did not have a gun

12



sight,acquisitionto aspecificaccuracywasnotpossi-
ble.Thetaskfor theX-29Aairplaneconsistedof posi-
tioningatargetF-18aircraft1000ft aboveand1500ft
aheadof theX-29Aairplaneatanaltitudeof 25,000ft,
travelingat 180kn calibratedairspeed.Thetargetair-
craftthenrolled90° andpulledto 30° angleof attack
whensignaledby theX-29Apilot. Next,theX-29A
pilot selectedmaximumpower,pulledto 30° angleof
attack,androlledaboutthevelocityvectorto grossly
acquirethetargetaircraft.

TheX-29Aairplanecouldnotperfectlycoordinate
stabilityaxisrolls.Figure21showsthatsideslipswere
generallykeptwithin a 5° band of 0 °. Also, the roll

mode time constant was plotted against stability axis
roll rate instead of wind axis roll rate. The difference

between the two rates is the contribution of sideslip.

Because sideslips were small, the difference between

the stability axis and wind axis rates lies within the

accuracy of the measurement.
The roll mode time constant was estimated by fitting

a first-order delay of the pilot lateral stick to the flight

data. A pure time delay and a vertical offset were also

included. The wing rock that was present made fitting

stability axis roll rate difficult. The wing rock superim-

posed on the roll gave the impression of much faster

time constants in most cases. To avoid this problem,

body axis yaw rate was fit instead. Because the wing
rock experienced by the X-29A airplane was almost

pure body axis, the yaw rate did not have the problem

with the wing rock that the stability axis roll rate did.

The only difference between a fit of body axis yaw

rate and stability axis roll rate for this simple model

was the gain. Therefore, the time constant, time delay,

and offset could be obtained using body axis yaw rate.

A simple gain change was all that would be required to
then match stability axis roll rate. Note that this

approach works because no delay in the yaw rate

response exists. This lack of delay resulted from the

interconnect. If a delay in the yaw rate response had

occurred, then this approach would not have been

appropriate. Therefore, the application of this analysis

approach is limited.

Figure 28 shows results from this approach. This fig-

ure shows the match for body axis yaw and stability ax-

is roll rates. Only the gain is changed between the two

fits. This approach results in significantly slower roll

mode time constants than have been previously
published.27, 33 This approach better represents the

X-29A capability because it avoids the corruption of

the roll rate by the wing rock.

Roll mode time constant data for the X-29A airplane

were collected at 160 and 200 kn at 30 ° angle of attack

from the 180 ° bank-angle captures. Figure 29 shows

these data. These airspeeds represent the region of

airspeeds flown during the BFM and lateral gross

acquisition maneuvers and for which the ratings were

obtained. The quantitative maneuvers were used to
obtain time constants and roll rates because the BFM

data did not support that kind of analysis. Conditions

were matched as closely as possible between the
maneuvers.

Figure 30 shows the group-B and -C regions and the
proposed criterion boundaries. 32 Both regions were

given Cooper-Harper ratings 34 of 4 or 5 and overall

assessments between level 1 and level 2 by the
pilots.27, 33 Pilot comments such as "like lots of roll

power, .... roll rate is fine," "put stick in, comes across

very carefree," and "very impressed with roll rate," im-

ply that the proposed criterion is overly restrictive.

Structural Dynamics Interaction With the

Flight Control System

At high angles of attack, vertical fin buffeting caused

by forebody vortex interaction was encountered. The

FCS was strongly affected through the excitation of
several structural modes that were seen on the roll rate

gyroscope signal. 35 The buffet intensity was as high as

110 g peak-to-peak at the tip of the vertical fin. The

buffet caused fatigue concerns for the vertical
stabilizer.

The vertical fin vibration excited the roll rate gyro-

scope signal and, through high-gain feedback, caused

the flaperon actuators to attempt to track this high-

frequency signal. Flight tests showed an unexpected

hydraulic system problem resulted from this flaperon

command. During a 360 ° full-stick aileron roll, the left

outboard flaperon hydraulic logic indicator showed a

failure of the control logic for this actuator.

The most probable explanation for this failure is that

a flow restriction existed in the hydraulic lines that

drive the left outboard flap, and this restriction showed

up when large, high-frequency demands were placed

on the actuator. Postflight analysis also showed that the

measured left outboard flap rates were approximately 7

to 8 deg/sec lower than rates for the right outboard

flaperon. Because the roll rate gyroscope signal did

not originally use any structural notch filters, the verti-

cal fin first-bending (15.8 Hz), wing bending
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antisymmetric(13.2Hz), and fuselage lateral bending
(11.1 Hz) structural modes showed up in the com-
mands to the ailerons.

Figure 31 shows the response of the roll rate gyro-

scope signal. The figure shows that most of the vertical

tail buffet is transferred to the roll rate gyroscope signal

through the vertical fin first-bending mode. Analyses of

the flight data showed that the g level increased propor-

tionately with dynamic pressure. Notch filters and a

software gain reduction on roll rate feedback were used

as the long-term FCS solution to the problem. Before

these changes, 50 percent of the maneuvers in the

region where failures occurred indicated left outboard

flap hydraulic logic failures. After the changes were
made, these failure conditions rarely occurred, and en-

try conditions with buffet levels even more severe than

previous ones were encountered without incident.

SUMMARY OF RESULTS

The X-29A forward-swept-wing aircraft was flight
tested at high angles of attack at the NASA Dryden

Flight Research Center. A classic control law design

utilizing a combination of pitch rate and angle of attack

for longitudinal control was developed. The lateral and

directional axes were changed significantly from the

low-angle-of-attack flight control system. A pilot-

selectable gain was included in the design which was
utilized in flying qualities assessment and control law

gain changes at high angles of attack.

Preflight predictions were that wing rock would limit

the useful angle-of-attack range to 35 °. The actual wing

rock magnitude was less than one-half of what was pre-
dicted, and that amount was attenuated whenever side-

slip was present. This actuality allowed the roll-rate-to-

aileron gain to be reduced to one-fourth of the value

suggested from the preflight data and subscale model

tests. The cleared envelope was extended to 67 ° angle
of attack at 1 g and Mach 0.75 at low angle of attack.

All axis maneuvering was cleared to 45 ° angle of

attack at 1 g. The reduced wing rock was believed to

have resulted from higher roll damping and increased

aileron control power for large aileron deflections.
Roll coordination was better than expected, and rud-

der effectiveness was higher than predicted, between

20 ° and 40 ° angle of attack. Aileron power was larger

than predicted for deflections greater than 6° but small-

er than predicted for deflections less than 6o. Because

of the difference in effectiveness, a bounded limit cycle

existed. Yaw asymmetries developed above 40 ° angle
of attack. Diminished aileron and rudder power was

not sufficient to overpower these asymmetries.

Predictions of noseup and nosedown pitch capabili-

ties matched flight results up through 40 ° angle of at-

tack. Differences in noseup pitching moment above 40 °

angle of attack required more canard deflection than
predicted. Large yaw asymmetries led to several pitch

hangups during maneuvers above 50 ° angle of attack at

aft center-of-gravity conditions even though the X-29A

airplane met recommended nosedown control power

guidelines. Canard position limits prevented simple
modifications to provide additional nosedown authori-

ty. The X-29A noseup and nosedown maximum pitch

rates were limited by the high level of static instability

and control surface rate limits. At low airspeeds, new

actuators with a minimum of a 50-percent higher rate

would have been required to achieve rates comparable
to those of the F- 18 airplane.

Wind-tunnel and drop-model predictions of a poor

high-angle-of-attack aircraft were not validated by the

flight test program. Flight test showed the X-29A air-
plane to be a good aircraft up to 40 ° angle of attack.

The X-29A airplane has provided the background for

fine-tuning our ground-based predictive techniques for

high-angle-of-attack aircraft.

The instability did not prevent the aircraft from oper-

ating at high angles of attack, but it did limit perfor-
mance. Because the aircraft did not become as

statically stable as predicted at higher angles of attack,

the pitch authority was required to control the instabili-

ty rather than improve pitch performance. The full-

span flaperons provided good roll control. Roll control

was not compromised by the fact that the wing did not
use leading-edge devices.

The pilot-selectable gain system was used extensive-

ly to examine tradeoffs in airplane stability and maneu-

verability. Basic fighter maneuvers were flown to

provide qualitative evaluation. Bank angle captures of
180 ° were flown between 160 and 200 kn and 1 g

through 30 ° angle of attack for quantitative data analy-

sis. Roll and yaw gains were increased to improve roll

performance. A gain increase that used the maximum

rudder authority produced the best pilot comments.

Further increasing the gain produced rudder saturation

that degraded the turn coordination. This configuration

was not preferred by the pilots, even though it had

more roll performance.
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Limitedpilot ratingsfrom thebasicfightermaneu-
verswereusedto evaluatetheproposed30° angle-of-
attackcriterion.Rollmodetimeconstantwasestimated
by fitting a first-ordersystemto timehistoriesof the
stabilityaxisroll rate.Theproposedcriteriondoesnot
predicttheX-29Aratingsadequately.

Dryden Flight Research Center
National Aeronautics and Space Administration

Edwards, California, December 7, 1994
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APPENDIX A

LINEAR MODELS

Figure A-1 shows the linear matrices. The linear

matrices were obtained from the updated aerodynamic

data set for control surface step sizes of 8 °.

The following are constant data for the linear models:

S = 185.0000 I = 4547.0608
xx

b = 27.2000 lyy = 51887.9466

-- 7.2160 I = 57063.4365
zz

Empty wt = 14524.0000 lxz = 2558.9667

Fuel wt = 1052.0000 XCG = 450.70

Total wt -- 15576.000 YCG = 0.00

ZCG = 64.62

Figures A-2 and A-3 show the block diagrams for the

longitudinal and lateral-directional control systems.

Table A-1 provides the transfer functions for the

block diagrams given in figures A-2 and A-3.

The following are lateral-directional gains as a func-

tion of angle of attack. Refer to figure 5 for definitions.

Gain tx

15° 25 ° 30 °

K2 -1.79924 -3.67639 -4.62445

KI7 0.758387 0.845741 0.889859

K27 --0.0357338 --0.0510411 -0.0587721
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APPENDIX B

PILOT COMMENTS

These pilot comments were recorded during the

flight or in the postflight debriefing. Speeds are given

in knots calibrated airspeed. Where a word or words

were undecipherable, [???] has been used.

Flight 82, Pilot B

One-circle fight with an F-18 airplane at 25,000 It,

250 kn, group B--Stick aft stop. The F-18 started on

an advantage; started 1000 ft behind. Started there,

kept the advantage, and did not increase it. Does roll
better.

One-circle fight with an F-18 airplane at 25,000 ft,

250 kn, group CDGroup B has much better rolling.
Rolling compensated for the lack of nose authority.

Roll felt better at group B.

General comments during return to base--Like

group B; lot of roll power. Still stick-limited. The angle

of attack got high. Group C, not too easy to see much

difference. Group B, quality better. Get up against aft

stick stop with other two [with baseline and group C].

Flight 91, Pilot A

90/90 roll capture at 20,000 ft, 200 kn, 30 ° angle of

attack, group B; 9010 roll capture at 20,000 it,
200 kn, 25 ° angle of attack, group C; 360 roll tran-

sient at 20,000 ft, 200 kn, 30 ° angle of attack,

group B
Group B---Slight roll hesitation during roll. Not a

ratchet. Lateral acceleration felt good. Roll rate may be

too high for this task. Aircraft is less powered than sim-

ulation [???] more airspeed in flight.

Group C--Quite a ride. Stick is very sensitive
around neutral and requires lots of anticipation. Hold-

ing angle of attack and capturing roll angle is very
difficult.

One-circle fight with an F-18 airplane at 25,000 ft,

250 kn, group B---At one time, would have liked more

pitch authority at a 30 ° angle of attack to pull it around
[30 ° angle of attack limit]. Noticed an improved roll

rate when rolling over top. Rolled over top to get into

trail gun position.

Flight 90, Pilot B

90/90 roll capture at 20,000 it, 200 kn, 30 ° angle of

attack, group B; 0/60/0 rolls at 20,000 It, 200 kn, 15 °

angle of attack, group C; One-circle fight at

25,000 ft, 250 kn, 15 ° angle of attack, group B--

Group C is not as good as group B at 30 ° angle of

attack [BFM]. The X-29A roll rate gave it lateral agili-

ty advantage over the F-18; took advantage of this by
keeping aircraft loaded up during BFM. Roll capture

tasks are difficult with the higher roll rates [especially 0

to 90]. Overshoots were common; anticipation is re-

quired. Stick was sensitive. Looking in cockpit [Atti-
tude Direction Indicator] rather than outside to capture

bank was unnatural. Bank angle is difficult to define at

high angles of attack. This is a poor closed-loop task.

Little correlation between roll capture task [roll rate too

high] and BFM [roll capability good].

Flights 94 and 95, Pilot C

90/90 roll captures at 20,000 it, 200 kn, 1 g, 15 °

angle of attack, groups A, B, and CDTried to do

them as quickly as possible; needed to lead arrestment.

Impressive roll rates. Noticeable unload at 15° angle-
of-attack rolls. No noticeable lateral accelerations. Did

not notice difference between groups B and C but was

having trouble with the task.

Lateral gross acquisition at 25,000 it, 180 kn, 30 °

angle of attacks, groups A, B, and C-- Poor pitch

acceleration; sluggish. Versus an F-18 is good. Pitch

acceleration is what pilot goes for. Pitch stick force and

displacement are too large. Roll differences between

groups A and B. Group B roll acceleration is surpris-

ing--one try, target right there after I rolled. Group B

at a 30 ° angle of attackmnoticed roll ratcheting. Some-

times the target didn't keep the X-29A at 8 or 4

o'clock. Timing has to be worked out with target.
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Flight 96, Pilot A

90/90roll captureat 20,000ft, 200kn, ! g, 15 °, 25 °,

and 30 ° angle of attack, group B

1 gmRoll rate onset and maximum roll rate are very

nice. Gross acquisition--may be interesting to look at

coupling.

15 ° angle of attackmFor maneuvering, not good for

capture task.
25 °, 30 ° angle of attack--Roll rate slower, still ade-

quate for maneuvering. Good for capture task.

25 ° angle of attackmRoll rate and acceleration

crisp. As lateral stick command gain decreased, capture
task was easier.

Cooper-Harper Ratings---I g: 4-5; 15 ° angle of at-

tack: 5; 25 ° angle of attack: 3; 30 ° angle of attack:

couldn't get first try, second try overshot 30, couldn't

get 90 ° roll angle at start.
General Comments---Faster roll rate onset the bet-

ter. I question the applicability of this task as a measure

of roll agility. For repeatability, the test requires full
lateral stick; however, I would ease off stick when

acquiring target.

Flight 98, Pilot C

Lateral gross acquisition at 25,000 ft, 180 kn, 30 °

angle of attack, group A---Can do the final job of

acquiring the target but can not get around the comer.

Cooper-Harper rating: 7. Inadequate roll rate. Time

delay is too large. Group A roll rate onset is nowhere
near fast enough.

Flight 101, Pilot B

90/90 roll captures at 20,000 ft, 200 kn: I g, groups

B and C; 15 ° angle of attack, groups B and C; 25 °

angle of attack, group B; 30 ° angle of attack, group
A

Group B--Smoother; good for captures. Not enough
roll acceleration.

Group C_Faster; more acceleration. Pretty control-
lable. Pilots will back off on stick for their own capture
criteria or for their own use. Pilots like faster roll accel-

eration. For capture start with full stick, back off and

then reverse to stop roll is optimum. Like group C for

the air-to-air, outer-loop task. First attempt, saw ratch-

eting in roll. Second attempt, didn't see it.

Flight 103, Pilot B

90/90 roll captures at 20,000 ft: 160 kn, 25 ° angle

of attack, group A; 250 kn, 25 ° angle of attack,

groups A, B and C; 200 kn, 30 ° angle of attack,

group C

Roll rates with groups C and B are higher and pre-

ferred over group A, with group C maybe slightly high-

er. Group B is preferred for roll capture task over group
C because group C has too much lateral-directional

problems [less roll coupling]. At 250 kn, 25 ° angle of

attack, group C rolls faster.

Flight 104, Pilot C

90/90 roll captures at 20,000 ft, 160 kn, ! g and 25 °

angle of attack, groups A, B, C--Didn't notice a lot
of difference in coordination between groups B and C

at high angle of attack. At 1 g, group B is much better
than group C. Group C, especially at lower, slower

speeds, feel a hitch in lateral acceleration that is unex-

pected [forces pilot to instinctively back off on lateral
stick]. Group B is smooth everywhere. Preferred

groups B and C roll rate over group A. Lateral acceler-

ation is not large enough to cause problem (group B

over group C for BFM), but is large enough to tell air-

craft is not responding to commands.
Lateral gross acquisition at 25,000 ft, 180 kn, 30 °

angle of attack, groups B and C.

Group CmNo remarkable difference, but task is so
inconsistent I would rather not draw any valid conclu-
sions. Done when chase was under the nose. Got 3/4 of

it done and he [the F-18 pilot] went under the nose.
Good roll rate; little overshoot. A roll hesitation or

lurch when rolling through wings level causes hesita-
tion in lateral stick.

Group B--Roll rate okay. Blind [chase under the

nose]. Got buried under nose. Liked roll rate.
General Comments---Would have liked higher roll

acceleration [lower time constant] even with groups B
and C. Slow roll acceleration was not noticed in roll

captures. [Seemed like pilot wanted more roll capabili-
ty in group C.] Difficulty in setting up---initial condi-

tions difficult. Timing has to be right [think pilot was

rolling too soon]. Target is below nose at 90 ° roll angle.

Would like more pitch rate and pitch acceleration dur-

ing pull to a 30° angle of attack. Giving a rating is not

easy because of the difficulty in setup and pitch
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portion.WouldgivegroupsB andC aCooper-Harper
ratingof 4-5 forthelateral task. Task is not consistent.

Hight 108, PHot C

Rolling scissors with an F-18 opponent at 25,000

ft, Mach 0.6, group B--Liked roll rate--no need to go

faster. No cues on stick for angle of attackmlittle dis-

turbing. Pulled aft and got angle-of-attack overshoot.

Looked down at needles to see what angle of attack

was and felt yaw accelerate at same time. Got the

advantage initially. Forced to respect angle-of-attack

buildup and be tentative with maneuvering. I suggest

starting at 200 rather than 250 kn to allow more maneu-

vering evaluation at high angle of attack. Like the roll

rate. Little advantage initially, then F-18 had advantage

so I pulled higher. No angle-of-attack cues on stick;

this is distracting. Roll rate is fine.

Flight 110, Guest Pilot A

i-g orientation at 20,000 ft; 25 °, 35 °, and 45 ° angle

of attack; group Am25 ° angle of attack rolls well

with coordinating rudder. Angle of attack is easier to
control than simulation. 35 ° angle of attack--roll rate

no good--small.

360 ° roll at 25,000 ft, 1 g, 25 ° angle of attack,

group A--Not impressed.

360 ° roll at 25,000 ft, 1 g, 35 ° angle of attack,

group B and group C--No comments.

90/90 captures at 20,000 ft, 200 kn, 25 ° angle of

attack, group CmRolled better than group Bmhad to

compensate when rolling out.
90/90 capture at 20,000 ft, 200 kn, 30 ° angle of

attack, group B--Rolled better and is easier to stop.
Flat scissors at 25,000 ft, Mach 0.6--No

comments.

Flight 111, Pilot C

Rolling scissors with an F-18 opponent at 25,000 ft,
Mach 0.6:29 ° maximum angle of attack, group B;

40 ° maximum angle of attack, group B; 44 ° maxi-

mum angle of attack, group B; 38 ° maximum angle

of attack, group C; 31 ° maximum angle of attack,

group C; 33 ° maximum angle of attack, group A

Groups C and B---No difference in roll rates; ade-
quate rates. No coordination problems. Sink like a

brick during rolls. [Aft stick to 300-35 ° angle of attack

where pilot wants to maneuver, but angle of attack in-
creases to 50°.] No cues for angle-of-attack buildup

such as buffet, increase, lateral acceleration, or stick

force or position. [Forces pilot to be reluctant, hesitant

in maneuvering.] Not a carefree airplane. F- 18 can ma-

neuver with head out cockpit; X-29A can't.

Group AnMuch more sluggish. Overall Cooper-

Harper rating for rolling scissors task: 3 roll; 5 overall.

Rolling scissors experiment should force both aircraft

to high angles of attack. Sufficient roll rate and that ini-

tial advantage could be gained over F-18. However,

as the engagement continued, the superior specific ex-

cess power of the F-18 allowed it to return to a neutral
situation.

Flight 112, Guest Pilot B

Above 250 kn--Nice flying, responsive flying

qualities.
Orientation at 20,000 ft, 1 g; 15 °, 25 °, and 50 °

angle of attackmBuffet at 20 ° angle of attack; wing

rock above 250-30 ° angle of attack. Got used to wing

rock and high angle of attack. Felt very comfortable at

50 ° angle of attack first time there. At 30 °- 35 ° angle of
attack, mild wing rock and cockpit noise.

360 ° roll at 20,000 ft, I g, 25 ° angle of attack group

A and group B. Orientation at 20,000 ft, 35 ° angle of

attack, group B--Used some rudder with group B, did

not notice difference in roll rate. Roll rate and precision

were fine. Velocity vector roll disorienting--difficult to

know when to stop. Group A--slow roll rates even

more noticeable at high angle of attack. Angle of attack

control very easy, easier than simulation.

Rolling scissors with an F-18 opponent at 20,000 ft,

Mach 0.6:52 ° maximum angle of attack, group B;
440 maximum angle of attack, group B; 43 ° maxi-

mum angle of attack, group C; 49 ° maximum angle

of attack, group A

Group B--Nice handling. Enjoyed it; easy and com-
fortable to fly. The BFM was really fun, able to use

X-29A's high-angle-of-attack capability to get in

F-18's rear hemisphere. Able to gain 3/9 [3 and 9

o'clock positions] every time by aggressively losing

speed and spitting F-18 out in front. Aircraft did what I

wanted. When reaching 52 ° angle of attack, felt no yaw

rate or acceleration cues. Lack of continued pitch rate
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with aft stickandgroundangle-of-attackcall alerted
metoangleof attack;wouldnothaverecoveredother-
wise.Did not hearangle-of-attackwarningtone.Did
notnoticedifferencebetweengroupsB andC.Did not
noticedifferencebetweengroupsB andC andgroupA
unlessat full-lateralstick.Did notnoticewingrockor
buffet during rolling scissors.Neverlet off on aft
stick--wantedtobleedoff morespeed.

90/90 roll captures at 20,000 It, 200 kn, 25 ° angle

of attack, group B---Rolled quickly--good roll rate.

Was aggressive in getting there quickly [7?7] to over-
shooting of opposite 90. Did not notice side force.

Flight 115, Pilot A

Raps and pulses at 20,000 ft, 1 g, 50 ° angle of

attack, group B---Above 50 ° angle of attack, aircraft

yawed off; full-right rudder did not stop it. Came back
off angle of attack and yaw came under control. Yaw

off at 50 ° angle of attack seemed slower than at 45 °

angle of attack.

Rolling scissors with an F-18 opponent at 25,000 ft,

215-250 kn: 47 ° maximum angle of attack, group B;

45 ° maximum angle of attack, group C; 44 ° maxi-
mum angle of attack, group B; 45 ° maximum angle

of attack, group C; 42 ° maximum angle of attack,

group CBDidn't feel yaw rate. Aircraft felt real sta-

ble. Pitch needs more. Roll is adequate; used full stick.

Would like more stick. Ability to keep aircraft loaded

and roll is a significant advantage in close-in, tight

fight. End game was that X-29A was in a more favor-
able position than the F-18 airplane. Initial move gave

X-29A the advantage. Would like more pitch authority

for angle of attack. Change to point and shoot (angle of

attack > 40°--45°). Authority is there but not utilized

because of angle of attack limits. [Pilot received angle-
of-attack calls at 30 ° and 40°.]

Group B---Used full-lateral stick on a routine basis.

Gives good roll rates, but more would be better since

full stick was used routinely. Roll rates are good,

acceptable, but would like more. More would be nice.

Airplane felt real stable. Initial move puts [???] nicely

behind. Like to have more pitch authority. Good roll

authority but using full stick. Would like the high rates

without using full stick [lateral].

Group CBNo difference with group B. Felt yaw

rate more. Felt rates more at lower angles of attack.

With group C, more aware during initial move of the

yawing motion of the airplane. Let him [F-18 pilot] get

away, then the F-18 got the advantage (pitch-pointing

authority). More aware of yaw during the initial inputs.

Need more pitch authority at low speeds. Didn't feel
yaw rate. It [the X-29A airplane] loaded in roll, put in

front of the F-18. The F-18 could compensate. Need a

little more pitch authority. Only momentary advantag-

es. Really like the feedback forces, unlike the F-18, but

not aware of the angle of attack. Very impressed with

the roll rate. Put stick in; comes across very carefree.

Flew the maneuver with head out of the cockpit. Gin-

ger with angle of attack. Liked the roll rates.

Groups B and C--Initial roll rate onset is accept-

able. Don't notice wing rock during the BFM. Tactical-

ly, wouldn't mind pitching X-29A up to a 70 ° angle of

attack for a snapshot.

Flight 116, Guest Pilot C

Pilot orientation at 20,000 It, 1 g; 15 °, 35 °, and 50 °

angle of attack--Angle-of-attack control was precise.

Aircraft was easier to fly than simulation. Stick forces

were lighter and stick displacements were smaller than

F-18. [Would have overcontrolled the aircraft in pitch

if pilot did not simulate beforehand.] Saw no tendency
for the aircraft to yaw off at 50 ° angle of attack. Con-

trollability and precision are good---close to the F-18
HARV.

Lateral-directional raps and doublets at 20,000 ft,

1 g, 50 ° angle of attack--Little aircraft response.

Trouble getting sideslip--only difficult maneuver.

Clearly better for precision maneuvers than the F-18--

no excursion in the parameters.
360 ° roll at 20,000 It, 1 g, 35 ° angle of attack,

group B--Rolls significantly better than an unaug-

mented F-18 (higher roll rate and precision). Was im-

pressed. Looks like the F-18 HARV.
360 ° roll at 20,000 It, 1 g, 35 ° AOA, group C_

Slightly higher roll rate, although difficult to tell the

difference with group B. Controllable. Used heading

change to tell when 360 ° rolls were complete.

90/90 roll capture at 20,000 It, 200 kn, 25 ° angle of

attack, group B--Very happy with the aircraft. Precise

control; very smooth flying.

Rolling scissors with an F-18 opponent at 25,000 ft,

215-250 kn: 35 ° maximum angle of attack, group B;

33 ° maximum angle of attack, group C; 55 ° maxi-

mum angle of attack, group C_Very impressed.

Very pleased with the loaded roll rates. Liked the light

stick forces; allows carefree maneuvering. Would have
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liked angle-of-attackfeedback.[There were none
whichcausedpilot to be tentativewith maneuvering.
Thepilotdidn'tfeellike alltheangle-of-attackcapabil-
ity thatwastherewasused.]Wouldhavelikedmore
angle-of-attackcapability and more pitch-pointing
capability[pitchrateandacceleration]atall anglesof
attack.TheX-29AbeatstheF-18in roll; theF-18beats
theX-29Ain pitch.Higherangleof attackwouldhave
allowedmeto takeadvantageof a snapshotopportu-
nity [greaterthan45-50° angleof attack].[TheBFM
experimentwasgoodbecausethe pilot stayedat a
moderateangleof attacktoroll. ThisallowedtheBFM
to staya truerolling scissorsandallowedthepilot to
seethebenefitsof higherroll performanceat ahigher
angleof attack.]Didn't noticewingrock duringthe
BFM. Wouldlike to seethe X-29Awith the F-18
HARVastheopponent--agoodexperimentbecause
theX-29Awouldenjoya specificenergyadvantage,
but maneuveringdisadvantageat a high angleof
attack.Significantlybetterat theseanglesof attack
thantheF-18.TherewasnowaytheF-18wasgoingto
getanadvantagein theseengagements.

Flight 117, Pilot B

360 ° roll at 25,000 ft, 1 g, 45 ° angle of attack,

group B---Aircraft attitude and motion are very

unique. It was strange being able to rotate the aircraft at

a 45 ° angle of attack through 360°--mostly heading

change.

Flight 118, Pilot A

0/60/0 maneuver at 25,000 ft, 1 g, 40 ° angle of

attack, group CmSimulator predicted aircraft charac-

teristics well. Good that we didn't fly 360s here.

Flight 119, Pilot B

Formation flying (fingertip and close trail) with

an F-18 airplane at 10,000 to 20,000 it, Mach 0.6 to
0.8.

Group B--A little jerky, but may be pilot gain.

Group B increase over group A was not noticed

here. Not very sensitive. Satisfactory; no deficiencies.

Cooper-Harper rating: 3.

Group CDDoes not appear to be any deficiencies.

Group B a little smoother than group C; less stick input
and take out with group B. More "hunting" with group

C; more stick activity. Group B really seems to be the

superior control law.
Group A---Can't compare--done at low altitude

with turbulence present.
General comments--Not a big difference between

groups A, B, and C. No pilot-induced oscillation ten-
dencies. Negative proof--maximum roll rate afforded

by gain change. Does not hurt during this task.

Flight 120, Pilot C

360 ° roll at 25,000 ft, 1 g, 40 ° angle of attack,

group B--Felt the roll rate accelerating, came off full
lateral stick. Roll winds up, especially the last 180 °.

Neutral stick on recovery--roll did not want to stop at
first.

016010 maneuver at 25,000 it, 1 g, 45 ° angle of

attack, group B---Came off with stick to recover; mo-

mentarily rolled more to right, even with left stick.

[First time that the pilot felt the aircraft did not respond

to commands.]

360 ° roll at 25,000 it, 1 g, 30 ° angle of attack,

group B---Nominal.

360 ° roll at 25,000 it, 1 g, 35 ° angle of attack,

group B--Felt a little like higher angles of attack at
end; landed.
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NOMENCLATURE

Abbreviations and Acronyms

K3

K4

K13

ACC automatic camber control K14

ARI aileron-to-rudder interconnect

BFM basic fighter maneuver K17

FCS flight control system K18

FS fuselage station K27

ITB integrated test block

NACA National Advisory Committee for Aero- Ktz2

nautics

NASA National Aeronautics and Space Adminis- ny

tra-tion n
Z

pest parameter estimation program PMAX

Symbols

b

BMAX

C m

C
rl o

GF1

GMAX

GS1

G¥CWStt

Glim

G
n z

G
q

G4

_XX

!
XZ

I
yy

I
ZZ

P

q
wing span, ft r

rudder pedal command gain, deg/percent S

chord, ft s

pitching moment coefficient V

yawing moment coefficient at zero sideslip V T

symmetric flap gain, deg/deg XCG

pitch stick command gain, g/percent XKI1

strake flap gain, deg/deg

rudder pedal-to-aileron washout filter time XKI3

constant, sec
XKP1

pitch stick limit gain, rad/sec

normal acceleration gain, (rad/sec)/g XKP3

pitch rate gain, (deg/sec)/(deg/sec) XKP4

pitch acceleration gain, (deg/sec)/(deglsec

sec) YCG

moment of inertia about the x-axis, slug-ft 2 ZCG

cross product of inertia, slug-ft 2 ct

moment of inertia about the y-axis, slug-ft 2
0

moment of inertia about the z-axis, slug-ft 2 x
$

roll-rate-to-aileron gain, (deg/sec)/(deg/sec)K2

[_-to-aileron gain, (deg/sec)/(deg/sec)

ny-to-aileron gain, (deg/sec)/g

lateral roll command gain, (deg/sec)/(deg/

sec)

rudder pedal-to-aileron gain, (deg/sec)/per-
cent

p-to-rudder gain, deg/(deg/sec)

lateral acceleration-to-rudder gain, deg/g

aileron-to-rudder gain, deg/(deg/sec)

pitch axis angle-of-attack feedback gain,

(radlsec)/(ft/sec)

lateral acceleration, g

normal acceleration, g

lateral stick command gain, (deg/sec)/

percent

roll rate, deg/sec

pitch rate, deg/sec

yaw rate, deg/sec

reference area, ft 2

Laplace operator

velocity, ft/sec

true velocity, kn

longitudinal center of gravity location, in.

pitch axis forward loop integrator gain,

deg/deg

lateral axis forward loop integrator gain,

deg/deg

pitch axis forward loop proportional gain,

deg/(deg/sec)

lateral axis forward loop proportional gain,

deg/(deg/sec)

yaw axis forward-loop proportional gain,

deg/(deg/sec)

lateral center of gravity location, in.

vertical center of gravity location, in.

angle of attack, deg

rate of change of sideslip, deg/sec

pitch angle, deg

roll command filter time constant

roll angle, deg
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TABLES

Table 1: The X-29A no. 2 geometry and mass characteristics.

Weight, lb 14,583-18,518

Height, ft 14.3

Length, ft 48.1

Longitudinal center of gravity, in. 443.5--454.0

Moment of inertia, nominal, slug-ft2:

lxx 4,600

I 53,000
YY

I 56,000
zz

I 2,500
xy

Wing:

Span, ft 27.2

Mean aerodynamic chord, ft 7.22

Area, ft 2 185.0

Aspect ratio 4.0

Leading-edge sweep, deg -29.27

Taper ratio 0.4

Dihedral angle, deg 0

Total flap area, ft2 14.32

Hinge line, percent of wing chord 75

Flap deflection limits, deg -10/+25
(trailing edge down)

Canard:

Span, ft 13.63

Area, ft2 37.0

Aspect ratio 1.47

Taper ratio 0.32

Deflection limits, deg -60/+30
(trailing edge down)

Vertical tail:

Span, ft 5.5

Area, ft 2 33.75

Aspect ratio 2.64

Taper ratio 0.32

Rudder area, ft 2 7.31

Hinge line, percent of tail chord 70

Rudder deflection limits, deg _'t.30

Strake flap:

Half span, ft 2.1

Area, ft 2 5.21

Root chord, ft 2.5

Deflection limits, deg :t_30
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Table2. High-angle-of-attack design guidelines.

1-g trim flight a > 20 °

Neutral lateral controls [r[ < 10 deg/sec after 10 sec positive angle-of-

attack recovery with forward stick; no tuck ten-

dency

1-g trim flight and accelerated flight 20 ° < cx < 40 °

Wing rock

Lateral maneuver

I/2 stick A 30 ° roll

No roll rate reversal

Full stick A 60 ° roll

No roll rate reversal

Full stick A 360 ° roll
No roll rate reversal

a < 35 ° No sustained wing rock

a > 35 ° [At[ < 15°

AI3 adverse AI3 proverse IAal
3° none 3 °

7 ° 2° 7°

9 ° 5° 12 °

Table 3. Longitudinal and lateral stick characteristics.

Longitudinal Lateral

Displacement, in. Original Modified :L3.2

fore 3 1.5

aft -2.5 -1.25

Stick gradient, lb/in. 8 8 2

Table 4. Matrix of test points for flying qualities research.

lg

15°a

25 ° a

30°a

Group

160kn 200kn 250kn

calibrated airspeed c_ibratedakspeed calibrated ai_peed

A complete complete

B complete complete

C complete complete

A

B

C

A

B

C

A

B

C

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete

complete
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TableA-1.An s-plane description of continuous dynamic elements.

Dynamic element s-plane description

Canard actuator

Symmetric flap actuator

Strake actuator

Differential flap actuator

Rudder actuator

Time delay

Pitch rate fuselage vertical
bending notch filter

Pitch rate fuselage second

vertical bending notch filter

Pitch rate fuselage second

vertical bending-wing second

bending notch filter

Yaw rate fuselage lateral

bending notch filter

Normal acceleration fuselage

vertical bending notch filter

Normal acceleration noseboom

vertical bending-canard

pitch-fuselage second

vertical bending notch filter

Lateral acceleration fuselage

lateral bending notch filter

(0.885) (20.2) (71.4) 2 (144.9)

(s + 20.2) [s 2 + 2 (0.736) (71.4) s + (71.4) 2] (s + 144.9)

(20.2) (71.4) 2 (144.9)

(s + 20.2) "Ls2 + 2 (0.736) (71.4) s + (71.4) 217(s + 144.9)

2
(50) (100) (325)

(s + 50) (s + 100) Is 2 + 2 (0.7) (325) s + (325) 2]

(54.1)2(71.4) 2

[s 2 + 2 (1.53) (54.1) s + (54.1) 2] Is 2 + 2 (0.735) (71.4) s + (71.4) 2]

(54.1) 2 (71.4) 2

Is 2 + 2 (1.53) (54.1) s + (54.1) 2], _-ks2+ 2 (0.735) (71.4) s + (71.4) 2.j"1

100

s+lO0

2 2
s + 2 (0.2) (68) s + (68)
2 2

s + 2 (0.5) (68) s + (68)

12072 s2+2(0.05) (133)s+ (133) 2

133_1 s2+2(0.50) (120)s+ (120) 2

16072 s2+2(0.071) (150)s+ (150) 2

150J s2+2(0.70) (160)s+ (160) 2

2
(0.1) (70) s + (70)

2
(7O) s + (70)

2
(70) s + (7o)

2
(7o) s + (7o)

2
s +2

2
S + 2 (0.7)

2
s +2(0.1)

2
S + 2 (0.7)

150] s2+2(0.10) (128)s+ (128) 2

128_1 s2+2(0.70) (150)s+ (150) 2

2 2
s + 2 (0.1) (68) s + (68)

2 2
s + 2 (0.5) (68) s + (68)
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TableA-1.Concluded.

Dynamicelement s-planedescription

Canardpositionfuselage
verticalbendingnotchfilter

Pitchrate gyroscope signal

Roll rate gyroscope signal

Yaw rate gyroscope signal

Prefilter

Roll rate notch filter

2 2
s + 2 (0.14) (68) s + (68)

2 2
s + 2 (0.70) (68) s + (68)

(137) 2
2 2

s +2(0.704) (137)s+ (137)

2
(157)

2 2
s +2(0.701) (157)s+ (157)

(137) 2
2 2

s +2(0.704) (137)s+ (137)

200

s+ 200

2
s + 14.2755s + 10, 106.5
2

s + 142.1482s + 10, 106.5
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FIGURES

Figure 1. The X-29A no. 2 test airplane.

EC90-0048-17
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Figure2.TheX-29Ano.2cockpitdisplays.

EC89-0254-1
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Figure 3. The X-29A no. 2 spin chute assembly.

EC89-0216-2
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Figure 4. The X-29A longitudinal control system. The highlighted blocks represent changes made for high angle of
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Figure 5. The X-29A lateral-directional control system. The highlighted blocks represent changes made for high

angle of attack.
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Figure 6. Time histories of the angle-of-attack redundancy management failure from flight 27. The failure was
detected at 22.65 sec.
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Figure 28. Flight data fit to determine roll mode time constant.
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SIMULATION DATA DISPLAY:

P 0.00 PDOT

Q 6.11 QDOT

R 0.00 RDOT

V 463. VDOT

ALP 15.00 ALPD

BTA O.00 BTAD

THA 10,00 THAI)

PSI 0.00 PSID

PHI 0.00 PHID

H 20000. HDOT
X 0.00 XDOT
Y 0.00 YDOT

0.00 AMCH 0.45

0 00 QBAR 136.

0 00 GMA -5.00

0 00 DEL 0.00

0 00 (/B 447.

0 O0 VB O.

6 II WB 120.

0 00

0 00 ANX 0.57

-40. ANY 0.00

461.

0.

NORMAL MODE

ANZ -2.46 VEAS 200.

AN 2.46 VCAS 203. CL 0.00000

DAP ...... DEP ........ DRP ...... DC -4.41 CM 0.10208

DFL 20.74 DFR 20.74 DR 0.00 DST 8.79 CN O.0OOOO

ERP 1.000 AIX 4547. AIY 51888. AIZ 57063. CD 0.36395

PLAI30.000 DELX 0.30 DELZ 0.12 A!XZ 2559. CY 0,00000

THS 8051. EWT ........ FWT ...... qWT ...... CLFTI.48527

FA

V_ ALPHA O THETA BETA P R PHI

-0.7739E-01 -0.8229£+02 -0.7478E+00 -0.3199E+02 0.7000E-01 -0.9334E-08 O.0000E÷O0 0.5764E-08

-0.4778E-03 -0,2928E÷00 0.9940E+00 0.6048E-02 0.3889E-07 -0.7531E-I0 O.0000E+O0 0.4651E-10

0.4048E-03 0.4035E+01 -0.2314E+00 -0 1655E-03 0.2026E-05 -0.5125E-08 0.0000E+00 0.3165E-08

0.0000E+O0 0.0000E+00 0.1000E+01 0 0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

A = 0.0000E÷O0 0.0000E+O0 0.0000E+O0 0 O000E+00 -0.1274E+00 0.2591E+00 -0.9625E÷00 0.6837E-01

0.0000E+00 0.0000E+00 0.0000E+O0 0 0000E÷00 -0.2283E÷02 -0.1091E÷01 0.1151E*01 0.3177E-07

0.0000E+00 O.0000E+00 0.0000E+O0 0 0000E+00 0.2359E+01 -0.1657E+00 -0.4863E-01 -0.1813E-07
O.0000E÷O0 0.0000E+00 0.0000E+O0 0 0000E+O0 0.0000E÷00 0.1000E+01 0.1763E÷00 0.1879F,-01

FH

.VTOT ALPHA Q THETA BETA P R PHI

0.I046E-01 0.4187E+01 0.I039E÷00 -0.2665E-03 -0.!478E÷00 -0.7063E-02 0.8140E-02 -0,5875E-09

C = 0.1046E-01 0.4187E+01 0.I039E+00 -0.2665E-03 -O.1478E+00 -0.7063E-02 0.8140E-02 -0.5875E-09
O.0000E+00 0.0000E*00 0.0000E+O0 0.0000E+00 -0.I!40E÷01 0.4177E-01 0.1713E-01 -0.1747E-O2

FB

DC DSF DSTF PLA DDF DR

-0.1753E+00 -0.2178E+00 -0.7165E-01 0.1282E+00 -0.1430E-11 0.4567E-09

-0.5187E-03 -0.I08gE-02 -0.3993E-03 -0.7423E-04 -0.I154E-13 0,3685E-I1
0.4279E-01 -0.1264E-01 -0.2349E-01 -0.1069E-02 -0.7853E-12 0.2508E-09
O.O000E+O0 O.O000E+O0 O.O000E+O0 O.O000E+O0 O.0000E÷O0 O.O000E+O0

B = -0.1046E-I0 -0.1369E-11 -0.6718E-12 0.7865E-13 -0.5023E-03 0.4928E-03

0.6306E-08 0.1859E-09 0.9124E-I0 -0.1068E-10 0.4195E+00 0.1057E+OO

0.3045E-09 -0.I061E-09 -0.5206E-I0 0.6095E-II 0.1706E-01 -0.2841E-01

0.0000E+00 0.0000E+00 0.0000E+00 0.0O00E+00 O.0000E+00 0.0000E+00

FF

DC DSF DSTF PLA DDF DR

0.7251E-02 0.1728E-01 0.6871E-02 0.3363E-04 0.2716E-02 0.6845E-03

D = 0.7251E-02 0.1728E-01 0.6871E-02 0.3363E-04 0.2716E-02 0.6845E-03

-0.3660E-09 -0.2244E-I0 -0.1102E-10 0.1290E-II -0.2147E-01 0.4517E-02

Figure A-1. Linear matrices.
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SIMULATION DATA DISPLAY:

P 0.00 PDOT

Q 9.86 QDOT
R 0.00 RDOT

V 463. VDOT

ALP 25.00 ALPD

BTA O. 0Q BTAD

THA -25.00 THAD

PSI 0.00 I_SID

PHI 0.00 PHID

0.00 AMCH 0.45

0.00 QBAR 136.

0.00 GMA -50.00

O. O0 DEL 0. O0

0.00 _ 419.

0.00 V_ 0.
9.86 WB 195.

0.00

0.00 ANX 0.62

NORMAL MODE

H 20000. HDOT -354. ANY 0.00

X 0.00 XDOT 297. ANZ -3.15 VEAS 200.

Y 0.00 YDOT 0. AN 3.15 VCAS 203. CL 0.00000

DAP ...... DEP ........ DRP ...... DC -11.40 CM 0.11905

DFL 20.74 DFR 20.74 DR 0.00 DST 19.53 CN 0.00000

ERP 1.000 AIX 4547. AIY 51888. AIZ 57063. CD 0.75610

PLAI30.O00 DELX 0.30 DELZ 0.12 AIXZ 2559. CY 0.00000

THS 7791. =-'WT........ FWT ...... "/WT ...... CLFTI.80273

FA

VTOT " ALPFA Q' THETA BETA P R _H!

-0.1673E*00 -0.1368E+03 -0.122!E+01 -0.2065£÷02 0.1442E,00 0.2825E-03 0.1319£-03 0.4294E-06

-0.4936E-03 -0.3261E+00 0.9943E+00 0.5316E-01 0.1176E-06 -0.2850E-06 -0.!331E-06 -0.2897£-09

0.2451E-03 0.2197E+01 -0.1998E*00 -0.1454E-02 0,2567E-04 0.8359£-04 0.3905E-04 0.i274E-06

O.0000E÷O0 O.O000E*O0 0.I000E÷01 O.0000E÷00 0.O000E-O0 0.O000E*O0 0.O000E+O0 O.0000E_O0

A = -0.96a7E-12 0.2672E-08 -0.5384E-09 -0.5207E-09 -0.%656E-01 0.4188E÷00 -0.9024£÷00 0._292E-01

C ----

e _

-0.4119E-I0 -0.3355E-05 -0.6204E-08 -0.6001E-08 -0.35_0E-02 0.1325E+0! -0.I078E÷01 0.!388E-06

0.5082E-!0 -0.1325E-06 0.7654£-08 0.7403E-08 0.7420E*00 -0.!317E÷00 0.2307E-01 -0.2581E-06

O.0000E+00 O.O000E_O0 O.O000E+O0 0.0000E.00 O.0000E÷00 0.1000E+01 -0.4663E+00 -0.2023E-01

FH

VTOT ALPHA O THETA BETA p _ PHI

V. 1350E-01 0.4901E-01 0.I070£÷00 0.II14£-02 -0.2305£.00 0.8576E-02 -0.5867£-02 -0.3724E-08

0.1350E-01 0.4901E÷01 0.1070E,O0 0.II!4E-02 -0.2305E+00 0.8576E-02 -0.5867E-02 -0.3724E-08

-0.5164E-I0 0.1522E-06 -0.7777E-08 -0.7522E-08 -0.7072£-01 -0.9984E-01 0.9662E-01 -0.!607E-02

FB

DC DSF DSTF PLA DDF DR

-0.3152£+00 -0.1109E+00 -0.1223E+00 0.1203E÷00 0.7325E-09 0.7040E-09

-O.6335E-03 0 3419E-04 -0.4144E-03 -0.1212E-03 -0.7622E-12 -0.7138E-12

0.3929E-01 -0 3961E-02 -0.1891E-01 -0.1068E-02 0.21_6£-09 0.2083E-09

O.O000E+O0 0 0000£+00 O.O000E+O0 O.O000E+O0 O.O000E÷O0 O.O000E+O0
0.1!37E-08 0 5691E-I0 0,4202E-I0 -0.4919E-II -0.501_E-03 0.3623E-03

0.7641E-07 0 5431E-09 0.4010E-09 -0.4694E-I0 0.2268E÷00 0.6077E-01

-0.7185E-07 -0 I009E-08 -0.7453E-09 0.8726E-I0 0.1949E-01 -0.242!E-01

O.O000E+O0 O.O000E÷O0 O.O000E+O0 O.O000E+O0 0.0000£÷00 O.O000E.O0

FF

DC DSF DSTF PLA DDF DR

0.II!4E-01 0.1137£-02 0.7609E-02 0.3331E-04 0.1469E-02 0.3935E-03

D = O.III4E-OI " 0.I137E-02 O.7609E-02 0.3331E-04 0.1469£-02 0.3935E-03

0.1609E-07 0.8321E-09 0.6143E-09 -0.7192E-I0 -0.1523E-01 0.3979E-02

Figure A- l. Continued.

61



SIMULATION DATA DISPLAY:

ALP 30,00 ALPD

BTA O. O0 BTAD

THA 30.00 THAD

PSI 0.00 PSID

PHI O. O0 PHID

H 20000. HDOT

X 0.00 XDOT

Y 0.00 YDOT

P 0.00 PDOT 0.00 AHCH 0.45

Q 9.21 QDOT 0.00 QBAR 136. NORMAL HODE

R 0.00 RDOT 0.00 GMA 0.00

V 463. VDOT -41.21 DEL 0.00

0.00 UB 401.

0.00 V9 O.
9.21 WB 231.

0.00

0.00 ANX 0.55

O. ANY 0.00

463. ANZ -3.51 VEAS 200.

0. AN 3.51 VCAS 203. CL 0.00000

DAP ...... DEP ........ DRP ...... IX: -15.34 CM 0.12021
DFL 20.74 DFR 20,74 DR 0.00 DST 19.95 CN 0.00000

ERP I.OO0 AIX 4547. AIY 51888. AIZ $7063. CD 1.00322

PT-AI30.O00 DELX 0.30 DELZ 0.12 AIXZ 2559. CY 0.00000

THS 6028. EWT ........ FWT ...... T_4T ...... CLFTI.93459

FA

VTOT ALPFA Q THETA BETA P R PHZ

-0.232!E+00 -0.1477E+03 -0.1445E+01 -0.3211E÷02 0.5089E-01 -0.1245E-O1 -0.4077E-02 -0.17_7E-04

-0.6005E-03 -0 2519E÷00 0.9946E,00 -0.!822E-08 -o.as38E-06 -O.1000E-03 -0.3275E-04 -0.2:29E-06

0.1709E-03 0 2352E_01 -0.3633E+00 0.4329E-07 O.3748E-04 0 2252E-02 0.7372E-03 0._43E-05

O.O000E+O0 0 0000E+00 O.IO00E,OI O.O000E+O0 0.O000E,O0 0 O00GE_O0 O.O000E_O0 O._C0OE-O0

A = 0.2597E-!I -0 8516E-07 0.1443E-08 0.9324E-09 0.768!E-01 0 4956E÷00 -0._576E+00 0.6.T!:E-Ol

0.1137E-07 0 2866E-04 0.1712E-05 0.iI07E-05 -0.3490E,02 0 1765E_01 -0.3448E,01 -0.124_E-03

0.5337E-09 0 4847£-05 0.8038E-07 0.5197E-07 0.!222E,O1 -0 9!04E-01 -0.2021E_00 -O.U_g3E-O5

O.0000E÷O0 0 0000E,O0 0.0000E+O0 O.O000E,O0 0.0000E,00 0 !O00E+O! 0.5774E+00 O.?_3E-Ol

FH

VTOT ALPFA Q THETA BETA P R PH:
0.1555E-01 0.5155E+01 0.1115E+00 -0.3867E-03 -O.2260£,00 -0.1279E-0! -0.2084E-01 0.2tSTE-05

C = 0.1555E-01 0.5155E_01 0.II15E+00 -o.8867_-O3 -0.2260£,00 0.i279E-01 -0.2084E-01 0.21_7E-05
-0.2503E-09 -0.2313E-05 -0.3770E-07 -0.2438E-07 0.I056E+O1 -0.1229E,00 0.2447E_00 -0.I_33E-02

FB

DC DSF DSTF Pr.A DDF DR

-0.3558E,00 -0.1014E÷00 -0.1435E÷00 0.!149E÷00 -0.487!E-07 -0.4659E-07

-0.9386E-03 0.7000E-05 -0.3907E-03 -0.1434E-03 -0.3912E-09 -0.3742E-09
0.5196E-01 -0.8818E-02 -0.2016E-01 -0.1067E-02 0,8803E-08 0.8421E-08

B = O.0000E+O0 0.0000£+00 O.0000E+00 0.0000£+00 0.000OE÷O0 0.O000E+OO
-0.7623E-08 -0.4431E-09 -0.3272E-09 0.3830E-10 -0.4645Eo03 0.2504E-03
-0.2318E-04 -0.5278E-06 -0.3897E-06 0.4563E-07 0.1392E,00 0.5544E-02

0.9551E-06 -0.2880E-07 -0.2126E-07 0.2489E-08 0.1372E-01 -0.2079E-01

0.0000£+00 0.0000E+00 0.O000E÷O0 0.0000£+00 0.0000£*00 0.0000£_00

FF

DC DSF DSTF ?LA DDF DR

0.1556E-01 0.1770£-02 0.7739E-02 0.3315E-04 0.9014E-03 0.3591E-04

D = 0.1556E-01 0.!770E-02 0.7739E-02 0.3315E-04 0.90!4E-03 0.3591E-04

0.6!83E-06 0.117aE-07 0.8697E-08 -0.I018E-08 -0.!!66E-01 0.406aE-02

Figure A- 1. Concluded.
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Figure A-3. Lateral-directional control system.
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