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1 INTRODUCTION

Over the next few years, Mobile Satellite Communications systems will experience a rapid evo-

lution towards providing Global Personal Communication services to hand-held terminals. To

meet the challenge, a number of innovative satellite systems have been recently proposed. In

terms of payload technology, the use of advanced on-board digital processing techniques is cur-

rently being investigated in order to enhance the satellite performance. The functions to be

implemented on board include digital beamforming, multiplexing and demultiplexing, signal

regeneration and switching.

Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of

multiple access scheme in these future mobile communication systems [1]. This is due to a

variety of reasons such as the excellent performance in multipath environments, high scope for

frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is
limited by the self-inteference between the transmissions of the different users in the network.

Moreover, the disparity between the received power levels gives rise to the near-far problem, this

is, weak signals are severely degraded by the transmissions from other users.

In this paper, the use of time-reference adaptive digital beamforming on board the satellite is

proposed as a means to overcome the problems associated with CDMA. This technique enables a

high number of independently steered beams to be generated from a single phased array antenna,

which automatically track the desired user signal and null the unwanted interference sources.

Since CDMA is interference limited, the interference protection provided by the antenna converts

directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the

near-far effect to be mitigated without requiring a tight coordination of the users in terms of
power control.

A payload architecture will be presented that illustrates the practical implementation of

this concept. This digital payload architecture shows that with the advent of high performance

CMOS digital processing, the on-board implementation of complex DSP techniques -in par-

ticular digital beamforming- has become possible, being most attractive for Mobile Satellite
Communications.

This paper was first presented at the ERA Conference "DSP-The enabling
technology for co,,_unications". Amsterdam, 9-10 March 1993.
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2 THE COMMUNICATIONS SYSTEM MODEL

Let us consider a communications system in which M mobile users are communicating with

a fixed Hub station through a satellite. An On-board Processing (0BP) type satellite will be

considered which is able to regenerate and apply on-board routing to the uplink signals for its
subsequent transmission to the ground. Among other features, the OBP satellite enables the

different links to be decoupled and independently optimized; particularly, different modulation

and access schemes can be employed for the mobile and the feeder link. As mentioned above,

CDMA offers a number of advantages which make it most interesting for the mobile environment.

This paper focuses on the study of the mobile link, for which a Direct-Sequence Code-Division

Multiple-Access (DS-CDMA) scheme will be considered.

In a CDMA system, all the users transmit over tile same frequency band. Let Rs be the

basic user information rate. A different Pseudo-Noise (PN) sequence of length L is assigned to
each user, which is employed to spread the basic user information stream to form a transmitted

signal at chip rate, Rc = L . Rs. The spreading factor, Rc/R,, is hence equal to the length of

the PN sequence, L. At the receiver, the desired user's transmission is discriminated by using

a conventional correlation scheme, in which the received signal is multiplied by a synchronized

replica of the desired user's PN sequence and integrated over a symbol period. The PN sequences

considered here belong to a family of Preferentially phased Gold codes. Gold PN sequences

present optimum cross-correlation properties at the origin, this is, synchronized PN sequences

are quasi-orthogonal. In the forward direction, the signals transmitted to the different users

are spread with synchronized PN sequences. The signals are quasi-orthogonal and, therefore,

the mutual interference between them is negligible. This is referred to as a Synchronous CDMA

(S-CDMA) link. Conversely, the signals transmitted in tile return link are not synchronized, and

hence, they are not orthogonal at the satellite transponder input. The non-orthogonality of the

PN sequences employed in an Asynchronous CDMA (A-CDMA) link gives rise to the problem
of self-jamming, this is, nonzero interference contributions arise from the transmissions of the

other users in the network. Associated to the self-jamming is the so-called near-far problem.

We concentrate on the asynchronous return link, for which the use of adaptive digital beam-
forming on board the satellite is proposed in order to overcome the problems associated with

CDMA. The effect of the adaptive antenna in an A-CDMA system is illustrated in figure 1,

which has been obtained by computer simulation. This figure compares the bit error rate (BER)

versus the E_/No for S-CDMA, A-CDMA and A-CDMA with adaptive beamforming. The self-

interference, which strongly degrades the performance of A-CDMA, is drastically cancelled by

the antenna in such a way that the performance of A-CDMA with adaptive beamforming is
comparable to -or even better than- that of S-CDMA.

We assume that the available bandwith is occupied by a frequency multiplex of N¢ contigu-

ous CDMA carriers. The satellite antenna generates one independent beam per user which is

automaticaly steered to point the maximum gain in the direction of the mobile terminal while

nulling the co-channel interferences arriving from other users. The adaptation of the radiation

pattern is illustrated in figure 2. Users allocated to the same CDMA carrier should be as spread
as possible over the satellite coverage, in order for the satellite antenna to have sufficient reso-

lution to point the beam to one user while hulling the others. Nevertheless, a limited number of

co-channel interferers can be tolerated within the desired user's main-beam coverage which are

discriminated by the PN code. A low spreading factor will be considered, so that the CDMA

carriers are relatively narrowband. This will have important implications in the implementation.
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3 INTEGRATION OF ADAPTIVE BEAMFORMING IN A DS-CDMA
SYSTEM

The objective of an adaptive array antenna is to improve the reception of a certain desired

signal in the presence of undesired interfering signals. The antenna radiation pattern must be

conformed in such a way that the main lobe is pointed in the direction of the desired signal, while

the nulls are steered in the direction of the interferences. In this way, the signal-to-interference-

plus-noise-ratio (SINR) at the array output is maximized.

The achievable performance in an adaptive array has two basic limitations: these are asso-

ciated with the degrees of freedom and the resolution of the array. An N-element array has only

N-1 degrees of freedom in its pattern. Requiring a beam maximum at a given angle uses up

one degree of freedom, the same as requiring a null. Thus, the array is able to point the main

beam to the desired user direction and still null up to N-2 interferences. Another limitation the

designer must be aware of is the fact that a given array has only a certain ability to resolve

signals in space. If the arrival angle of the desired and interfering signals are too close, the

array cannot simultaneously null the interference and form a beam on the desired signal. The

minimum angular separation between a maximum and a null in the radiation pattern depends

primarily oil the array aperture size but also to a lesser extent on the element patterns and the
number of elements.

In order to apply adaptive beamforming, the desired signal must be different from the inter-

fering signals in some respect. Two different classes of adaptive techniques can be distinguished:

time reference beamforming and spatial reference beamforming. Time reference beamforming

can be applied when a time reference signal is available which is correlated with the desired

signal and uncorrelated with the interferences. Instead, if the direction of arrival of the desired

signal is known, a spatial reference technique is to be utilized.

Due to the a priori knowledge of the desired user PN sequence, a DS-CDMA system lends

itself very easily to the generation of an adequate time reference signal. Therefore, we will

mainly concentrate here on a time reference beamforming technique, namely, the well-known

LMS (least-mean-square) algorithm. After introducing the LMS algorithm, we will describe the

way to generate the reference signal. The hardware implementation of this algorithm in a CDMA

system will be presented later. Finally, the adaptive algorithms with main-beam constraints will

be introduced which overcome the problems associated with the limited resolution of the antenna.

3.1 The LMS Algorithm

The Least Mean Square (LMS) algorithm is a gradient-based algorithm that minimizes the

mean-squared value of the error signal e(t), which is the difference between a locally generated

reference signal r(t) and the array output y(t). The (discrete) LMS algorithm is given by the
following equations:

w(,, + 1) -- W(T*)+ 7. x'(,)

= - y(,,) = r(n) - xr(n).
(1)

(2)

where W(n) and ' _;_) are complex vectors of samples at instant n of the antenna weights

and the signals i_ ::e antenna elements respectively, e(n) is the corresponding sample of the

21 _tNAL PAG_ fS

oF q J LrrY



instantaneous error. The parameter 7 is called the step-size. In order for the LMS algorithm to

converge, the step size 7 must meet the following stability condition:

1

0 < 7 < F, (3)

where Pt is the total power received by the array. The speed of convergence of the algorithm

increases with the step-size 7; once ill steady-state the weights oscillate with a variance which

is also proportional to 7-

As explained in [2], the depth of the null created in tlle direction of arrival of the interference

increases with the interference power; strong interferences are deeply cancelled by the antenna.

In our system, this performance characteristic provides an excellent robustness in the presence
of the near-far problem.

3.2 Reference signal generation

In order to apply a time-reference adaptive algorithm, the main challenge is to find a way

to obtain a suitable reference signal which is highly correlated with the desired signal and

uncorrelated with the interferences. In a CDMA system, the reference signal can be derived

from the array output as shown in tile reference signal generation loop illustrated in figure 3.

The reference signal generation comprises the despreading and demodulation I of the desired user

signal using a conventional correlation receiver, and subsequent re-spreading of the demodulated

data with tile same PN sequence. Tile generated reference is an almost perfect replica of the

desired user signal: the desired signal component at the array output passes through this loop

unchanged -except for the amplitude adjustment and a certain delay-, while the interference

signal waveform is drastically altered and its correlation with the reference signal is essentially
destroyed by the loop.

The reference signal generation loop has a certain delay which is mainly determined by the

integrator contained in the spread-spectrum demodulator. If a full demodulation is performed,

the delay is equal to one information symbol period Ts. Instead, partial demodulation can be

used, this is, the integration time can be reduced and the decision on the transmitted symbol

can be taken on the basis of a fraction of the received symbol waveform.

3.3 Hardware Implementation

The delay incurred in the generation of the reference signal has important implications in the

hardware implementation, calling for some modifications in the basic LMS algorithm. The block

diagram illustrated in figure 4 represents the implementation of an adaptive array antenna using

the delayed LMS algorithm in a DS-CDMA system. Let us assume that the reference signal

generation circuit introduces a delay equal to D samples. Both the signals in the array elements

and the signal at the array output are stored during D samples to properly obtain the (delayed)

error signal. Then, these signals are applied to the so-called delayed LMS algorithm which is
given by the following equations:

W(u + 1) = W(u) + 7" e(n - n). X*(n - D) (4)

: Attention should be drawn to the fact that the amplitude of the reference signal must be constant. For this

?_-pose, a hard limiter (detector} has also been included in the reference generation loop.
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e(n - D) = r(n - D) - XT(n- D). W(n- D) (5)

As a consequence of the delay, the step-size 3' has to be contrained to a much more restrictive

range. The stability condition for the delayed LMS algorithm is given by:

1

0 < 3' < O--_t (6)

Therefore, the delay in the generation of the reference has two major implications. At hardware

level, the signals in the array elements and the array output need to be stored. As far as the

performance is concerned, the speed of convergence of the algorithm is severely reduced. The

acceptability of the reduced speed of convergence will depend on the application; for slowly

varying scenarios the delayed LMS algorithm will exhibit in general a satisfactory performance.

3.4 Adaptive algorithms with main-beam constraints

Due to the limited resolution of the antenna, when the directions of arrival of the desired and

the interfering signals are too close, hulling the interference may cause the gain in the direction

of the desired signal to drop. In order to avoid the problem of signal cancellation in the main

beam, linear constraints can be placed in the adaptive algorithm [3]. The processor will then

maintain a constant gain in the desired direction and the shape of the pattern will be controlled

in the vicinity of that direction (derivative constraint) without responding to interference signals
in the main lobe.

These techniques require tim information on the direction of arrival of the desired signal, this

is, the steerin9 vector. In essence, they constitute spatial-reference rather than time-reference

beamforming techniques; in practice, however, the steering vector can be estimated by averaging

the correlation of the time reference signal with the signals in the array elements over a certain

number of samples.

4 PAYLOAD CONFIGURATION

Digital beamforming techniques are currently being considered for future mobile satellite com-

munication payloads. The payload implementation presented here relies upon the use of some

technologies currently under development by ESA [4] [5]. In particular, SAW-chirp Fourier

transform (CFT) techniques and Digital Signal Processing employing CMOS ASIC technologies

are considered. SAW-CFT devices are used to demultiplex the various CDMA carriers. The

extensive use of CHIOS ASIC technology enables the size and power consumption of the DSP

circuitry to be reduced so that the implementation of very complex functions -such as digital
beamforming or demodulation- becomes feasible.

As mentioned above, an On-Board Processing (OBP) satellite is considered. By using OBP,

the uplinks and downlinks are decoupled and, in consequence, the configuration of the different

payload sections becomes fairly independent. Itere, we focus on the receive section of the return

link, in which the adaptive beamforming concept proposed in this paper is implemented.

The payload configuration for the receive section of the return transponder is illustrated in

figure 5. The funcional performance is as follows. A single large mobile-link array antenna is

t uAtw "
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used which consists of N antenna elements. The signals in the antenna elements axe applied

to receiver chains which perform the filtering, LNA amplification and downconversion to an

intermediate frequency. The Arc contiguous CDMA carriers are demultiplexed by the SAW-CFT

processors. The principle of the CFT is to slide a slot filter characteristic across the input

band during the course of a given chirp frame. Then, by critically sampling at the output, a

single CFT device can operate as a bank of fixed filters. The CFT output is analog-to-digital

converted, and the signals corresponding to the different CDMA carriers are separated by means

of commutators and applied to separate beamformers.

A low spreading factor is considered, so that the CDMA carriers are relatively narrowband.

This has a two-fold effect in reducing tile payload complexity. First, the bandwidth of the

beamformers is decreased, along with their power consumption. Moreover, the number of users

allocated to a particular CDMA carrier is relatively small, therefore requiring a small number

of degrees of freedom in the antenna; this reduces the number of antenna elements required,
further simplifying tile beamformer.

Let us consider that lip to N,, users call be allocated to each CDMA carrier. A bank of Nu
parallell beamformers -one per user- is then associated to each CDMA carrier. Each beamformer

is connected to a particular user's CDMA receiver and controlled by an adaptive processor. The

weights calculated by the adaptive algorithm can also be utilized in the Tx forward link, assuming
a digital beamfgrming antenna is used there. The outputs of the CDMA receivers are connected

to a baseband switch for on-board routing of the channels. The mobile-to-mobile communication

channels can be directly connected to the forward link.

5 SYSTEM CAPACITY. NUMERICAL EXAMPLE

To conclude this paper, we will assess the capacity of the proposed system by means of a

numerical example. Let us consider a basic user information rate of 6.4 Kbps, a spreading factor
L=31 and let us assume that the signal is QPSK modulated and filtered with 50% roll-off. The

bandwidth occupied by a CDMA carrier is then equal to 148.8 KHz. Assuming that 10 MHz

of bandwith are available, the number of CDMA carriers is equal to N_=67. In our case, the

number of users Nu that can be supported by a CDMA carrier is no longer limited by the

self-interference -since this is drastically cancelled by the beamformer- but by the number of

degrees of freedom of the antenna which approximately equals the number of antenna elements

N. If we consider a 100 element antenna, the number of users per CDMA carrier is equal to
N,, __ N=100. Hence, the total system capacity is given by Nc • Nu _- 6700 channels.

This capacity value can be compared with that obtained for a conventional CDMA satellite

system utilizing a (fixed) multiple-beam antenna. In such a system, capacity can be increased

by reusing the whole frequency band in all the beams [6]. For a BER objective of 10-4, using

uncoded QPSK, the number of 6.4 Kbps channels supported in 10 MHz available bandwidth by

a 91-beam satellite system is al)proximately equal to 3800. (This value has been obtained ifi the

assumption of uniform traffic distribution, without considering the near-far effect.)

In conclusion, the adaptive beamforming CDMA payload presented in this paper enables

the capacity to be sensibly increased with respect to a more conventional system. Moreover,

the system is robust to the near-far problem and the capacity is fairly independent of the traffic
distribution.

Contact the Author for References and Figures.
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