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I. Introduction

This report details work that was performed in the Ceramic Engineering Department

of Clemson University over the period from July 2, 1993 to January 31, 1995 under

NASA contract No. NAG-l-1301. The work described in this report covers various

aspects of the Rainbow solid-state actuator technology. It is presented in six parts

dealing with materials, processing, fabrication, properties and associated phenomena.

The Rainbow actuator technology is a relatively new materials development which

had its inception in 1992. It consists of a new processing technology for preparing

piezoelectric and electrostrictive ceramic materials. It involves a high temperature

chemical reduction process which leads to an internal pre-stressing of the oxide wafer,

thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer.

Ceramics fabricated by this method produce bending-mode actuator devices which

possess several times more displacement and load bearing capacity than present-day

benders (unimorphs, bimorphs).

It is anticipated that these solid-state, electromechanical actuators which can be used

in a number of applications in space such as cryopump motors, anti-vibration active

structures, autoleveling platforms, telescope mirror correctors and autofocusing devices.

When considering any of these applications, the key to the development of a successful

device is the successful development of a ceramic material which can produce maximum

displacement per volt input; hence, this initiative involving a solid-state means for

achieving unusually high electromechanical displacement can be significant and far

reaching. An additional benefit obtained from employing the piezoelectric effect in

these actuator devices is the ability to also utilize them as sensors; and, indeed, they can

be used as both motor (actuator) and generator (sensor) in multifunction devices.
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Fabrication and Properties of PSZT Antiferroelectric
Rainbow Actuators

Abstract: The fabrication and properties of PSZT antiferroelectric Rainbow actuators with

compositions near the antiferroelectric-ferroelectric (AFE-FE) phase boundary were investigated.

The kinetics of the reduction reaction was found to be considerably more rapid in PSZT ceramics

than in PLZT ceramics. The optimal processing conditions for the fabrication of PSZT Rainbows

were 850 °C for 2 - 3 hours. Large axial displacements ranging from 102 to 273 gm were

obtained from the PSZT Rainbow samples by application of electric fields greater than the AFE to

FE phase switching levels. The field-induced displacements of the Rainbow samples were found

to be dependent on the manner of applying load on the samples. At room temperature, the

antiferroelectric PSZT Rainbows exhibited negative curvature (with the oxide layer concave)

which was attributed to the cubic to antiferroelectric phase transition in the oxide layer. The

AFE-FE phase transitions occurred at lower field levels in the Rainbows as compared to the

corresponding normal ceramics.

1. Introduction

Rainbow ceramics (Reduced And INternally Biased Oxide Wafer), which are

characterized by very high field-induced displacements and good load-bearing capability, show

potential application in a variety of technologically important areas. 1 A Rainbow is obtained via

chemical reduction of one major surface of a high lead-containing ferroelectric ceramic wafer,

such as PLZT, by placing the wafer on a flat carbon block and heat treating it at an elevated

temperature. As the partially reduced ceramic wafer is cooled to room temperature, a dome-

shaped, internally stressed ceramic-reduced layer structure is formed. Very high axial

displacement is obtainable from an electroded Rainbow sample by application of an electric field



across the ceramic oxide layer. More detailed descriptions of Rainbow ceramics can be found in a

number of publications. 1-3

The Pb(Sn,Zr, Ti)O 3 (PSZT) ceramics with compositions in the vicinity of the FE-AFE

phase boundary were first investigated by Berlincourt et. al. over three decades ago. 4 Recently,

very high field-induced strains resulting from the transition from the AFE to the FE state were

reported on these ceramics. 5-6 A strain of 1.1% (the highest reported in the literature for

ferroelectric ceramics) was claimed in the PSZT system in a study by Shebanov et. al. 6

Furthermore, the strain characteristics of these ceramics can be modified through selection of

appropriate compositions. 7 For example, a PSZT ceramic may have a shape-memory effect or

digital-like strain characteristics depending on the location of its composition in the phase

diagram. Ceramics with specific compositions in the AFE phase region near the AFE-FE phase

boundary (note that the phase boundary is not a stable boundary and its location is affected

strongly by external mechanical stresses and electric fields) 8 are easily switched to the-

ferroelectric state by application of an electric field and remain ferroelectric upon removal of the

field. As a result, a shape-memory effect is achieved. The AFE compositions away from the

phase boundary exhibit well-defined AFE characteristics with the digital-like strain characteristics

under applied electric fields. A number of potential applications have been proposed to utilize the

strain properties of the PSZT ceramics.7, 9

The objective of this work was to combine the high induced strains of PSZT ceramics with

the Rainbow technology to produce high-displacement actuators. In this paper, the fabrication

and properties of PSZT antiferroelectric Rainbow actuators with compositions in the vicinity of

the FE-AFE phase boundary are presented.

2. Sample Preparation

Bulk PSZT ceramics used for the fabrication of the Rainbow samples were prepared

according to the formula Pb0.97La0.02(ZrxSnyTiz)O3. The samples studied are designated as



PSZTX/Y/Z or RainbowX/Y/Z in thefollowingdiscussion,wheretheX, Y andZ arethemolar

percentagesof Zr, Sn and Ti ions in the B site of the perovskite structure, respectively. For

example, Rainbow 64/26/10S represents a Rainbow made from a sintered PSZT 64/26/10

(Zr/Sn/Ti) wafer. The letter S at the end of the designation indicates that the ceramic wafer is

prepared by sintering. Similarly, HP is used to indicate hot-pressed wafers. The locations of the

samples in the PSZT phase diagram are shown by the double-cross hatched area in Figure 1.

Reagent grade PbO, ZrO2, TiO2, SnO2 and La203 were used as the starting materials. Weighed

components were mixed in distilled water for 30 minutes and dried at 105 °C. The dried powders

were calcined at 925 °C for 2 hours, and then milled for 8 hours in trichloroethylene using a

polyethylene jar and ZrO2 balls. Bulk ceramics were obtained either by sintering sample pellets at

1280 °C for 4 hours or by hot pressing the pellets at 1200 °C for 6 hours at 14 MPa in an oxygen

atmosphere. The sintered ceramic blocks were cut and lapped into wafers of various diameters

and thicknesses. In the fabrication of Rainbow samples, a PSZT wafer was chemically reduced on

one major surface by placing the wafer on a graphite block and introducing the assembly into a

preheated furnace. After the reduction, the wafer together with the graphite block was removed

from the furnace and cooled down in air to room temperature. Epoxy silver electrodes cured at

200 °C were used for determination of the Rainbow's electrical properties. The dimensions of

the Rainbow samples are shown in Table 1. Samples with two different diameters of 2.16 and

2.72 cm were studied. The oxide/reduced layer thickness ratio was varied by means of the

different processing conditions.

3. Measurements

The phases of the reduced PSZT samples were examined with an X-ray diffractometer

TM

(Scintag XDS 2000 ) using Ni-filtered Cu Kot radiation at a scan rate of 2 degrees per minute.

The thicknesses of the reduced layer of the Rainbows were measured from the sample cross-

sections by means of an optical microscope. Room temperature dielectric properties of the



samplesweredetermined at 1 kHz using an LCR meter (LEADER, 7450-01). Conventional dc

hysteresis loop equipment was employed to measure the relationship between polarization and

electric field. Electric fields greater than the AFE to FE phase transition levels were applied

gradually to the samples.

A measuring set-up with an LVDT (Linear Variable Differential Transformer, 050 DC-E

Lucas Schaeritz Co.), as seen in Figure 2, was used to determine the change of the field-induced

displacement with electric field and the change of bending deflection with temperature. A

Rainbow sample with electrodes on its major surfaces was placed on a metal ring in a small

container. The ring supported only the edge of the sample so that the center part of the Rainbow

could move up and down without touching the bottom of the container. The container was filled

with silicon oil for insulating and temperature control purposes. The movable core of the LVDT

was adjusted to contact the center of the Rainbow sample.

Mechanical loading on the Rainbow samples was accomplished by placing weights on top

of the LVDT movable core. The variations of polarization and axial displacement with electric

field were measured simultaneously when the samples were loaded.

4. Results and Discussion

4.1 Chemical Reduction of PSZT Ceramics

Temperature is an important factor in controlling the reduction process during fabrication

of Rainbow samples. For PLZT ferroelectric ceramics (the most frequently used Rainbow

materials), the optimal reduction temperature was around 975 °C. It was found that the reduction

reaction is considerably more rapid in PSZT than in PLZT ceramics. A significantly thicker

reduced layer in a PSZT than in a PLZT ceramic is produced when they are reduced at the same

temperature for a given time. Figure 3(a) shows the reduced layer thickness of a PSZT Rainbow

as a function of reduction temperature for a time of 1 hour. The thickness of the reduced layer

began to increase rapidly at about 875 °C, but became saturated at higher temperatures. An



approximately650 _tmthick reducedlayer was producedin the PSZT sample at 975 °C, as

compared to the 150 lam thick reduced layer in a typical PLZT Rainbow obtained under identical

conditions. Further manifestation of the rapid reaction in PSZT ceramics is the enhanced

reoxidation of the reduced layers observed at elevated temperatures. For example, a reduced

layer 200 I.tm thick was completely reoxidized almost instantaneously when exposed to air at a

temperature used for the reduction.

Reduction time is another important factor that affects the reduction process. Figure 3(b)

shows the change of the reduced layer thickness with time at a constant temperature of 850 °C for

PSZT 64/26/10Ht'. A nearly linear relationship with a slight tendency for saturation at longer

times was seen. At higher temperatures, significant saturation of the reduced layer thickness was

observed.

Although the reduction reaction is very rapid in PSZT ceramics, the reduction of the

PSZT phase, unlike that of PLZT, is incomplete. Figure 4(a) shows the X-ray diffraction pattern

from a PSZT sample reduced at 975 °C. Even at this high temperature a significant amount of the

original PSZT phase remains in addition to the oxide phases such as PbO (massicot), ZrO 2,

ZrTiO4, and SnO 2 which result from the reduction process. At 975 °C, the rapid reaction led to

precipitation of a large amount of lead phase on the sample surface. With the additional loss of

lead phase due to reoxidation during cooling, metallic lead was nearly absent from the reduced

region. The diffraction pattern in Figure 4(a) was obtained aider removal of the lead particles

from the surface, and hence the diffraction peaks for the lead phase were not observed. Figure

4(b) shows the X-ray diffraction pattern from a sample reduced at 850 °C. In this case, only

metallic lead and the original PSZT phases are evident, and the lead phase was uniformly

distributed within the reduced layer.

As mentioned above, at a high temperature such as 975 °C, the rapid reaction in PSZT

ceramics results in the loss of a large amount of lead phase from the reduced region. As a result,

the reduced region has poor conductivity or even becomes an insulator. This is detrimental to the



performanceof Rainbowactuatorssincethereducedlayermustbeelectricallyconductivein order

for a Rainbow to operateproperly. To avoid the loss of the lead phase,lower reduction

temperaturesmust be used. However, a very low temperaturerequires impractically long

reductiontimes. It was noted that the usefultemperaturerangefor the production of PSZT

Rainbowsis very narrow, approximately850+_30°C. The optimal conditions for producing

RainbowsamplesfromPSZTceramicswerefoundto be850°C for 2-3hours.

4.2. PropertiesofPSZT AntiferroelectricRainbows

Figure 5 shows the polarization(P) - electric field (E) hysteresisloop of Rainbow

64/26/10I-1t'.Thehysteresisloopof a normal(non-Rainbow)sampleis alsogivenfor comparison.

Significantdifferencesbetweenthetwo hysteresisloopsareseen. First, a finite netpolarization

Ap, indicatingpartialpolingof thesample,wasfoundto exist in thevirgin stateof the Rainbow

sample. This phenomenon,which was also observedin ferroelectricPLZT Rainbows,10 is

believedto be associatedwith the internal stressin Rainbows. Second,the AFE to FE phase

switchingin the Rainbowoccurredat a muchlower field levelandwas lessabruptcomparedto

thenormalsample. Sincethe compositionof PSZT 64/26/10is locatednearthe AFE-FE phase

boundary,an intermediateP-E hysteresisloop characteristicof the two phases,namelya double

hysteresisloopwith amarkedremanentpolarization,wasobserved.

The hysteresisloops of Rainbow66/24/10Sand the correspondingnormal sampleare

shownin Figure6. Becausethecompositioniswell insidetheAFE phaseregion,a typicaldouble

hysteresisloop with no remanentpolarizationis seenfor the normal sample. The marginal

remanentpolarizationobservedin theRainbowwasprobablycausedby theinternalstress,which

will bediscussedlater.

Figure 7 shows the variation of axial displacementwith electric field for Rainbows

64/26/10HPand66/24/10S-1.A displacementas largeas273 lamwasobtainedfrom Rainbow

64/26/10HPasa resultof theAFE-FEphaseswitching.Theremanentdisplacementis attributable

to theremanentpolarizationasshownin Figure5(a). Rainbow66/24/10S-1alsoexhibiteda large



axial displacement due to the phase switching but little remanent displacement was found to exist.

The step-like displacement-field relationship of Rainbow 66/24/10S-1 was similar to that of the

normal sample as shown in Figure 8.

The polarization-electric field and axial displacement-electric field relationships of

Rainbow 66/23/11HP are shown in Figure 9. Of the samples studied, this sample is nearest the FE

phase region. As can be seen in the figure, Rainbow 66/23/11HP is antiferroelectric in the virgin

state, but stabilized in the ferroelectric state after being switched by the applied electric field. A

large displacement, approximately 145 gm, was produced during the initial AFE to FE phase

switching. The reorientation of ferroelectric domains after the initial switching led to a butterfly-

like loop of typical ferroelectrics, and moderate changes in the displacement.

Tables 2 and 3 summarize the results obtained from the PSZT Rainbows and the normal

samples, respectively. The Rainbow samples in general possessed a lower dielectric constant and

a higher loss factor than the normal samples. The phase switching fields, EAF and EFA , of the

Rainbow samples were lower than those of the normal ceramics, varying with composition. The

saturated polarization, however, was similar in the Rainbows and the normal samples. The total

field-induced axial displacement of the Rainbows due to the phase transitions varied from sample

to sample and was in the range of 102 to 273 gm, depending on the geometry as well as the

material properties of both the oxide and reduced layers. The largest displacement was found in

Rainbow 64/26/10HP, which is equivalent to a 63% displacement relative to the total thickness of

the sample.

The displacements obtained from the PSZT Rainbows were not as large as anticipated. In

Rainbow ceramics the displacements are controlled by the transverse field-induced strains of the

Rainbow oxide layer. Although the longitudinal strain in PSZT ceramics is particularly high, their

transverse strains are only approximately 1/4-1/5 the longitudinal strain, which are close to those

of the ferroelectric ceramics such as PLZT. The composition of PSZT 66/23/11, in which the

highest strains known were reported in the literature, exhibited different characteristics from those



reported; i.e., the unusually high induced strains, as reported, 5"6 were not reproduced in this

study. Moreover, this composition, after subjected to a cyclic applied field, was stable in the

ferroelectric state instead of the antiferroelectric state as described in the literature.

The effects of axial mechanical loading on the field-induced displacement and P-E

hysteresis loops of Rainbow 66/24/10S-1 are shown in Figures 10-11 for loads applied to the

surfaces of the oxide and reduced layers, respectively. The maximum displacement from each

displacement-field loop was evaluated, and plotted against loading weight in Figure 12. Clearly,

the displacements of the Rainbow depend on the manner in which load is applied. There is only a

slight change in the maximum displacement up to 530 grams when load was placed on the oxide

layer. The displacement with load on the reduced layer, however, decreased continuously with

increasing load. In both cases, loading has no significant influence on the polarization-electric

field hysteresis loop. In addition, both the AFE to FE and the FE to AFE phase transitions

became more abrupt as the loading force was increased.

The different characteristics under the two loading conditions discussed above can be

accounted for by the behavior of antiferroelastic domains under stress. Antiferroelastic domains

tend to align with the directions in which stress is effectively relieved. When load is applied to the

oxide layer of a Rainbow, antiferroelastic domains are aligned parallel to the Rainbow surfaces

due to the compressive stresses in the planar directions. This is because that the lattice constant

of the c-axis (domain direction) is smaller than that of the a-axis for the PSZT antiferroelectric

phase. 6 In contrast, when load is placed on the reduced layer, antiferroelastic domains are

oriented vertical to the surfaces as a result of the tensile stresses. Figure 13 shows schematically

the transverse dimensional change (which determines the field-induced displacement in Rainbows)

of the oxide layer upon application of an electric field under different loading conditions. The

loading conditions affect the displacement by altering the initial state of the oxide layer through

stress-induced preferred domain alignment. It should be pointed out that the geometry stiffness

and initial curvature of the Rainbow also influence the displacement during loading. The



combinedeffectsof the geometry stiffness, curvature, and domain alignment lead to the behavior

of the displacements shown in Figure 12. Because antiferroelastic domains are not polar, the

domain alignment under stress will not affect the P-E hysteresis loop, which is in good agreement

with the experimental results.

4.3 Curvature and Internal Stress of PSZT Rainbows

At room temperature, a Rainbow has a dome-shaped configuration due to the dimensional

mismatch between the oxide and reduced layers. Accordingly, internal stress exists in the

Rainbow. The contributions to the dimensional mismatch include: (1) the difference in thermal

expansion coefficient between the oxide and reduced layers, (2) the dimensional change of the

reduced layer due to oxygen (and possibly lead) loss, and (3) the dimensional change of the oxide

layer resulting from phase transitions. Generally, Rainbows made of ferroelectric ceramics have

positive curvature (reduced layer concave). It was found that all the PSZT Rainbows prepared in

this study exhibited negative curvature (oxide layer concave). Negative curvature implies that the

oxide layer is predominantly in tension. If the composition of a PSZT Rainbow is close to the

AFE-FE phase boundary, the tensile stress is sufficient to induce the antiferroelectric to

ferroelectric phase change. The net polarization observed in virgin Rainbow 64/26/10I-IP and the

reduction of the AFE-FE switching fields in the PSZT Rainbows are probably consequences of

the tensile stress.

The data shown in Figures 14(a)-(b) indicate that the negative curvature in the PSZT

Rainbows is attributable to the cubic-to-AFE phase transition at which the unit cell volume of the

PSZT ceramics is reduced. The bending deflection, h, is defined as the axial deflection of a

Rainbow with respect to the unreduced wafer, see the graph inserted in Figure 14(b). A positive

bending deflection corresponds to positive curvature. As is shown in Figure 14(a), the curvature

of Rainbow 66/23/11/-tP was changed from negative to positive after the Rainbow was subjected

to an applied electric field, which indicates that the FE and AFE states are responsible for the

positive and negative curvatures respectively. As the temperature was increased, the positive



curvatureof the Rainbow changed back to a negative value at the FE-AFE phase transition,

TFE.AF E. The curvature remained negative within the AFE phase range and became positive again

near the Curie point. The reduction of temperature brought the sample back to the original

antiferroelectric state (negative curvature). Figure 14(b) shows the same relationship for

Rainbow 62/28/10S. A change from negative to positive curvature was found near the

temperature of the AFE-to-cubic phase transition. Figure 15 indicates that the phase transitions

shown in Figure 14 are identical to those obtained from the temperature dependence of dielectric

constant.

4. Conclusion

The fabrication and properties of PSZT antiferroelectric Rainbow actuators have been

investigated. The reduction reaction in PSZT ceramics proceeds much more rapidly than in PLZT

ceramics. The optimal reduction conditions for the fabrication of PSZT Rainbows are 850 °C for

2 - 3 hours. The antiferroelectric-ferroelectric phase transitions occur at a lower field strength in

Rainbows as compared to normal samples. Large axial displacements in a range of 102 to 273

_m were obtained from the Rainbow samples by application of electric fields exceeding the phase

switching levels. The field-induced displacements of the PSZT Rainbows are dependent on the

manner of applying load to the samples. When load is placed on the oxide layer, there is only a

slight change in the displacements for loads up to 530 grams. The displacement with load on the

reduced layer, however, decreases continuously with increasing load. Antiferroelectric PSZT

Rainbows generally have negative curvature at room temperature due mainly to the paraelectric to

antiferroelectric phase transition in the oxide layer during cooling. The changes of material

properties of PSZT Rainbows with respect to normal ceramics are associated with the internal

stress resulting from the processing.
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Table 1. Identification of PSZT Rainbow samples.

Rainbow Diameter Oxide/Reduced
Sample (cm) (_tm)

66/23/11HP 2.72 302/135

64/26/10HP 2.72 294/135

64/26/10S 2.16 378/140

66/23/11S 2.16 271/190

66/24/10S-1 2.72 334/165

66/24/10S-2 2.16 400/115

62/28/10s 2.16 195/165

HP=Hot Pressed

S=Sintered



Table 2. Properties of PSZT Rainbow samples.

Rainbow Dielectric tan6 EAF/EFA PS or PR

Sample Constant (%) (kV/cm) (_tC/cm2)
DM SM

(ran) (%)

66/23/I 1Hp 796 2.2 7.5 (Ec) 35 195" 45

64/26/10Hp 730 3.4 19.5/-4.0 33 273 63

64/26/10S 821 3.9 16.5/-3.0 30 187 37

66/23/1 lS 734 3.1 7.0 (EC) 31 102" 22

66/24/10s- 1 626 5.4 28.5/10.0 31 208 42

66/24/10s-2 735 5.1 26.5/4.5 32 150 29

62/28/10s 826 2.3 27.5/6.5 31 110 31

Table 3. Properties of PSZT normal (non-Rainbow) ceramics.

Normal Dielectric tan6 Density EAF/Er:A Ps or PR $2 s S 1 s

PSZT Constant (%) (g/cm 3) (kV/cm) (p,C/cm 2) (x 104) (x 104)

66/23/11Hp 810 2.3 8.11 7.0 (Ec) 35 5.5 45.2*

64/26/10Hp 876 1.6 8.22 23/-2.0 36 6.8 29.5

64/26/10S 913 1.9 8.05 28/1.0 31 7.9 28.0

66/'24/10s 990 1.2 7.93 30/11.5 31 8.2 45.3

62/28/10s 882 1.9 7.97 30/9.5 32 8.5 45.7

EAF = Antiferroelectric to ferroelectric switching field.

EFA = Ferroelectric to antiferroelectric switching field.

Ps -- Saturated polarization.

PR s Remanent polarization.

Ec = Coercive field of ferroelectric phase.

DM = Maximum axial displacement with an applied electric field of 1.2XEAF.

SM = Maximum axial displacement (DM) divided by Rainbow thickness.

$2,s -- Transverse field-induced strain.

S l,s -- Longitudinal field-induced strain.

* obtained from initial phase switching.
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Stress-Enhanced Displacements in PLZT Rainbow Actuators

Abstract: The effects of stress-enhanced domain reorientation on the displacements from PLZT

Rainbow actuators were studied. Finite element modeling was used to analyze the bending and

internal stress of the Rainbows. The measured bending deflections were consistent with the

modeling data. The stress distribution revealed by the X-ray diffraction studies agreed well with

the modeling. Enhanced domain reorientation by the internal stress was observed from the

behavior of the XRD peaks under the influence of electric field. The maximum stress-enhanced

domain reorientation was found at the reduced/total thickness ratios where field-induced

displacements were maximized. The result indicates that the stress-enhanced domain

reorientation is an important contribution to the field-induced displacements in Rainbow actuators

1. Introduction

A new type of ceramic actuator - RAINBOW (Reduced And INternally Biased Oxide

Wafer), has recently been developed, which shows promising characteristics in a variety of

potential applications. 1 A Rainbow is produced by chemically reducing one major surface of a

high-lead containing ferroelectric which is placed on a graphite block and heat treated at an

elevated temperature. When the Rainbow is cooled to room temperature, a dome-like pre-

stressed oxide/reduced layer configuration is created. One useful feature of Rainbow actuators is

their strain amplifying effect which leads to very high electric field-induced displacements from

piezoelectric and electrostrictive materials. Although a Rainbow is similar in operation to the

conventional unimorph type benders in which displacements are controlled by transverse

piezoelectric or electrostrictive coefficients, it is considered that other mechanisms such as

enhanced domain reorientation and enhanced phase transition may contribute to the strain

amplifying effect owning to the unique structure of the Rainbow. 2

A Rainbow develops significant curvature and bending deflection due to the dimensional

mismatch between the oxide and reduced layers at room temperature. Accordingly, there exists a



nonuniformhigh-stressfield within the Rainbow. Oneof the fundamentaldifferencesbetweena

Rainbowactuatorand a unimorphbenderis the internalstressin the Rainbow. Resultsof this

work indicatethat the electricfield-induceddisplacementsfrom Rainbowactuatorsareenhanced

byinteractionof ferroelectricdomainswith theinternalstress.

Becausethebendingdeflectionin aRainbowisgenerallyso largethatit is beyondthelimit

of linear (small deflection)theoryof thin plates,finite elementmodeling(FEM) was used for

analysisof the internalstressdistribution. Thenatureof the stressat the oxide layersurfaceof a

Rainbowwas studiedwith anX-ray diffractiontechnique. The contributionof stress-enhanced

domainreorientationto the field-induceddisplacementswasdeterminedfrom the changesof X-

raydiffractionpeaksduringapplicationof electricfield. Theinfluenceof the internalstresson the

propertiesof Rainbowceramics,suchasdielectricconstantandpiezoelectriccoefficientd33 , was

observed.

2. Finite Element Modeling

The dimensional mismatch between the oxide and reduced layers results in the bending

and nonuniform internal stress of a Rainbow. In this paper, the axial deflection of a Rainbow

relative to its edge due to the bending during cool down is called bending deflection while the

axial deflection induced by electric field is referred to as field-induced displacement or simply

displacement. If the bending deflection is larger than one-half of the thickness of the Rainbow,

linear bending theory of thin plates will cause considerable errors. 3 In reality, Rainbow ceramics

generally exhibit bending deflections considerably larger than their thicknesses; therefore,

nonlinear (large deflection) bending theory must be used. Unfortunately, the exact solutions of

the equations from the nonlinear theory are generally unknown. Approximate solutions are

available only for simple situations.

In this study finite element modeling based on a commercial package ABAQUS (Hibitt,

Karlsson & Sorenson, Inc., version 5.3) was used to analyze the bending and internal stress as

well as field-induced displacement. Table 1 lists the sample dimensions and material parameters



whichwereusedin the modeling. Effective thermal expansion coefficients were used to account

for all the mechanisms that cause the dimensional mismatch between the oxide and reduced layers.

The detailed procedures of the finite element modeling will be given elsewhere.

Figure 1 shows the dome-mode configuration of a Rainbow obtained from 3-dimensional

modeling. Since the dome mode has axial symmetry, the bending can also be modeled with the 2-

dimensional, axisymmetric elements. Figure 2 illustrates the cross-sections of one-half of an

unreduced wafer and the corresponding Rainbow derived from the 2-dimensional modeling. The

important stress component for a Rainbow is the planar stress Sll in the radial direction, for

example, 1-direction in Figure 1. The following results were based on the 2-dimensional

modeling.

Figure 3 shows the bending deflection as a function of the ratio of the reduced layer

thickness to the total thickness (hereatter referred to as the thickness ratio). The values of 0 and 1

for the thickness ratio correspond to unreduced and fully reduced wafers, respectively. The

designations, RB 1053 and RB5553, were used to represent Rainbows made from PLZT 1.0/53/47

and PLZT 5.5/53/47 ceramics, respectively. As can be seen in Figure 3, the bending deflection

changes drastically when the thickness ratio is either small or close to 1, and there is a broad

maximum at the thickness ratio of approximately 0.5. The field-induced displacement exhibits a

similar dependence on the thickness ratio as shown in Figure 4; however, the broad maximum is

shit_ed to the thickness ratio of 0.6.

The distribution of the planar stsess Sjl through thickness at the different locations is

shown in Figure 5 for an RB1053 of the thickness ratio equal to 1/3. While the whole reduced

layer is in tension, the upper portion of the oxide layer is in tension and the lower portion is under

compression.

The change of the planar stress S H with the thickness ratio at the different locations on the

oxide layer surface of an RB1053 is shown in Figure 6. The results indicate that the entire oxide

layer is under compressive stress when the thickness ratio is greater than 0.7. Relationships

similar to Figure 6 occur in RB5553.



The distributionof the stress$11 across the oxide layer surface is shown in Figure 7 for

RB1053 with different thickness ratios. As can be seen, the entire surface is in tension when the

thickness ratio is equal to 0.3, which is typical of a Rainbow with a thick oxide layer. In contrast,

when the thickness ratio is equal to 0.8, which corresponds to a Rainbow with a thin oxide layer,

the whole surface is under compression. When the thickness ratio is equal to 0.6, the oxide layer

surface is partially in tension and partially under compression. The abrupt change of the stress

near the Rainbow edge is caused by the mechanical boundary conditions at the edge.

3. Sample Preparation

The PLZT ceramics used for the production of the Rainbow samples were prepared via

the mixed oxide process. Compositions 1.0/53/47 and 5.5/53/47 (La/Zr/Ti) were batched and

then mixed in water for 30 min. Calcining was performed at 925 °C for 2 hours, and milling was

carried out in an aluminia ball mill with trichloroethylene. Sample pellets were sintered at 1250

°C for 4 hours or hot pressed at 1200 °C for 6 hours at 14 MPa in an oxygen atmosphere. The

densities of the sintered ceramics were in the range from 7.65 to 7.80 g/cm 3 and those of the hot-

pressed ceramics were approximately 7.95 g/cm 3.

The Rainbow samples were produced from lapped wafers by placing the wafers on a

graphite block and chemically reducing them at 925-975 °C for 10-240 min. The different

reduction conditions were used to achieve a series of samples with different thickness ratios.

After cooling down to room temperature, the samples were sanded lightly on the reduced side to

remove any metallic lead and to expose the reduced layer. The samples were also sanded along

their edge to remove any reoxidized portions in the reduced layers which occurred during the cool

down. The dimensions of the Rainbows made from the sintered ceramics were 2.24 cm in

diameter and 0.0432 cm in thickness whereas those of the hot-pressed Rainbows were 2.92 cm in

diameter and 0.0508 cm in thickness. Epoxy silver electrodes cured at 200 °C were used for test

and evaluation of the samples.



4. Measurements

Domain orientation on the oxide layer surface of a Rainbow was examined with an X-ray

diffi'actometer (Scintag XDS 2000 TM) using Ni-filtered Cu Ka radiation at a scan rate of 2

degrees per minute. The intensities of the diffraction peaks were determined using the Gaussian

profile fitting. In examination of domain reorientation under the influence of applied electric

fields, thin aluminum electrodes, which can be penetrated by X-ray beams, were deposited on the

Rainbows in a vacuum chamber. Room temperature dielectric properties of the samples were

determined at 1 kHz using an LCR meter (LEADER, 7450-01). Piezoelectric coefficient d33 was

measured with a piezo d33 tester (Pennebaker Model 8000). Conventional dc hysteresis loop

equipment was employed to determine the relationship between polarization and electric field. An

apparatus containing an LVDT (Linear Variable Differential Transformer, 050 DC-E Lucas

Schaeritz Co.) was used to measure the bending deflection and field-induced displacements. The

thickness ratios were determined from the cross-sections of the Rainbows under an optical

microscope, or from the coercive fields of the Rainbows with assumption that Rainbows and

normal (non-Rainbow) materials have an identical coercive field. Good agreement between the

two types of measurements was obtained.

5. Experimental Results

A comparison of the measured bending deflections with the FEM results for RB 1053 and

RB5553 with different thickness ratios are given in Figures 8 and 9, respectively. The

experimental data for RB 1053 are generally in agreement with the modeling. The deviation from

the modeling for larger thickness ratios may result from stress-induced preferred domain

orientation which leads to reduced bending curvature. Agreement between the experiment and

modeling for RB5553 seems excellent in the entire range of the thickness ratio. This is surprising

because, similar to RB 1053, a difference between the experiment and modeling was expected due

to the preferred domain orientation. It should be pointed out, however, that since the effective



thermalexpansioncoefficients used in the modeling are not precisely known, the values of the

bending deflection from the modeling for RB5553 may have considerable errors.

Both the PLZT 1.0/53/47 and PLZT 5.5/53/47 ceramics exhibited a tetragonal structure,

though mixed structures (tetragonal and rhombohedral) were observed in the hot-pressed PLZT

1.0/53/47. The nature of the planar stress in the proximity of the Rainbow surface was studied by

examining the intensity ratio of the (200) and (002) X-ray diffraction peaks. Figure 10 shows the

intensity ratio of the (200)/(002) diffractions, which were obtained from the center portion of a

sample, as a function of the thickness ratio for Rainbows and normal (thickness ratio=0) samples.

The diffraction profiles for selected samples of different thickness ratios are displayed in Figure

11. Theoretically, the intensity ratio is equal to 2 for a virgin, stress-free, normal sample. A value

slightly greater that 2 was observed for the normal samples of both PLZT 1.0/53/47 and PLZT

5.5/53/47. The intensity ratio will be greater or smaller than 2 when a sample is subjected to a

tensile or compressive stress in the planar directions. The data shown in Figure 10 are in good

agreement with the stress distribution derived from the FEM (Figure 6). That is, the tensile and

compressive stresses correspond, respectively, to the intensity ratios greater and smaller than 2.

The initial, switching, and unipolar field-induced displacements, which are defined from

the displacement-electric field relationship in Figure 12, are plotted in Figure 13 against the

thickness ratio. The three types of displacements reach a maximum in the vicinity of the thickness

ratio of 0.3 for both RB1053 and RB5553. The thickness ratios corresponding to the maximum

unipolar displacements are apparently different than that predicted by the modeling (Figure 4). It

is, however, noted that the displacement maxima are consistent with the maximum of the tensile

stress on the Rainbow surface (Figure 6). This suggests that the displacement maxima are very

likely associated with stress-enhanced domain reorientation.

Figure 14 shows the variation of the intensity ratio of the (200)/(002) peaks with unipolar

applied field for a normal PLZT 1.0/53/47 sample and Rainbows with different thickness ratios.

The change in the intensity ratio is associated with the amount of 90 ° domain reorientation. From

the average slope of each loop in Figure 14, it is evident that more 90 ° domain reorientation was



involvedfor thoseRainbowspossessinghigherdisplacements.Similareffectswere alsoobserved

inRB5553(Figure15)andhot-pressedRB1053(Figure16). Someof the loopsshownin Figures

15-17havebeendeliberatelyshiftedalongtheverticalaxesfor a clearcomparison. It is not yet

known if the absolutevaluesof the intensityratio are significantfor Rainbows of different

thicknessratios.

The variationsof dielectricconstantand piezoelectricconstantd33 with the thickness

ratio are shown in Figures 17-18, respectively. There is a marked reduction, particularly for

RB1053, in both dielectric constant and piezoelectric constant at the thickness ratios where the

surface stress is changed from tension to compression. It should be noted that, due to clamping

effects by the reduced layer, the dielectric and piezoelectric constants of a Rainbow are

distinguishable from those of the normal (thickness ratio=0) sample even if no internal stress

exists.

6. Discussion

For the ordinary ferroelectric ceramics with tetragonal or rhombohedral structure, the

major contributions to field-induced strains include the piezoelectric effect and domain

reorientation which are usually referred to as the intrinsic and extrinsic piezoelectric effects in the

literature, respectively. The extrinsic effect may contribute more than half of the total

piezoelectric effect depending on the lattice structure and composition of a ceramic, as well as

temperature. 5"8 Extrinsic contributions, enhanced by prestressing a ceramic, were considered in

the past as a means of obtaining a larger piezoelectric effect. 9-10 For those Rainbows having a

tensile stress in their oxide layer, domains in the tensile stress region tend to align parallel to the

surface. When an electric field is applied across the oxide layer, these domains will be switched

normal to the surface. As the applied field is reduced to zero, the domains will be switched back

to the parallel direction under the influence of the tensile stress. These processes introduce

additional contribution to the field-induced displacements in the Rainbow actuators. A Rainbow

actuator provides an example of a stress-enhanced piezoelectric effect.



To obtain a significant result from the extrinsic contribution, (1) domain structures must

be easily controlled by stress, and (2) the reorientation of domains must lead to significant strains.

Compositions on the morphotropic phase boundary usually meet these requirements. This is

probably one of the reasons why Rainbow actuators with compositions on the phase boundary

produce considerably higher displacements than those of other compositions. 2 The displacements

from the phase boundary compositions are also significantly higher than those predicted by

modeling without considering the stress-enhanced effect as given in Figure 4 and Reference 11.

The contribution of field-enforced phase transitions to displacement for compositions in

or near the morphotropic phase boundary was also studied by X-ray diffraction. A study on

composition 1.0/53/47 showed no significant contribution from the field-enforced phase

transition. It is possible to quantitatively estimate the contribution of the domain reorientation to

field-induced displacements in Rainbow actuators by evaluating the degree of the domain

reorientation in terms of the intensity ratio of XRD peaks. This work will be given in a future

report.

7. Conclusion

Effects of stress-enhanced domain reorientation on the displacements from the Rainbow

actuators made of PLZT 1.0/53/47 and PLZT 5.5/53/47 ceramics have been studied. Finite

element modeling was used to analyze the internal stress distribution and field-induced

displacements. The results of the finite element modeling indicate that the stress component in the

radial direction of a Rainbow changes along the radius as well as through the thickness, which is

typical of large-deflection bending. From the modeling, both the bending deflection and the

displacement induced by a unipolar electric field are a maximum at the ratios of the reduced layer

thickness to the total thickness equal to 0.5-0.6.

Stress in the Rainbows was revealed from the preferred domain orientation through

examination of the intensity ratio of the (200)/(002) X-ray diffraction peaks. The stress

8



distributionsdeduced from the XRD studies agreed well with the modeling. The bending

deflections from the experiment were basically consistent with the modeling data. Enhanced

domain reorientation, which was related to the internal stress, was observed from the behavior of

the XRD peaks under the influence of electric field. The maximum stress-enhanced domain

reorientation was found at the thicka_ess ratios where field-induced displacements were

maximized. This result, combined with a significant difference in the displacement between the

experiment and modeling, indicates that the stress-enhanced domain reorientation is an important

contribution to the field-induced displacements in Rainbow actuators
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Table 1. Material Parameters for Bending and Displacement Modeling.

Parameters for Modeling of Bending

Diameter = 22.4 mm, Total Thickness = 0.432 mm

Young's Modulus (RB1053) -- 7.42 xl010 N/m 2 (oxide), 6.26 xl010 N/m 2 (reduced)

Young's Modulus (RB5553) = 7.79 xl010 N/m 2 (oxide), 6.68 xl010 N/m 2 (reduced)

Poisson's Ratio (RB1053) = 0.374 (oxide), 0.342 (reduced)

Poisson's Ratio (RB5553) = 0.300 (oxide), 0.380 (reduced)

Effective Thermal Expansion Coefficients = 0.5 x 10 -5 (oxide) and 1.0 x 10 -5 (reduced)

Parameters for Modeling of Field-Induced Displacement *

Cll E --- 12.1 xl010 N/m 2, C12 E -- 7.54 xl010 N/m 2, C13 E = 7.52 xl010 N/m 2

c33E = 11.1 xl010 N/m 2, c44 E = 2.11 xl010 N/m 2

d33 = 374 xl0 -12 C/N, d31 =-271 xl0 -12 C/N, d15 = 584 xl0 -12 C/N

e33T/e01730, 811T/e0= 1700

Unless specified, the same parameters were used for modeling of RB 1053 and RB5553. The

parameters for the reduced layer are identical in the analyses of bending and displacement.

• All the parameters except for d31 are those from PZT-5. 4



Figure 1. Dome-mode configuration of a Rainbow obtained from

3-dimension finite element modeling.

Rainbow

Unreduced Wafer

Figure 2. Cross section of one-half of an unreduced wafer and

the corresponding Rainbow derived from axial symmetry modeling.
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Figure 5. Distribution of planar stress S11 through thickness
for RB 1053 (the vertical axis is to be multiplied by 10^7).
Center=the center of a Rainbow, Edge=the edge of a Rainbow,
and Middle=halfway between the center and the edge.
Negative values in the vertical axis represent compressive stress.
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Part III.

Strain-Electric Field Hysteresis of Some PLZT, PBZT and PMN-Based

Ferroelectric Ceramics



Strain-Electric Field Hysteresis of Some PLZT, PBZT, and PMN-Based

Ferroelectric Ceramics

Abstract: The characteristics of strain-field hysteresis for some (Pb,La)(Zr, Ti)O 3 (PLZT),

(Pb,Ba)(Zr, Ti)O 3 (PBZT), and Pb(Mg, Nb)O 3 (PMN)-based ceramics were investigated in terms

of the quantities of maximum absolute hysteresis and percentage hysteresis. Under a unipolar

applied field of 20 kWcm, the maximum absolute hysteresis exhibited a broad maximum near the

tetragonal-rhombohedral morphotropic phase boundary for the PLZT 5.5/100-y/y series of

ceramics while the percentage hysteresis changed only slightly with composition. When the

applied field ranged from -0.5E c to +30kWcm, a sharp peak in both the maximum absolute

hysteresis and percentage hysteresis was observed near the phase boundary due mainly to

enhanced domain relaxations. For the PLZT x/65/35 series, the maximum absolute hysteresis and

the percentage hysteresis displayed a maximum at -8 atom% La. The PMN, PLZT and PBZT

samples with relaxor characteristics possessed considerably less hysteresis compared to other

ferroelectfic samples studied. The best of the PMN samples had a percentage hysteresis less than

one. It was found that the ferroelectric ceramics with larger field-induced strains usually

possessed more hysteresis.

1. Introduction

The hysteresis accompanying electric field-induced strain in ferroelectric ceramics has been a

major concern in the application of these materials to actuators. 1-3 Among other relevant

properties, desired materials for actuators should exhibit large electric field-induced strains and

little strain-field hysteresis. Ordinary ferroelectric ceramics are known for their special

characteristics including significant nonlinearities and marked hysteresis. When an electric field is

applied to a ferroelectric ceramic, the dimensions of the ceramic will change due to the

piezoelectric effect, electrostrictive effect, and reofientation of ferroelectric domains. Hysteresis



is manifested as the difference between the strain curves of increasing and decreasing electric

fields.

The phenomena of hysteresis (dielectric and elastic) in ferroelectrics have been the subject of

many investigations. 4-9 It is generally considered that the hysteresis is mainly attributed to the

field-induced relaxations of ferroelectric domains. Specifically, the hysteresis in ferroelectric

materials is determined by the relaxations associated with the nucleation and growth of new

ferroelectric domains antiparallel to the applied electric field and the reorientation of existing

domains by domain wall motion. Although a good deal of work has been carried out in order to

understand polarization reversal and domain dynamics, 10-18 the mechanisms for the hysteresis

are not yet fully understood. Along with the complexity of domain configurations, the hysteresis

effect can also be greatly influenced by the nature of the electrodes on the samples, the nature of

sample surfaces, electrical conductivity, the presence of defects and imperfections, and by the

microstructures (particularly the grain sizes). 19-21

The purpose of this investigation was to characterize and analyze the strain-field hysteresis

of some PLZT, PBZT, and PMN-based ferroelectric ceramics which may be used for RAINBOW

(Reduced And INternally Biased Oxide Wafer) actuators. The experimental results will be

discussed in terms of current theories on the hysteresis phenomena.

2. Sample Preparation and Measurements

Conventional mixed-oxide processing techniques for ferroelectric ceramics were used to

prepare a majority of the samples. Some of the PLZT samples were made by a hot-pressing

method. Details of the preparation procedures can be found elsewhere. 22 The sintered and hot-

pressed ceramics were lapped to dimensions of 1.0xl.0x0.76 cm. The two major surfaces of the

samples were electroded with electroless nickel plating for measurements.

An apparatus containing an LVDT (Lucas Schaertz Co. 050 DC-E), as shown in Figure 1,

was used to determine the change of sample dimensions with electric field. The measurement



sensitivity was estimated to be approximately 0.05 gtm. Transverse strain of the samples was

measured with a low-frequency applied field. The strain hysteresis discussed in this paper was the

hysteresis of transverse strain. It is worth mentioning that the strain hysteresis was sensitive to

experimental conditions. The main sources of errors for the measurements were the small loading

and electronic noise from the LVDT. The loading exaggerated hysteresis due to mechanical

inertia while the electronic noise degraded measurement reproducibility. The overall error of the

measured strain was approximately 5%.

3. Experimental Results

In most of the literature, the strain hysteresis was discussed only qualitatively. No consistent

quantitative definition has been found. This is probably due to the fact that, in addition to the

material properties, the hysteresis effect strongly depends on measurement conditions such as the

magnitude and frequency of the applied field and the level of the loading on the sample. In this

study, the quantities of maximum absolute hysteresis and percentage hysteresis were used for

characterization of the hysteresis. The maximum absolute hysteresis is defined as the maximum

strain difference between the curves of increasing and decreasing electric fields, and the

percentage hysteresis is defined as the maximum absolute hysteresis as a percentage of the total

strain within the range of the applied field, as is illustrated in Figure 2.

The percentage hysteresis has been previously used in the literature; and in most cases, this

parameter can adequately represent the extent of hysteresis. The maximum absolute hysteresis

indicates the actual hysteresis a sample may produce under certain conditions. Both of these

parameters vanish for materials with zero hysteresis. If the applied field is cycled between

negative and positive field strengths greater than the coercive field of the sample, a butterfly-like

strain-field hysteresis loop is produced. In this case, a quantitative description of the strain

hysteresis is more difficult and not under consideration here.

The strain-electric field relationships with a unipolar applied field of 20 kV/cm are given in

Figures 3 through 5 for PLZT, PBZT and PMN ceramics, respectively. Hysteresis data were



determinedfrom the figures and are listed in Table 1. The variations of maximum absolute

hysteresis and percentage hysteresis with Zr content were plotted in Figures 6(a)-(b) for the PLZT

5. 5/100-y/y series ceramics which is located across the ferroelectric morphotropic tetragonal (FT)

- rhombohedral (FR) phase boundary. As can be seen, the maximum absolute hysteresis, ASm_x,

exhibits a broad maximum in the vicinity of the phase boundary. The percentage hysteresis,

however, increases gradually with Zr concentration due to the reduction of the total strain at

higher Zr concentration.

For the other PLZT compositions in Table 1, PLZT 8.5/65/35 has a large percentage

hysteresis because of the large ASmax resulting from high strain nonlinearity. The relaxer PLZT

9.5/65/35 shows a percentage hysteresis considerably smaller than that of other PLZT

compositions. The hysteresis data for PBZT ceramics in Table 1 are similar to those of the PLZT

5.5/100-y/y series. The PMN ceramics, in general, have hysteresis considerably less than the

PLZT and PBZT ceramics, with the percentage hysteresis being only a few percent or less.

The hysteresis data obtained in an applied field range from -0.5Ec, up to +30 kV/cm are

given in Table 2. In this case, the contribution of enhanced domain switching to the strain is

included. The strain-field relationships for selected compositions are shown in Figures 7-8. Table

2 also lists So, SI0 and $20 which are the absolute hysteresis measured at 0, 10 and 20 kV/cm,

respectively. The So, Si0 and $2o combined can be used to indicate strain nonlinearity. Because

of the enhanced domain switching, the total strain, Stot_l, shown in Table 2 are much larger than

those in Table 1 for the compositions with a definite coercive field. The maximum absolute

hysteresis, which is usually found near zero electric field, is also greatly enhanced by the domain

switching. As a result, the values of the percentage hysteresis in Table 2 are considerably larger

than those in Table 1.

Figures 9(a)-(b) show the changes of the hysteresis with Zr content for the data in Table 2

for PLZT 5.5/100-y/y samples. It can be seen that both the maximum absolute hysteresis and the

percentage hysteresis are a sharp maximum at the FT-Fa phase boundary. The PLZT x/65/35

series samples display a maximum in the hysteresis at -8 atom% La, as shown in Figures 10(a)-

4



(b). In addition, it was found that the hot-pressed ceramics exhibited less hysteresis than the

sintered ceramics.

4. Discussion

A number of mechanisms, depending on composition and crystal structure, may contribute

to the electric field-induced strain in ferroelectric ceramics. These mechanisms include the

electrostrictive effect, piezoelectric effect, domain reorientation, and field-enforced phase

transitions. The major contribution to the strain hysteresis is considered to be associated with

ferroelectric domain switching and reorientation. When a ferroelectric ceramic is cooled down

through its Curie point, special domain configurations are formed so as to relieve the internal

stresses resulting from spontaneous strain and to minimize depolarization energy. Both 180 ° and

90 ° domain walls exist in the domain configurations of tetragonal ceramics, but only 90 ° domain

switching contributes to field-induced strains. The relaxations associated with domain nucleation

and domain wall motion give rise to significant strain-field hysteresis.

It has been found that defects and imperfections markedly affect domain behavior. 5 The

sharp peaks at the FT-F R phase boundary in Figures 9(a)-(b) are probably ascribed to the complex

microstructures at the boundary which enhance relaxations associated with domain switching.

The influence of the phase boundary on domain reorientation, however, is less pronounced under

a unipolar applied field, since in that case a broad peak was seen (Figure 6(b)).

The grain size of ferroelectric ceramics has a significant effect on the strain hysteresis. As

the grain size is decreased, the amount of 90 ° domain wall is reduced considerably; therefore the

strain hysteresis is diminished. 25 In addition, a high internal stress field is built up as grain size

decreases further. This stress field tends to suppress the lower symmetry ferroelectric phase,

forcing it into a pseudo-cubic structure. 8, 26-28 It follows that both the strain magnitude and

strain hysteresis are reduced drastically. The smaller values of the hysteresis for the hot-pressed

samples, as compared to the sintered samples, are likely due to the smaller grain sizes of the

former. Reducing grain sizes through processing has been found to be a very effective way to

5



minimize the strain hysteresisbut usually at the expenseof decreasingstrain magnitude

considerably.

Themuchlesshysteresiswhichwasobservedin therelaxorferroelectricsof PMN andsome

PLZT and PBZT compositionsinvolveda differentmechanism.In relaxor materials,domain

walls are non-existent,but there are the so-called microdomainregions resulting from

compositionalfluctuations.29"32 Apparently,very little hysteresiswill occur in the relaxor

materials. Relaxor ferroelectrics are very promising for actuator applications due to their little

hysteresis; however, strains generated by these materials are usually smaller than those of ordinary

ferroelectrics.

The electrodes on a sample can influence the nucleation rate of new domains because the

new domains are often initiated at the interface between the electrode and the ferroelectric. 22"24

It was found that more hysteresis occurred for certain compositions when silver electrodes were

used instead of nickel electrodes.

The experimental results in this study indicate that the ferroelectric ceramics with larger

strains usually possess more hysteresis due to the inherent nature of these materials. This can be

seen by plotting the maximum absolute hysteresis against the total strain for all the samples

(Figure 11). A similar phenomenon is also seen in a plot of the percentage hysteresis vs. the total

strain. It appears that a method capable of decreasing the hysteresis will also reduce the strain

magnitude. It should be noted that the hysteresis is not a material property since the former

depends on measurement conditions. For this reason, caution must be exercised when hysteresis

data are compared in the literature.

4. Conclusions

The characteristics of low-frequency strain-electric field hysteresis for some PLZT, PBZT,

and PMN-based ceramics have been investigated. The quantities of maximum absolute hysteresis

and percentage hysteresis were used to characterize and analyze the hysteresis effect.

8



Under a unipolarapplied field of 20 kV/cm, the maximum absolute hysteresis exhibits a

broad maximum near the tetragonal-rhombohedral morphotropic phase boundary for the PLZT

5.5/100-y/y series samples while the percentage hysteresis changes only slightly with

composition. When the applied field range is -0.5E c to +30kV/cm, a sharp peak in both the

maximum absolute hysteresis and percentage hysteresis is observed near the phase boundary due

to enhanced domain relaxations. For the PLZT x/65/35 series ceramics, the maximum absolute

hysteresis and the percentage hysteresis display a maximum at -8 atom% La. The hot-pressed

PLZT ceramics have less hysteresis than the sintered ceramics, probably because of different grain

sizes.

The PMN, PLZT and PBZT samples with relaxor characteristics possess considerably less

hysteresis compared to other samples studied. The best of the PMN samples has a percentage

hysteresis less than one. It was found that ferroelectric ceramics with larger field-induced strains

usually exhibit more hysteresis.
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Table 1. Strain-field hysteresis of PLZT, PBZT, and PMN-based ceramics.

[Sample ASmax ASIo / Sper Stotal [xl04 xl04 (%) xl04

PLZT 5.5/53/47 (La/Zr/Ti) 0.78 0.72 15.7 5.1

PLZT 5.5/55/45 0.80 0.72 15.1 5.3

PLZT 5.5/56/44 0.89 0.79 17.3 5.2

PI..ZT 5.5/57/43 0.86 0.70 17.0 5.3

PI..ZT 5.5/58/42 0.92 0.66 16.4 5.5

PLZT 5.5/59/41 0.92 0.70 17.0 5.4

PLZT 5.5/60/40 1.00 0.72 17.5 5.7

PI..ZT 5.5/61/39 0.92 0.72 20.0 4.5

PLZT 5.5/62/38 0.79 0.66 19.0 4.2

PLZT 5.5/64/36 0.76 0.72 21.1 3.8

PLZT 7.0/65/35 0.66 0.52 14.3 4.2

PLZT 8.5/65/35 1.00 0.74 17.5 5.7

PI.ZT 9.5/65/35 0.65 0.55 7.9 7.8

PBZT 27/70/30 (Ba/Zr/Ti) 0.81 0.79 14.0 5.7 [

IPBZT 27/57/43 2.30 0.80 26.4 8.7

PMN:PT:BT 83.75/13.75/2.5 0.05 0.05 2.6 1.9 I

IPMN:PT:BT 89.86/8.89/1.25 <0.05 <0.05 <1 2.3

see Figure 2 for the def'mition of the relevant parameters.



Table 2. Strain-field hysteresis of PLZT, PBZT, and

I Sample So Slo I $20xl04 xl04 xl04

PMN-based ceramics.

xl04 (%) xl04

PLZT 5.5/51/49 1.5 2.0 30.3 6.6

PI.ZT 5.5/53/47 2.0 2.5 28.0 8.9

PLZT 5.5/55/45 2.5 2.7 1.0 2.9 25.7 11.3

PLZT 5.5/56/44 2.6 2.5 1.2 3.2 26.7 12.0

PI..ZT 5.5/57/43 2.2 4.7 34.5 13.6

PLZT 5.5/58/42 6.5 2.0 1.1 6.5 39.5 16.5

PLZT 5.5/59/41 5.3 2.0 0.7 5.3 40.2 13.2

PLZT 5.5/60/40 1.3 4.4 37.3 11.8

PLZT 5.5/61/39 1.2 3.0 33.3 9.1

PLZT 5.5/62/38 1.1 2.6 30.6 8.5

PLZT 5.5/64/36 1.0 1.8 24.7 7.3

PLZT 7.0/65/35 1.9 1.1 0.5 2.0 21.1 9.5

PLZT 7.5/65/35 2.7 0.9 0.4 2.8 34.1 8.2

PI.,ZT 8.0/65/35 3.2 0.7 0.5 3.4 27.2 12.5

PLZT 8.5/65/35 1.5 0.7 0.4 2.2 21.8 10.1

PI_,ZT* 9.0/65/35 0.0 0.8 0.4 1.6 20.3 7.9

PLZT* 9.5/65/35 0.0 0.6 0.2 0.7 10.4 6.7

PLZT 6.0/65/35 2.1 3.0 24.0 12.5

PLZT 8.0/65/35 0.7 2.3 19.0 12.1

PLZT* 9.0/65/35 0.8 1.4 14.6 9.6

PLZT* 9.5/65/35 0.4 0.5 5.6 8.9

PBZT* 27/70/30 0.0 0.5 0.2 0.5 7.0 7.13

PBZT 27/57/43 0.5 0.5 0.4 2.0 19.2 10.2

PBZT 27/50/50 1.4 1.6 1.I 1.7 19.1 8.9

PMN:PT:BT* 0.0 0.2 0.1 0.3 8.1 3.7
83.75/ 13.75/2.5

PMN:PT:BT* 0.0 0.3 0.2 0.4 8.9 4.5
89.86/8.89/1.25

see Figure 2 for the def'mition of the relevant parameters.
* composition with relaxor characteristics
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Figure 1. Schematic of apparatus for displacement measurement.
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Figure 2. A typical transverse strain-electric field loop with an

applied field range from --0.5Ec to +30 kV/cm, showing the

definitions of parameters for the strain hysteresis.

ASmax : Maximum absolute hysteresis

AS10: Absolute hysteresis at 10 kV/cm

Sper = ASmax/Stotal : Percentage hysteresis
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ABSTRACT

Rainbow devices are benders with promising displacement and load bearing capabilities.

Benders are otten used in the audio range with large driving electric fields. In this report

properties of piezoelectric Rainbow devices based on PLZT compositions near the

morphotropic phase boundary are reported for a wide range of frequencies. The

fundamental bending mode is shitted to lower frequencies with increasing AC field. With

DC bias the fundamental bending mode can be shitted in either direction. All of the

observed shit, s in resonant frequencies are consistent with the changes in the geometry of

a Rainbow with the applied field. Rainbow devices displayed a reduction in switchable

polarization and field-induced displacement in the low frequency range for high driving

field conditions. Reduction of the displacement was also observed at moderate field levels

in the frequency range well below the fundamental bending mode. Possible mechanisms to

account for the observed behavior of Rainbow devices are presented.

INTRODUCTION

There are a number of devices, including pumps, speakers, laser deflectors, optical

scanners, and relays, which use piezoelectric benders to obtain desired displacement

levels. L2 A novel bender called a Rainbow (Reduced And INternally Biased Oxide

Wafer) with promising characteristics was recently developed at Clemson University.

Rainbow actuators consist of an electromechanically active layer (piezoelectric,

antiferroelectri¢, or electrostrictive) constrained by an electrically conducting, chemically

reduced layer. Unlike the traditional unimorphs, the Rainbow is a monolithic device. The

conducting layer is formed by exposing one side of a lead-containing ceramic to a

reducing atmosphere produced by placing the ceramic in contact with a carbon block at

high temperature. The reduced layer is not piezoelectric, and it acts both as the electrode

and the constraining part of the bender. Rainbow devices with up to 1 mm displacement

and 10 kg load-beating capability were built. 3 Not surprisingly, load-bearing capability

and displacements have an inverse relationship to each other. In previous publications

large field electromechanical properties of Rainbow devices were characterized at low

frequencies. 4 In addition, impedance measurements identified a number of low frequency



bending modes._ Experimentallydeterminedlocationsof resonancemodes were in
reasonableagreementwith theresultsof FiniteElementModeling(FEM). However,the
FEM resultssignificantlyunderestimatedtheobservedhighfield displacements.Nonlinear
contributions to ferroelectric properties are known to be especially important at high

fields, so the discrepancy between the FEM and experimental results in part may be

accounted for by ferroelectric nonlinearities, since the FEM utilizes primarily low field

linear properties. Rainbow devices have considerable internal stress which develops

during the cool down stage following the reduction step. The internal stress originates

from three sources: 1) the difference in thermal expansion between the reduced and oxide

layers, 2) the volume change of the reduced layer occurring during the high temperature

reduction step, and 3) the volume change of the oxide layer due to the ferroelectric phase
transition. Internal stress influences all of the important properties of ferroelectric

ceramics. 6

In this report, the electromechanical characterization of Rainbow devices is

extended to high frequency, high drive conditions. This information is important in

assessing Rainbow applicability for the previously mentioned devices. A considerable

amount of work has been done to characterize the nonlinear response of ferroelectric

ceramics to high drive conditions. The field-induced enhancement of the piezoelectric

properties was measured using an intefferometer at frequencies well below that of the

fundamental piezoelectric resonance and has been attributed to the nonlinear domain wall

contribution. 7'8 The occurrence of low frequency bending modes in Rainbow devices

permits the direct observation of nonlinearities in the vicinity of the fundamental

resonance.

Rainbow samples were prepared from PLZT 1.0/53/47 (La/Zr/Ti) and PLZT

6.0/56/44 ceramics. These materials were chosen because of their proximity to the

morphotropic phase boundary where ceramics with excellent piezoelectric properties are
known to exist. 9

EXPERIMENTAL PROCEDURE

PLZT 1.0/53/47 and PLZT 6.0/56/44 ceramics were prepared using a conventional mixed

oxide process. Following calcination at 925 °C for 2 hours, the milled and dried PLZT

6.0/56/44 powders were cold pressed as preform slugs and then hot pressed at 1200 °C

for 6 hours at 14 MPa in an oxygen atmosphere. The PLZT 1.0/53/47 samples were

sintered at 1250 °C for 4 hours. The PLZT wafers were then placed on graphite blocks

and reduced in a preheated furnace at 925-975 °C from 10 to 240 minutes to obtain

Rainbows with a wide range of oxide/reduced layer thickness ratios. Epoxy silver paint,

cured at 200 °C, was applied as an electrode. To avoid reoxidation, the samples were

poled at room temperature. The poling fields were typically twice the strength of the

coercive field. The Rainbow geometry and poling direction are shown in Figure 1.
The location of the resonances of the Rainbow devices were determined with an

HP 4194 impedance analyzer as previously described. 5 A ZMI-1000 (Zygo Corp.)

interferometer was used for the direct observation of the field-induced displacements. The

experimental arrangement is shown in Figure 2. The laser head consists of a stabilized

laser, an acousto-optic modulator, and a 20 MHz oscillator. The laser head provides a



beamwith two orthogonalpolarizationshavingdifferentfrequencies,ft andf2,which are
separatedby 20 MHz. The interferometerconsistsof a polarizingbeamsplitterand two
reflectors;oneis fixedandtheotheris theRainbowsample.The polarizingbeamsplitter
dividesthe laserbeaminto two frequencycomponents.It directsthe f2 componentto a
stationaryreflectorandthet"1componentto theRainbowsample.Theopticalpathchange
modulatesthe frequencydifferencef_-f2. The recombinedsignal is transmittedto the
measurementboard by a fiber optic cable. The measurementboard comparesthe
modulatedsignalF=to theunmodulatedsignalFt. The accumulatedphaseinformationis
convertedto the absolutedisplacement.The interferometerhas24 A resolutionand a
maximumsamplingrateof 133KHz. Reflectivetape(3M) wasattachedto the top of the
Rainbow sampleto obtain the necessaryreflectivity for the sampleto serve as the
nonstationaryreflector. A BK precision3011B waveform generatorsuppliesan AC
voltage,which is amplifiedby aKepkoBOP500M precisionamplifier. At low frequency
andlargedriveconditions,thefield-induceddisplacementandpolarizationhysteresisloop
were measuredsimultaneously.Thereporteddisplacementdataare the averagesof two
or moremeasurements.For the hysteresisloopmeasurementsa 15_tFcapacitorC,_fwas
insertedin serieswith the sample. An HP 54504Adigitizing oscilloscopewasused to
storethe hysteresisloops. The oscilloscopewas interfacedwith a personalcomputer
whichwasusedfor dataanalysis.

RESULTSAND DISCUSSION

Themechanicalboundaryconditionsimposedon aRainbowsamplestronglyinfluenceits
electricalfield-inducedcharacteristics.Modelingclaywasappliedalong the peripheryof
the samplesto keep themin intimatecontactwith the conductingplate on which the
samplesrest during measurement.The largestdisplacementswere obtainedwhen the
samplewas evenly constrainedaround its peripheryby the clay. Comparisonof a
uniformlyconstrainedsampleto onewith constraintsimposedonly on two oppositesides
is shownin Figure 3. The moreconstrainedsamplehadhigherdisplacementsnearthe
resonancepeak and the peak was shiPtedto higher frequency. An upward shift of
resonancefrequencieswasalso detectedwith an HP 4194 impedanceanalyzer. Larger
displacementswere also observedwhenRainbowswere lifting weights.4 The enhanced
displacementobservedwith betterclampingwas likelydueto the stiffeningof aRainbow
and increasein the contactareabetweenthe sampleandtheplate on which it is resting.
Theflatteningof the sampleis of lessimportancesincetheFEM predictsthe lowering of
the resonancefrequencies.Theboundaryconditionwith a sampleuniformly constrained
at its peripherywasusedfor all of the samplemeasurementsreportedthereafterin this
paper.

For the linear piezoelectricresponse,the general expression for the converse

piezoelectric effect at constant stress is

x=dE (1)

where x is the field-induced strain, d is the piezoelectric constant, and E is electric field.



Thefield-induceddisplacement of Rainbow actuators is not uniform. The largest

displacement is obtained at the center of a Rainbow. Since the displacement is not

uniform and is dependent on both the geometry and the material properties, it is

appropriate to use the effective piezoelectric constants. The effects of the AC driving field

strength on the resonance properties of PLZT 6.0/56/44 Rainbow is shown in Figure 4.

On the vertical axis is a new bender piezoelectric coefficient b33(eft). Previously, the
effective d33 coefficient was used to characterize the Moonie bender, to Use of the

effective d33 coefficient permits the direct comparison of samples with the same diameter.

Since the effective d33 coefficient for Moonie benders _° and for circular unimorphs ! is

proportional to the diameter of the sample squared, to compare samples with different

diameters it is useful to introduce a new piezoelectric constant, b33(eff), which permits the

direct comparison of benders with different geometries. To calculate the b33(ef0

coefficient for benders general piezoelectric Equation 1 was adopted for the Rainbow

geometry

d33 (eft) = y * t°_' (2)
t V

b33 (eft) = d33 (eft.)
D2 (3)

where y is the displacement at the center of the bender under field, t is its total thickness,

to_ac is the thickness of the oxide layer, V is the applied voltage, and D is the diameter of a

sample.

The use of the b33(eft') coefficient permits a direct comparison of benders with

different diameters. In the case of a bar-shaped bender, the da3(eff) coefficient should be

divided by the length of the bender squared.

The continuous reduction in the resonance frequency with the increasing driving

voltage is in agreement with resonance behavior of conventional ceramic resonators. The

lowering of the fundamental resonance frequency as the driving field strength is increased

has been observed previously in homogeneous ferroelectric ceramic resonators. _ Holland

and EerNisse propose that the domain wall contribution is enhanced with increasing field

magnitude. The enhanced domain switching should result in larger piezoelectric and

dielectric constants. They further state that the nonlinear effects should be especially large

near the resonance where the strain amplification is proportional to the mechanical Q (the

reciprocal elastic loss tangent). The reduction of mechanical Q and enhanced piezoelectric

coupling coefficients (associated with lowering of the resonance frequency) were observed

in PZT ceramics with compositions near the morphotropic phase boundary at higher

fields. 8 Beige and Schmidt 12 made quantitative predictions for the shitt of the resonance

frequency as a function of nonlinear elastic or piezoelectric coefficients for a bar-shaped

sample. The resonance frequency, A_,, is linearly dependent on the electric field, E3, for a

resonator with nonlinear piezoelectricity:

d3 i I Or E3

A_ r - (4)

Sll E



where d3__ is the lowest order nonlinear piezoelectric coefficient, o r is the resonance

frequency, and s_ E is the elastic compliance. Depending on its magnitude, the

piezoelectric nonlinear contribution to the shift of resonance frequency may be important

for an applied DC bias, but should be negligible for the AC drive condition.

For elastic nonlinearities, the change in resonance frequency has a quadratic

dependence on the electric field magnitude:

[" 32 (SII1E) 2 9 Sllli E 1 COrd312E32 Q 2

= - I + I (5)
t_ 9 rc2 Sll z 32 J (SIIE) 3

where Sll IE and s_ t E represent the lowest order nonlinear elastic compliance coefficients,

s_E is the linear elastic compliance coefficient, and d3_ is the piezoelectric coefficient.

The elastic and piezoelectric nonlinear contributions to the shift in resonant

frequencies with the changing electric field also occur for Rainbow samples but with

different functional dependencies than for the bar-shaped samples described by Beige and

Schmidt. Furthermore, with Rainbows there is a geometric contribution to the field

dependence of the resonant frequency. The FEM predicts that as a Rainbow develops

curvature during the cool down step it will become mechanically stiffer, i.e., its resonant

frequencies will increase for all modes. 5 This effect is the strongest for the fundamental

bending mode - the mode shown in Figure 4. The stiffening of the Rainbow during the

cool down step implies that the potential energy for a Rainbow in equilibrium is

asymmetrical. As the magnitude of the electric field increases, a Rainbow should become

progressively flatter. Flattening of the Rainbow should result in the decrease of the

resonant frequencies. The magnitude of this contribution is currently unknown, but is

qualitatively consistent with the observed lowering of the resonant frequency with

increasing AC fields.

The field-induced displacement at 700 Hz of the same PLZT 6.0/56/44 Rainbow

sample over a wide range of applied fields is shown in Figure 5. The interferometer

apparatus was used to measure the displacements with gradually increasing fields applied

in the poling direction. The displacements were then measured while the field was

reduced. There is reasonable agreement between the two displacement curves for high

and low field regions. However, for the intermediate field region, the displacements for

the increasing field are significantly higher than for the decreasing field. Since the sample

was well aged prior to testing, it is possible that the difference in piezoelectric activity is

due to the de-aging effects on the domain wall activity. The retention of the piezoelectric

activity at low fields implies that the sample remains in the poled state. In the inset in

Figure 5, b33(ef0 shows an upward trend from the lowest measured fields. This behavior

is in marked contrast with properties of PLZT bulk resonators measured well below the

fundamental piezoelectric resonance. 7,s In those samples there was a range of electric

fields extending from zero to several hundred V/cm in which the piezoelectric properties

were independent of the driving field strength. At higher fields, nonlinear piezoelectric

contributions, similar to those shown in Figure 5, were observed. The likely reason for the



enhanced piezoelectric response of the Rainbow at 700 Hz is its proximity to the

fundamental bending mode. As the driving voltage is increased, the resonant frequency is

shitted toward the measuring frequency. At the highest field level tested, the resonant

frequency is estimated to be 1725 Hz, as compared to approximately 3 KHz at 500 Wcm,

thus greatly increasing its influence on the measured displacements at 700 Hz.

At frequencies (300 Hz and 30 KHz) well removed from the fundamental bending

resonant frequency (3 KHz), the piezoelectric nonlinearities are not observed at moderate

field levels as shown in Figure 6. Piezoelectric nonlinearities become important at

approximately 300 Wcm field level at 300 Hz- in good agreement with bulk resonators. 7's

The response of the sample near its low field resonant frequency, 3 KHz, is fairly flat over

the entire driving field range. The nonlinear domain wall contribution has the opposite

field dependence on resonant frequency compared to the change of shape at 3 KHz. In

addition, the mechanical Q is likely to be reduced for the very high displacements observed

at 3 KHz, also contributing to the reduced displacement amplitude for high drive

conditions. The displacement of the Rainbow at 30 KHz is well below not only the

displacement at the resonant frequency but also that at 300 Hz. Clearly, low frequency

bending modes are essential for obtaining large field-induced displacements.

The effect of the DC bias field on the fundamental resonant frequency is shown in

Figure 7. Bias applied in the same direction as the poling field reduces the resonant

frequency. For the forward bias, the oxide layer shrinks laterally (because the d31

coefficient is negative) causing flattening of the Rainbow sample, which in turn lowers its

stiffness resulting in the decrease of the resonant frequency. When DC bias is applied in

the opposite direction, the measured resonant frequency increases. Thus the observed

shifts of resonant frequency with DC bias are consistent with the changes in the sample

geometry. While the contributions of piezoelectric and dielectric nonlinearities can not be

completely discounted, it should be noted that for the PZT bulk resonators the effects of

DC bias on the location of the radial mode resonant frequency are negligible. 13

Dielectric hysteresis loops and displacements were measured simultaneously at

low-frequency, high-field conditions. The results are shown in Figure 8. There is good

agreement between the reduction in switchable polarization and field-induced

displacement. In fact, comparing the results for the lowest and highest frequencies in

Figure 8, there is a 15% reduction in the polarization and a 17% reduction in the

displacement. The correspondence between the two values indicates that at higher

frequencies certain ferroelastic - and not 180 ° - domains cannot switch and their

contribution is lost. Examining the shapes of hysteresis loops shown in Figure 9, it is clear

that at higher frequencies complete switchingof the Rainbow sample is not possible. The

saturation of the hysteresis loop for one orientation but not for the other suggests that the

potential well for the domain switching is not symmetrical. The preferred polarization in

virgin Rainbow samples was previously observed TM and asymmetry of the loop is a
common occurrence in these devices.

The coercive field for both polarities as well as the average coercive field are

shown in Figure 10. The coercive field atter the initial rise shows rapid reduction with

increasing frequency. The asymmetry of the hysteresis loop is reflected in the different

coercive field values for the two polarities. The average coercive field increases with

frequency up to 1 Hz. At higher frequencies the coercive field reduction coincides with



the reduction of the switchable polarization and field-induced displacements. Bulk PLZT

ceramics exhibit coercive fields proportional to the logarithm of frequency in the same

frequency range as is used in this study, t5 Additional experimental data at less than 1 Hz

frequency is needed to determine if the coercive field rises faster than logarithmically with

frequency which would suggest that an interfacial region may exist between the PLZT and

the reduced layer. The resistive interfacial layer should maintain a greater fraction of the

applied voltage at higher frequencies, resulting in a more rapid escalation of the coercive

field than in the bulk sample.

For the Rainbow samples based on PLZT 1.0/53/47 ceramics, the effects of AC

and DC bias were qualitatively similar to those observed for the PLZT 6.0/56/44

Rainbows and will not be further discussed in this report.. The frequency dependence of

displacement for the Rainbow samples with drastically different oxide thickness ratios is

shown in Figure 11. The same field level was maintained for each sample. The highest

displacement was obtained for the Rainbow with the oxide and reduced layers of

approximately equal thickness. A significant reduction in displacement in the frequency

range well below that of the fundamental bending mode was observed in two of the three

samples. Two samples with a thicker oxide layer contain the neutral (zero stress) axis in

the oxide layer. The sample with the thinnest oxide layer has compressive stress

throughout that layer. Since one of the two samples with the neutral axis in the oxide

layer as well as the sample with the compressive stress throughout the oxide layer exhibit

the low frequency displacement drop off, it is unlikely that the low frequency displacement

relaxation is due to the presence of internal stress. Possibly there is an interfacial region,

which acts electrically at low frequencies as a resistor in series with PLZT, thus causing a

frequency-dependent voltage drop across the PLZT layer. The origin of the high

impedance interfacial region may be: 1) a highly defective (containing microcracks) PLZT

layer, 2) an intermediate layer formed between the PLZT and reduced layers during the

reduction step, or 3) an insufficient amount of lead at the interface.

In PLZT 1.0/53/47 Rainbow samples, only partial hysteresis switching was

possible even at the lowest frequencies. The coercive fields were significantly higher than

when measured prior to high frequency testing. Partial debonding of the top electrode for

one of the samples and degradation of polarization switching were observed and indicate

the need for further study of these effects.

SUIVIMARY

The high frequency properties of PLZT Rainbow ceramics were investigated over a wide

range of frequencies and electrical driving conditions. The results indicate that the

Rainbow samples have low frequency bending resonant modes. These modes are highly

sensitive to electrical and mechanical boundary conditions. Increasing the AC driving

fields shifts the fundamental mode to a lower frequency. With a DC bias, either stiffening

or softening of the sample is possible. All of the observed shifts in resonant frequencies

with AC or DC driving fields are consistent with the field-induced changes in the shape of

the Rainbow - flattening a Rainbow always leads to the reduction of the resonant

frequency.



The low frequency reduction in field-induced displacement was observed at both

high and low fields. At high field strengths, the polarization and the displacement have

similar reductions with increasing frequency, indicating that the ferroelastic contribution to

both is lost. The reduction of the displacement at low frequencies could not be correlated

to the presence of the neutral axis in the oxide layer.

The observed nonlinear effects have the potential to be used in low frequency

tunable devices. Alternatively, modifying the Rainbow geometry can reduce the effects of

nonlinearities for devices which would benefit from linearity of response.

8
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Figure 1. Rainbow geometry and poling direction.
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General Studiesof RainbowProcessingand Properties

Recent developments in the technology of piezoelectric and electrostrictive ceramic

actuators have amply demonstrated that the materials required for future applications will

need to be more sophisticated (multifunctional and smart), the techniques for strain

amplification more innovative and cost effective, and the performance of the devices more

reliable in harsh environments such as space. Such applications include positioners, active

structures, acoustic canceling components, variable focus elements, pumps, switches, linear

actuators and multifunction devices. Of these, some involve very high electromechanical

displacements on the order of several millimeters. Unfortunately, the materials presently

available for these devices generally achieve less than 0.1 mm total strain in any practical

size element, and thus, are not directly suitable for such large displacements. Consequently,

various techniques for amplifying the strain have been developed and reported.

The most recently developed strain amplifying method for piezoelectric and

electrostrictive ceramic materials which shows promise for meeting some, if not many, of the

high strain applications is known as the RAINBOW technology. This acronym denotes the

basic active structure of the Rainbow device which is produced by a special high temperature

chemical reduction process and stands for Reduced And INternally Biased Oxide Wafer.

In their most basic sense, Rainbow ceramics can be thought of as pre-stressed, monolithic,

axial-mode benders, similar in operation to the more conventional unimorph and bimorph

type benders. But because of their unique dome or saddle-like configuration, Rainbow

ceramics are able to produce much higher displacements (> lmm) and sustain

significantly greater loads (10 kg) than normal benders.

This section reports on some of the newer methods developed within the last year for

producing the Rainbow ceramics, as well as evaluating some of their properties and
characteristics. These include:

a. Rainbow actuator compositional work in the PLZT system

b. Hot forming of curved shapes of piezo ceramics

c. Slipcasting of tubes and solid rods

d. Tapecasting of thin sheets and disks

e. Rainbow reduction of curved shapes with granular carbon

f. Rainbow reduction of tubes with granular carbon

Rainbow PLZT Compositional Work

On-going studies have shown that the PLZT compositional system is one which yields

materials possessing some of the highest coefficients for piezoelectric and electrostrictive

actuators. It has also been found that PLZT ceramics are near ideal for achieving the ultra-

high displacements recently reported for the Rainbow (Reduced and INternally Biased

Oxide Wafer) actuators. In order to determine the optimum composition or compositions

(1)



for these Rainbow actuators,a studywas conductedby preparing and processingselected
formulations throughout the PLZT system. Results from this study indicate that, like the
conventional direct extensional-mode materials, the maximum Rainbow bending
displacementsoccur in materials located compositionally at the morphotropic (FE_homb -

FEtet) and Curie point (FE - PE, PE - AFE) phase boundaries. Examples of specific

compositions for each of these regions are 2/53/47, 9/65/35 and 8.5/70/30 (La/ZrFH),

respectively. Microstructural (grain size), electrical (dielectric constant, dissipation factor)

and electromechanical (axial displacement) data are presented for selected compositions in

the system.

A full paper on this subject was presented at ISAF-94 at Penn State. Although not yet

published, a copy of the paper is included in Part VI of this report.

Hot Forming of Curved Piezo Patches

Previous work (many years ago) on the high temperature creep properties of PZT and

PLZT ceramics pointed out that it is entirely possible to hot mold a high lead-containing

piezoelectric ceramic with a suitable mandrel and a modest amount of weight. Some

preliminary experiments were recently conducted on PZT-2Bi, PLZT 5.5/65/3, PLZT 1/53/47,

and PLZT 9/65/35 in order to re-evaluate this conclusion. Lapped, planar samples were

mounted inside of an alumina cylindrical tube with approximately 175 grams of weight in

order to induce the plate to conform to the shape of the tube while at an elevated

temperature. A typical temperature and time was l l00°C for one hour although good

results were also be obtained as low as 1000°C for several hours. Thicknesses of the plates

were typically in the range of 0.025 - 0.035 inches. The photograph below shows some of

the parts after molding. Radii of curvature for the molded parts ranged from very large

(essentially fiat) to approximately one inch. Although simple curvatures are shown here, it

is believed that almost any shape could be molded with the proper mandrels.

Hot Molded Parts of PZT and PLZT Piezoelectric Plates

(2)



Slipcasting of Piezo Ceramics

Another technology which is useful to employ in the fabrication of circular, oval or odd

shaped tubes for Rainbows or conventional piezo devices is slipcasfing. In this process,

ceramic slip (ceramic powder suspended in water) is poured into a plaster mold for a given

length of time and then the excess slip poured off leaving a hollow "shell" of semi-dry

ceramic material in the shape of the mold. During further drying, the ceramic shape shrinks

away from the outer plaster mold, thus leaving it free to be removed by means of a relatively

simple process of turning the mold over (in the case of a tube) or taking the mold apart in

the case of a complex shape. After complete drying, the "green" ceramic parts are sintered

(fired) at an elevated temperature of approximately 1250°C for 4 hours. A selection of

slipcast tubes of various compositions is shown below.

Solid rods or irregularly-shaped rods can also be fabricated via slipcasting. This is easily

accomplished by continually keeping the mold filled with ceramic slip until it is apparent

that the shape is completely cast solid. After drying, the part is removed from the mold and
.L

sintered to final density.

Slipcast Tubes of PLZT Compositions 1/53/47, 5.5/56/44 and 9/65/35

Tapecasting of Piezo Disks

An investigation was also conducted on the development of a suitable tapecasting

process for thin and thick disks which could be used as Rainbow actuators or as

conventional piezo elements. In this process, appropriate binders, plasticizers, deflocculants

(3)



and solvents are mixed with the ceramic powder and cast onto a flat surface with the aid of

a doctor blade which dispenses the ceramic slip at a given, uniform thickness. After drying,

the organic solvents are no longer present in the tape, thus leaving it in a solid, flexible

condition such that it can be easily cut with a sharp knife, scissors, paper cutter or any type

of typical "cookie cutter." The "green" parts are then slowly fired (3°C/minute) to

approximately 600°C in order to burn off the organic binder and then fired at a more usual

faster rate (5°C/minute) to achieve final density. The tapecast process has the advantage of

economically producing thin or thick plates of ceramic with small-to-large area without the

necessity of sawing and lapping. Fired piezo disks ranging in thickness from 0.010 to 0.035

inches and in diameter from 0.250 to 3.0 inches were fabricated and tested. Many of these

disks were further processed into Rainbow elements. Typical examples are shown below.

Tapecast Sheet, Punched Disks and Fired Parts of PLZT 1/53/47

Rainbow Reduction with Granular Carbon

The chemical reduction of irregular shapes, such as have been described above, is quite

difficult with a solid carbon block normally used in the Rainbow pkocess. Therefore,

granular carbon, in a size range from -20 to +84 mesh, was used to form a reduction surface

of the same topography as that of the irregular piezo plate. The carbon particles in contact
with the bottom surface of the piezo plate were found to be effective in chemically reducing

that surface while the top surface remained unaffected since it was exposed to the normal

oxidizing atmosphere of the furnace. It was determined that the kinetics of reduction for

(4)



the granular carbonwasessentiallythe sameasthat for the solid carbon blocks; i.e.,typical
reduction temperaturesand times ranged from 950 - 975°Cfor one to two hours.

Granular carbon was also used to reduce the interior and exterior surfaces of open or

closed-end piezo tubes. Examples of these are shown in the photos below.

Examples of Rainbow Reduced PLZT Tubes

Rainbow Reduction of the Inside Surface of an Irregular Tube

(5)



A Closeup View of the Above Tube

A Closeup View of a PLZT Tube Reduced on Both Inside and Outside Walls

(6)
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Rainbow Ceramics---A New Type of

Ultra-High-Displacement Actuator

A new method for producing ultra-high-displacement, monolithic, transducer

ceramics has recently been developed. The technique consists of selectively

reducing one surface of a high-lead-containing piezoelectric or electrostrictive

wafer with graphite in an o_dizing atmosphere at an elevated temperature.

The resulting stress-biased wafer is referred to as a "rainbow" ceramic because

of its unique, domed structure that leads to high electromechanical
displacement and enhanced load-bearing capability.

H,HAERTLING*
Clemson University, Clemson, South Carolina 29634-0907

n the last several years, the technology of
using piezoelectric and electrostrictive

ceramic materials as solid-state actuators for
small (<10 pm) and precise mechanical

movement devices has undergone considerable
investigation and development. 1-6 More recently,
it has become quite evident that these same
types of solid-state devices are desirable in newer
applications--linear motors, cavity pumps,
switches, loud speakers, noise-canceling devices,
variable-focus mirrors, and laser deflectors--that

require very large displacements (>1000 pm).
The direct extensional strain in most piezoelec-
tric or electrostrictive ceramic materials is at

best a few tenths of one percent. Therefore, the
means of amplifying this strain is essential to
their successful use in these applications.

Some well-known techniques for producing
large displacements in these materials include
flextensional composite structures, unimorph
benders, and bimorph benders, llowever, each
of these technologies has its limitations in
regard to size, weight, maximum displacement,
or load-bearing capability. A more recent

I}rcscntcd at the 95th Annual Meeting of the American Curamic

Society, Cincinnati, t)ll, April 19, 19_)3 (Symimmium XV|I, Paper No.

SXVll-2-93).

,Supported by NASA-LatJglcy Research Center, Ilamplon, VA,

under (_rant N_. NAG-1.13Ol.

',_',lcml_r ,)( tllU An;criu:m Ccr:ln'lic S,_'icty_

lo2

I0'

t0*

10-'

I ,.
I0"'I I_' I_ 10'

Strain (%)

Fig. 1. Comparison of ceramic actuator technologies.

device, the "moonie," was reported by Sugawara
et al. 7 in 1992. This metal--ceramic composite

actuator is a type of flextensional transducer
which is able to convert and amplify (by

approximately 10 times) the radial displace-
ment of a piezoelectric disk into a linear axial
motion. Displacements as high as 20 pm have

been achieved at a sustaining stress of 0.5 MPa.
When the stress/strain capabilities of all of

these technologies are considered, it is evident
that there is still a real need for additional tech-

niques which will produce even higher strains or
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displacements. At the same time, the device must sus-

tain reasonable stresses or loads. This paper describes
such a technology. A new type of monolithic ceramic
bender which is capable of achieving very high axial
displacements (>1000 lam (40 mils)) and sustaining
moderate pressures (-0.6 MPa (85 psi)) has been
developed. Known as a "rainbow" (reduced and inter-
nally biased oxide wafer) ceramic, this unique struc-
ture possesses a wider range of stress/strain
characteristics than other bender types. Therefore, it
promises to find application in a multitude of future
devices. Key features of the rainbow are simplicity,
quick processing, ease of fabrication, surface mount-
able configuration, and low cost. The particular ranges
and regions for each of the technologies previously
mentioned are shown on a stress/strain diagram in
Fig. 1.

RainbowTechnology
in its most basic sense, rainbow technology consists

of a new processing method for treating conventional,
high-lead-containing piezoelectric or electrostrictive
ceramic wafers, such as PZT (lead zirconante titanate),
PLZT (lead lanthanum zirconate titanate), PBZT (lead
barium zirconate titanate), PSZT (lead stannate zir-
conate titanate), and PIVIN (lead magnesium niobate).
This technology involves the high-temperature chemi-
cal reduction of one surface of a wafer, thereby produc-
ing a stress-biased, domelike structure, as shown
schematically in Fig. 2. The stress achieved in the
ceramic by means of the single-sided reduction pro-
cess is a critical feature of the structure. The stress

produces a state of tension toward the bottom or
reduced (concave) side of the wafer and compression
toward the top or unreduced side. Therefore, the wafer

assumes either a dome or a saddle shape, depending
on the magnitude of the stress and the diameter-to-
thickness ratio of the wafer. When both the stress and

the diameter-to-thickness ratio are high, the rainbow
wafer takes on the higher-profile, saddle shape. The
change in shape of the wafer after reduction is believed
to be due to the reduction in volume of the reduced

layer (largely metallic lead) compared to the unre-
duced material. The change is also due to the differen-
tial thermal contraction between the reduced and

unreduced layers on cooling to room temperature.
The reduced side of the piezoelectric serves as a

mechanical support for the device, the source of the
internal stress, and one of the device electrodes. [t is

necessary to deposit only one additional electrode on
top of the unreduced piezoelectric for operational
purposes. However, it is beneficial to also electrode

the reduced layer to ensure good contact for the elec-
trical leads. Use of the reduced piezoelectric as a

stress-biasing support member as well as one of the
electrodes effectively eliminates the bonding prob-
lems usually encountered in transducer fabrication
and operation.

External load

LVOT or dial
indicator

PLZT

Reduced layer

Planar surface

Electrode

Electrode

Fig. 2. Experimental setup for measuring displacement of

rainbows (rainbow wafer shown in cross section not to scale).

After attaching leads to the two electrodes, the
device is completed and ready for activation with an
appropriate voltage. Similar to other piezoelectric
devices, rainbows can be operated with direct-cur-
rent, pulsed-direct-current, or alternating-current
voltages. However, the largest displacements are usu-
ally achieved when driven with alternating current at
frequencies less than 40 Hz. In operation, the dome
height of the rainbow varies as a function of the mag-
nitude and polarity of the voltage. The axial motion
thus produced is largely a consequence of the lateral
contraction produced in the material via the lateral
piezoelectric coefficient. Therefore, the materials

with the highest d3_ coefficients generate the highest
displacements. This is also true for electrostrictive

materials. Those materials with the largest lateral
coefficients produce the highest motion.

Rainbows can also be stacked to ampli_ a given lin-
ear motion. Each individual device approximates one-
half of a clamshell structure. Two devices can be placed
together to form a completed clamshell. These two
rainbow elements can then be operated mechanically
in series to produce twice the displacement of one ele-
ment. Additional elements, in pairs, can be added to
form a linear actuator of unusually high displacement

in a relatively small volume. Electrically, the cascaded
units can be operated in series or parallel. In series, the
connections are simpler, but more voltage is required
to maximize the displacement. In parallel, more dis-
placement is achieved at a lower voltage, but at the
expense of more-complicated lead arrangements.

The rainbow structure has been produced in both
atmosphere-fired and hot-pressed ceramics, particu-
larly the PLZT piezoelectric and electrostrictive com-

positions, such as 2/53/47 (La/Zr/Ti), 5.5/56/44,
8.6/65/35, and 8/70/30. Since these matcri_ds are also

pyroclectric and ferroelectrie in nature, rainbow
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Fig. 3. Rainbow actuator characteristics of selected PLZT

compositions ((O) alternating-current voltage and (_), (111), (4,),

(&) direct-current voltage; wafer thickness in parentheses;

wafer 31.75 mm in diameter).

devices produced from them can rightly be consid-
ered as multifunction, smart components. This multi-
function characteristic is important since it

substantially increases the number of potential appli-
cations. Typical devices include linear actuators,
reciprocating and cavity pumps, switches, speakers,
benders, vibrators, hydroprojectors and receivers,
optical deflectors, variable focus mirrors and lenses,
accelerometers, relays, acoustic-canceling devices,

sensors, and smart systems. Of these, the first 10 have
already been demonstrated in prototype devices.

Makinga Rainbow
Piezoelectric and electrostrictive PLZT composi-

tions were prepared from raw-material oxides via a
conventional mixed-oxide process. Calcining was
conducted at 975°C for 2 h in closed alumina cru-

cibles. The milled and dried powders were first cold
pressed as preform slugs and then hot pressed at

a.
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Fig 4. Effect of wafer thickness on pressure and displacement

behavior of PLZT 5.5/65/35 rainbows (wafer 31.75 mm in

diameter).
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Fig 5. Temperature-dependent displacement characteristics of

(O) 8.6165135 and (A) 7/65/35 compositions and for (111)

temperature-compensated rainbow clamshell (wafer 0.625 mm

thick and 31.75 mm in diameter).

1200°C for 6 h at 14 MPa. This procedure yielded a

fully dense material with a grain size of approximate-

ly 5 pro. Subsequent steps in the fabrication of the

wafers included grinding of the slug diameter, slicing,

the slug into wafers, and finish lapping of the wafers

to the prescribed thickness.
A rainbow was produced from a lapped part by plac-

ing the wafer on a flat carbon (graphite) block which

was resting on a zirconia carrier plate. A second zir-

conia plate was placed on top of the wafer to shield
that side of the wafer from chemical reduction. The

assembly was inserted into a small box furnace main-
tained at a temperature of 975°C. After approximate-

ly 1 h at temperature, the assembly was removed and
allowed to cool to room temperature in the open air.

When cool, the dome-shaped wafer was removed
from the carbon block, brushed lightly to remove any

metallic lead particles, and then electroded with sil-

ver epoxy paint (5504N, E. I. du Pont de Nemours
and Company, Wilmington, DE) at 2000C for 30 min.

A more complete description of a similar process was

previously reported, s

Standard electrical measurements of capacitance,

dissipation, direct-current hysteresis loop, planar

coupling, and direct-current strain loop were con-
ducted on each of the wafers. More extensive long-

term testing was performed on selected materials by

mounting the leadless wafers in a dial indicator

assembly, as shown schematically in Fig 2. This setup

permitted external weights to be applied to the sam-

ple during testing. For the pressure measurements, a
special air cell was constructed which allowed hillh

pressure to be applied to the top of the wafer and

atmospheric pressure on the bottom of the wafer dur-

iml electrical .peration.
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TestingtheRainbow
Two types of actuator materials were tested in this

study: piezoelectric, atmosphere-sintered PLZT
5.5/56/44 and electrostrictive, hot-pressed PLZT
8.6/65/35. Their displacement characteristics as a
function of voltage are given in Fig. 3, with wafer thick-
ness and voltage drive as additional parameters. Figure
3 shows that displacements as high as 57% were
obtained for the particular wafers tested. As expected,
the thinner wafers yielded the highest displacements.
The displacement of the piezoelectric material was
generally lower than that of the electrostrictive materi-
al when operated on direct current (one polarity only)
but was substantially higher when driven by alternat-
ing current (open diamonds in Fig. 3). The alternating-
current case for 8.6/65/35 is not shown since

electrostrictors have the same displacement for volt-
ages of either polarity. Note that 5.5/56/44 was signifi-
cantly better than 8.6/65/35 at low voltages. This was
also expected because of the linear versus quadratic
behavior of the two types of materials.

Displacement and pressure data for PLZT 5.5/56/44
as a function of wafer thickness are presented in Fig.
4. The left ordinate scale represents the maximum
allowable pressure differential across the wafer thick-
ness before the wafer "bottoms out" to the planar
surface and stops flexing (usually <0.5 mm thick-
ness), or the wafer mechanically fractures (>0.5 mm
thickness). The right ordinate logarithmic scale is the
percent displacement (based on wafer thickness) of
the device when operated at 450 V direct current
under just the loading of the dial gauge spring (80 g).
Also indicated in Fig. 4 are the wafer thickness
regions where the saddle and dome modes of opera-
tion are dominant for a wafer 31.75 mm (1.25 in.) in
diameter. The data shown in Fig. 4 indicate that rain-
bow displacements span an unusually large range
from zero to at least 500%, with actual displacements
up to 1 mm (0.040 in.) for a 0,2-mm- (0.008-in.-)
thick wafer. Such large displacements are not possi-
ble when operating under significant pressure differ-
entials, as shown in Fig. 4, or under moderate
point-loading situations (not shown). The maximum
point-loading capability measured to date is 10 kg on
a 31.75-ram-diameter, 1.5-mm-thick disk.

The temperature characteristics of selected PLZT
compositions 8.6/65/35 and 7/65/35 are given in Fig. 5.
Since 8.6/65/35 has a Curie point around room temper-
ature, it exhibited a reduction in displacement with
increased temperature. On the other hand, 7/65/35,
having a Curie point at about 140"C, experienced an
increased displacement with increased temperature.
When these two elements are placed back-to-back, as
in a clamshell configuration, their net displacement as
a function of temperature was very low. This resulted
in a nearly temperature-independent rainbow unit.
Temperature compensation can be refined even further
by mixing-and-matching more elements in units of two.

When several units are stacked together, tempera-
ture compensation can be affected and total displace-
ment can be maximized. The maximum displacement
obtained to date with a group of four clamshell units
(eight rainbow wafers) is 5.1 mm (0.2 in.).

RainbowsShowPromise
A new type of monolithic ceramic bender (designat-

ed as a rainbow) has recently been developed. The
rainbow is capable of achieving ultra-high axial dis-
placements (up to 500% or more, based on wafer
thickness) and sustaining moderate loads of approxi-
mately 10 kg. Actual displacements as high as 1 mm
have been obtained from single-element devices 0.2
mm thick. The rainbow structure was achieved in

commercially available, atmosphere-sintered or hot-
pressed piezoelectric and electrostrictive ceramics by
means of a high-temperature chemical reduction pro-
cess. Desirable features of the rainbows are simplici-
ty, moderate load-bearing capability, temperature
compensation characteristics, easy fabrication, and
low cost. It is anticipated that this technology will
have numerous applications in commercial and
industrial markets.
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Abstract A new and unique processing method for fabricating stress-biased,

monolithic ceramic elements for ultra-high displacement actuators is reported.
The technique consists of chemically reducing one surface of a high lead
containing piezoelectric or electrostrictive wafer such as PLZT with solid

graphite in an oxidizing atmosphere at an elevated temperature. This process

produces a dome-like wafer structure which is thekey to its high displacement
characteristics and its enhanced load bearing capabilities. This new type of

ceramic bender is capable of (1) achieving displacements as high as 3 mm from
a single element, (2) sustaining point loads of about 10 kg and (3) distributed

pressures of approximately 0.6 MPa. Designated as Rainbow ceramics, they
have been successfully produced from both sintered and hot pressed material.

INTRODUCTION

Recent developments in the technology of piezoelectric and electrostrictive ceramic
actuators have amply demonstrated that the materials required for future

applications will need to be more sophisticated (multifunctional and smart), the
techniques for strain amplification more innovative and cost effective, and the
performance of the devices more reliable in harsh environments. 13 Such

applications include positioners, active structures, acoustic canceling components,

variable focus elements, pumps, switches, linear actuators and muitifu nction devices.
Of these, some involve very high electromechanicai displacements on the order of
several millimeters. Unfortunately, the materials presently available for these
devices generally achieve less than 0.1 mm total strain in any practical size element,

and thus, are not directly suitable for such large displacements. Consequently,
various techniques for amplifying the strain have been developed and reported. 4"5

The most recently developed strain amplifying method for piezoelectric and

electrostrictive ceramic materials which shows promise for meeting some, if not
many, of the high strain applications is known as the RAINBOW technology? This
acronym denotes the basic active structure of the Rainbow device which is

produced by a special high temperature chemical reduction process and stands for
Reduced And INternally Biased Oxide Wafer. In their most basic sense, Rainbow

ceramics can be thought of as pre-stressed, monolithic, axial-mode benders, similar
in operation to the more conventional unimorph and bimorph type benders. But
because of their unique dome or saddle-like configuration, Rainbow ceramics are
able to produce much higher displacements (> lmm) and sustain significantly
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greaterloads (I0 kg) than normal benders.

This paper reportson the detailsof the process for producing the Rainbow

ceramics,aswell as evaluatingsome of theirpropertiesand characteristics.

DESCRIPTION OF THE RAINBOW CERAMICS

The Rainbow technology fundamentally consists of a new processing method that
is applied to standard, high lead-containing piezoelectric and electrostrictive

ceramic wafers which are individually transformed by the process into a monolithic,
composite structure consisting of a pre-stressed dielectric (the piezoelectric) and a
chemically-reduced, electrically conductive layer which acts as the pre-stressing
element and as one of the electrodes for the final device. Since the materials (e.g.,

PLZT, PZT, PMN, PBZT) are ferroelectric, they are multifunctional, by nature,

and are capable of performing both actuator and sensor functions, simultaneously.
The high temperature chemical reduction process involves the local reduction

of one surface of the ceramic, thereby achieving an anisotropic, stress-biased, dome
or saddle-shaped wafer with significant internal tensile and compressive stresses
which act to increase the overall strength of the material. According to previously

reported work 7, the chemical reduction process proceeds via simple reactions
consisting of oxidation of the solid carbon (graphite) block to carbon monoxide and
further oxidation of the carbon monoxide gas to carbon dioxide with the associated

local reduction (loss of oxygen) of the PLZT oxide in contact or in near contact
with the carbon block.

In regard to operation, the Rainbow is similar to a device known in the industry
as a unimorph bender. A unimorph is composed of a single piezoelectric element

externally bonded to a flexible metal foil which is stimulated into action by the
piezoelectric element when activated with an ac or de voltage and results in an axial

buckling or displacement as it opposes the movement of the piezoelectric element.
However, unlike the unimorph, the Rainbow device is a monolithic structure with
a piezoelectrically inactive, integral electrode which is fabricated such that it put an
internal compressive stress bias on the piezoelectric element; thus producing the

dome structure, rendering it more rugged and able to sustain heavier loads than
normal. The integral electrode (usually the bottom electrode) consists of metallic

lead intimately dispersed throughout the semiconductive oxide layer. A typical
cross-section of a Rainbow wafer is shown in Figure 1. The change in shape of the
wafer after reduction is believed to be due to the reduction in volume of the

bottom reduced layer (largely metallic lead) compared to the unreduced material,
as well as the differential thermal contraction between the reduced and unreduced

layers on cooling to room temperature.

After depositing an appropriate electrode on the piezoelectric (top) surface, the
Rainbow is completed and ready for operation. Like other piezoelectric devices,

Rainbows may be operated with a dc, pulse dc, or ac voltage; however, when driven
with ae, the largest displacements are usually achieved at 40 Hz or less. In

operation, the dome height of the Rainbow varies as a function of the magnitude
and polarity of the voltage. The axial motion of the dome is largely a consequence
of the lateral contraction produced in the material via the lateral d3t coefficient.
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FIGURE 1. A typical cross-section of a PLZT Rainbow wafer illustrating its
domed structure.

When a given polarity of voltage is applied, the dome will decrease in height
depending on the magnitude of the voltage; and alternatively, when the polarity is

reversed, the dome will increase in height. Since d31 is a major factor, the materials
with the highest d31 coefficients generate the highest displacements. This is also

true for the electrostrictors; i.e., those with the largest lateral s12 coefficients
produce the highest motion. Although the longitudinal d33 also plays a part in the
total displacement, its contribution is insignificant compared to d3t.

EXPERIMENTAL

The processing steps for producing Rainbows are simple and few in number.

Five hundred gram batches of PLZT piezoelectric (5.5/56/44, 1/53/47) or
eleetrostrictive (8.6/65/35, 9/65/35) compositions were prepared via the mixed oxide
process. Calcining was carried out at 925°C for two hours in closed alumina

crucibles; milling was performed in a high alumina ball mill with distilled water;
and final deusification was achieved either by sintering at 1250"C for 6 hours in

oxygen or hot pressing at 1200°C for 6 hours at 14 MPa. This procedure yielded
high density (>97%) material with an average grain size of approximately four
microns. A Rainbow was produced from a lapped wafer by placing the wafer on
a fiat graphite block and introducing the assembly into a furnace held at

temperature in normal air atmosphere. The part was treated at a temperature of
975"C for approximately one hour, removed from the furnace while hot and
naturally cooled to room temperature in about 45 minutes. When cool, the dome-

shaped wafer was lifted from the carbon block, sanded lightly on the reduced
(concave) side to remove any metallic lead and to expose the reduced layer, and

then electroded for test and evaluation. Both silver-loaded epoxy (DuPont 5504N)
and fired-on silver (DuPont 7095) electrodes were utilized in the evaluation
process.

Microstructure, X-ray, mechanical, electromechanicai, dielectric and hysteresis
loop measurements were made on selected Raiabowwafers of varying diameter and
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thickness. Testing for voltage-dependent mechanical displacement involved the use

of a standard dial indicator micrometer and/or a LVDT mounted on a rigid stand.

During point load measurements, external weight was applied to the wafer via the
top side of the dial indicator or LVDT. The test setup is shown in Figure 2.

Dial

q" _ _ Displacement
Direction

Voltage Input Electrode

+ /
Reduced Elecn'ode
Layer

Planar Surface

/'

FIGURE 2. Experimental setup for-measuring Rainbow displacements (not to
scale).

RESULTS AND DISCUSSION

A polished cross-section of a PLZT 8.6/65/35 wafer (9750C for 1 hour) is given in
Figure 3. This micrograph reveals a very abrupt boundary between the reduced

and unreduced areas of the wafer. This result is quite surprising since the
reduction process is undoubtedly a diffusion-controlled process with an ever

PLZT

REDUCED
"_ LAYER

FIGURE 3. A polished cross-section of a PLZT Rainbow wafer.
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increasing path length for diffusion of oxygen to the surface. In addition, the
experimental data of Figure 4 show that the thickness of the reduced layer grows
at a near linear rate.
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FIGURE 4. Effect of reduction time on the reduced layer thickness.

As mentioned previously, the reduced layer is composed of the solid products
of the reduction reaction; i.e., conductive metallic lead and the oxides of Ph, La,

Zr and Ti which form along with the unreduced material. This was confirmed by

X-ray analysis of the reduced layer which revealed the presence of metallic lead
and minor amounts of other oxides. Four-point probe measurements on the
reduced layer also revealed it as a good conductor with ohmic behavior and a
specific resistivity of 3.8 xl0 4 ohm-cm.

Displacement data for selected Rainbow materials are given in Figure 5. As
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FIGURE 5. Voltage dependent displacemea t characteristics of PLZT Rainbows
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seen from the figure, both piezoelectric, linear (5.5/56/44, 1/53/47) and
electrostrictive, non-linear (8.6/65/35) behavior are exhibited by these compositions.
The most striking feature in Figure 5 is the very high displacements achieved by

these Rainbow ceramics at moderate electric fields; e.g., 400 volts is equivalent to
a field of 10 kV/cm. A maximum displacement of 200 microns was obtained from
PLZT 8.6/65/35, which is equivalent to 40% effective strain based on wafer

thickness. Although not shown here, larger diameter wafers (100 mm) have yielded
displacements as large as 3000 microns (3 ram).

An summary view of a variety of Rainbow elements is given in Figure 6. The
largest wafers illustrated here are 50 mm in diameter and the smallest are 1.5 mm

square. Thicknesses range from 0.15 mm to 1.25 ram. Some parts are polished
(before reduction) while others are lapped and/or electroded.

@O0000o
I'_ O Oii!O.: • • • o o c o o. ,tn J'n

FIGURE 6. A summary of Rainbow ceramics showing various sizes and shapes.

This work was supported by NASA-Langley Research Center, Hampton, VA,
under Grant No. NAG-l-1301.
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Abstract -- Hot-pressed PLZT ceramic wafers were chemically

reduced by a special processing technique on one of the major

surfaces to form oxide-reduced layer composite structures. Devices

based on such smactures have promising characteristics. The

composition and microstructure of the reduced layer as well as the

oxide-reduced layer interface from several different PLZT ceramics

were examined and analyzed by means of X-ray di.ffracdon and

SEM. A variety of the oxide phases, such as PbO. Z.tO 2, ZrTiO_
and LaTiO_, were revealed in the reduced PLZT samples by X-ray

diffraction in addition to the anticipated metallic lead phase. SEM
micrographs showed that the reduced PLZT ceramics were

composed of various fine-grained particles, and the Pb grains

formed a continuous phase. It was found that the oxide-reduced

layer interface region consisted of a mixture of unreduced and ;

reduced phases. The thickness of the mixed phase region was !

associated with the grain size of the original PLZT ceramics. :

INTRODUCTION i

A new type of ultra-high-displacement, multi-function actuator. I

named RAINBOW ('Reduced And Ilqternally Biased Oxide Wafer), I

has recently been developed using a special processing technique. I

This technique involves chemical reduction of one of the major i

surfaces of a high lead-containing ferroelecla'ic ceramic wafer by ',

placing the wafer on a flat carbon block at an elevated temperature. !

thus producing a dome-shaped, oxide-reduced layer composite!

structure. When an elec_ic field is applied across such a',
composite wafer, large axial displacement is generated. A detailed i

description of Rainbow technology can be found in Ref. [11. Since !

the electromechanical properties of a Rainbow actuator are(

dependent upon the physical properties such as thermal expansion,

elasticity, and electrical conductivity of its reduced layer, a

thorough investigation of the composition and micros_a'ucture of i
reduced PLZT ceramics is desirable for the characterization and :

application of Rainbow actuators. The PI..,ZT ceramics were chosen I

for this study because they _ easily reduced and have excellent I
electromechanical characteristics.

The composition and microstructure of the reduced layer as

well as the configuradon of the oxide-reduced layer interface for

,_everal PLZ'I" Rainbow samples have been investigated by X-ray

diffraction (XR.D) and scanning electron microscopy (SEM).

SAMPLE PREPARATION AND EXPERIMENTAL
PROCEDLrR.ES

The Rainbow samples used were prepared from hot-prosed
PLZT ceramics 1.0/53/47, 5.5/57/43 and 9.5/65/35, where the

numbers denote the atom ratios La/ZdTi of the PLZT

compositions. All of the Rainbows were produced u,der the

conditions of 975 "C / 60 rain (reduction lemperature / time).

Fractured, polished, and etched surfaces of the Rainbow

samples were used in both X-ray dfffracdon and SEM analyses.

For X-ray diffraction, the as-reduced surfaces of the Rainbows

were lapped off approximately 50 _m and slightly polished to

expose the internal structures. This procedure was employed

because a thin reoxidized layer is often formed on reduced surfaces

, during fabrication. X-ray diffraction was first performed on the
polished surfaces. Thereafter, the same surfaces were etched with
an HCI/tt,F solution for further study. X-ray diffraction patterns of

i fractured surfaces were obtahaed from the powders prepared by

crushing the completely reduced wafers.

Cross-sectional surfaces of the Rainbow samples were usually

i used for the SEM analyses of this study. The fractured surfaces

were obtained by breaking the Rainbows along their diameters.

'The surfaces were also polished by using progressively finer

i diamond pastes with a t"mish of 0.25 pro. The polished surfaces

were then etched, cleaned, and coated with a carbon or gold film

before examination. In some cases, the polished surfaces were
' directly examined under SEM.

All of the X-ray diffraction experiments were performed on an

X-ray diffractometer (Scintag XDS 2000-) with Ni-filtered Cu Kct

radiation at a scan rate of 2 degree per minute. A JOEL scnnning

electron microscope operating at an accelerating voltage of 15 keV

was used for the SEM analyses.

EXPERIMENTAL RESULTS

, X-ray Diffraction Analysis

Figures l(a)-l(c) show the X-ray diffraction patterns from the
polished surface of the reduced layer of Rainbows 1.0153/,17,

5.5157143 and 9.5165/35, respectively. It was found ha all cases that

the strongest peaks in the patterns were produced by the metallic

lead phase. The remaining weaker peaks were caused by a number

of oxide phases formed during the reduction process. As is

indicated in the figures, the oxide phases identified include PbO

(litharge), Z.tO a, ZrTiO,, Tit2, LaTiOj and Lao._TiO2.9,n (.I'CPDS

i 26.-827).

The X-ray diffraction pattern of the etched reduced surface of

Rainbow 5.5/57/43 is demonstrated in Figure 2. It can readily be

i seen by coraparing Figure 2 with Figure l(b) that, upon etching,

almost all of the Pb peaks were greatly depressed while those of

the oxide phases underwent little change. This result indicates that
it is primarily the Pb phase that was etched away from the surface.

It should be noted that the intense diffraction peaks of the Pb
phase shown in Figures l(a)-l(c) may partly result from the

grinding ,and polishing treatments on the sample surfaces prior to

analysis. Since the metal Pb is a very soft material relative to the

oxide phases, when a reduced sample is ground or polished, the Pb

phase is deformed and smeared over the surface. Consequently,

the relative amount of Pb phase on the surface is i,creased, thereby

enhancing the intensity of the Pb diffraction peaks.
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Figure I. X-ray diffraction patterns from the polished surface

of the reduced layer of Rainbows (a) 1.0/53/47. (b) 5.5/57/43
and (c) 9.5/65/35.
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Figure 2. X-ray diffraction pattern from etched reduced
surface of Rainbow 5.5/57/43.
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Figure 3. X-ray diffraction pattern of the powder obtained

from reduced PLZT 1.0/53/47 sample.

For this reason, the X-ray diffraction of fractured surfaces better

reflects the actual states of the various phases in the sample. Since

it is practically difficult to obtain a large fracture surface of the

reduced layer, the powders from completely reduced wafers which
contain various small fracture surfaces were used instead• The

diffraction pattern of such powder for Rainbow 1.0/53/47 is shown

in Figure 3. As can be seen, the intensity ratios of the major

metallic lead peaks to the oxide phase peaks are considerably

reduced compared to those of the polished surface shown in Figure

l(a), indicadng the presence of smearing in the polished samples•

It is, however, worth noting that the Pb di.ffracdon peaks from the

powder remain the strongest, and this is also true for the other
PLZT Rainbow samples studied. Figure 3 also shows the existence

of PbO (massicot) phase which was not observed in Figures l(a)-
l(c).

SEM Analysis

Figure 4 shows the SEM micrograph of the fractured cross-

sectional surface of Rainbow 1.0/53/47. The upper portion of the

micrograph shows the PLZT layer and the lower portion is the

reduced layer. These layers are separated by a PLZT-redueed layer

interface where the unreduced and reduced phases were found to

coexist. A micrograph of higher magni.Hcadon on the reduced

regions, which is given in Figure 5(a), indicates that the region was

composed of various Free-grained particles. A similar
microstructure was also observed in Rainbows 5.5/57143 and

9.5/65/35, as is shown in Figures 5(b) and 5(c) respectively. The

small uniformly distributed particles, about 0.2 pm in diameter, as

can be seen in the figures, were identified, to be the Pb grains by

i means of X-ray diffraction coupled with an extraction technique.

The microstructure of the reduced layer seems relatively insensitive

to the microstructure of the original PLZT composition.



Figure4. SEM micrograph of fractured cross-sectional surface
of Rainbow 1.0/53/47 neat the PLZT/reduced layer interface.

The secondary electron image of a polished surface of the

reduced layers is usually featureless. It was, however, found that

some characteristics of the polished surfaces can be revealed via a

back.scattered electron imaging technique. Figure 6 is a

backscattered electron image of Rainbow 1.0/53/47 neat the PLZT-

reduced layer interface. Again the lower portion is the reduced

layer. The darkest areas seen in Figure 6 ate most likely the

thoroughly reduced regions. This is because that the reduction

process leads to a relatively loose structure by decomposing the

originaldense PLZT phase with an accompanying oxygen loss.

thereby contributingless to the backscatteredelectronsignals.

From themorphology of theoxide-reducedlayerinterfaceitcan bc

deduced thatthe reductionreactionwas initiatedalong the PLZT

grain boundaries and then proceeded toward the center of the

grains.

The SEM image of the etched reduced surfaceof Rainbow

5_5/57/43,whose X-ray all/fractionpatternhasbccn given inFigure

2, isdisplayedin Figure7. The grainsexposed by etching,which

can be seen in Figure 7, are consideredto be the oxidc phases

identifiedin thecorrespondingX-ray diffractionpattcm. The fact

thatthe oxide grainsappear isolatedindicatesthatthe Pb grains,

which were mostly etched away from the surfaces,form a

continuous phase. The continuity of the lead phase is further
supportedby highconducdvity of the reduced layers.

DISCUSSIONS

The results of the above X.ray diffraction analyses indicate that

a number of different phases are produced as a result of the

chemical reduction of a PLZ'r ceramic in forming the Rainbow

structure. The phases found include the metallic lead phase, and
seven oxide phases: PbO (litharge), PUO (massicot), ZrO z, ZrTiO.
TiO:, LaTiO3 and/-.ao.eTiO_._. The original PLZ'T phase was not
observed in the reduced samples. It is noted that while the exact
number and composition of the phases in a particular reduccd
PLZT sample strongly depend on the original PLZ'T composition,
the phases of Pb, PbO (litharge), 7_.tO2 and ZrTiO, arc common

among the samples studied; and of them, the Pb phase gives rise
to the strongest X-ray diffraction.

Figure 5. SEM micrograph of the reduced layer of

Rainbows (a) 1.0/53/47, (b) 5_5/57143 and (c) 9.516.5135.
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Figure 6. Backscattered electron image of Rainbow 1.0153/47

near the PLZT/reduced layer interface.

SEM micrographs, suggests that even a small volume fraction of

lead phase can render the reduced layer electrically conductive.
This may explain why the reduced PLZT ceramic exhibits excellent

conductivity.

There is a region along the PLZ'T'-reduced layer interface where

the PLZT and reduced phases coexist. The dimension (normal to

the interface) of the region is defined as the thickness of the
interface in a Rainbow. It was found that the interface thickness

was related to the grain size of the phase before reduction. This is

easily understood considering that the reduction process is

initialized along grain boundaries as illustrated in Figure 6. For

Rainbow 1.0/53/47, whose PLZT layer displays a larger grain size,
the thickness was found to be approximately 20 pro. Rainbows

5.5/57/43 and 9.5/65/35 have an interface thickness of about 2 pm
and 5 pro, respectively. The configuradon of the PLZ'l'-reduced

layer interface is very likely important for some specific properties

of Rainbow actuators such as fatigue and loading capability and

will. be investigated further.

SUMMARY

Figure 7. SEbl micrograph of etched reduced layer of
Rainbow 5.5157143.

Chemical reduction of PZ'T' and PLZT ceramics has been

reported in the literature [2-3]. In his investigation of PLZT
ceramics reduced by carbon blocks [3], Haerding showed that the
reduction reaction is accomplished via the interaction between

carbon monoxide and loosely held oxygen atoms in the PLZT

perovskite lattice. It is therefore considered that, except for the

oxygen and slight Pb losses during reduction, the reduced layer
should contain the same amount of chemical elemenL,; as the

unreduced PLZ'r ceramic. In other words, the chemical reduction

simply decomposes the PLZT crystal structure by attacking the

lattice oxygen ions and, at the same time, produces new phases by
rearranging the constituent elements.

Based on this consideration, the volume fraction of the lead

phase in a reduced PLZT sample may not be as large as it seems

in the X-ray diffraction as, for example, shown in Figure 3. This
is reasonable since along with the volume fraction of each phase

many other factors may contribute to the relative peak intensities

of the X-ray diffraction pattern in a multiphase material. In fact,
for the conceivable uses of Rainbow actuators, it is not critical

whether the Pb phase is dominant or not. The main concern is that

the Pb phase must be a continuous phase so that the reduced layer
has good conductivity. The fact that the metallic lead in the

reduced layer occurs with very fine particles, as was shown in the

The composition and microstructure of chemically reduced

PLZT ceramics (the reduced layer of the Rainbow) have been

studied by XKD and SEM. Key results are summarized as follows.

(1) A number of different crystalline phases have been found

in the PLZT ceramics reduced via the RAINBOW process. The

phases found include metallic lead and seven oxide phases: PbO

(litharge), PbO (massicot), ZrO 2, ZrTiO,, Tit:, LaTi(3_ and

L%._TiOT__j. The original PLZT phase was not observed. The

exact number and composition of the phases for a particular

reduced sample axe dependent on the PLZ'T composition, but

among the samples studied, the phases of Pb, PbO (litharge), ZrO:

and ZrTiO, are commonly observed, with the Pb phase producing

the strongest X-ray diffraction.

(2) The reduced PLZ"[" ceramics are composed of various fine-

grained particles, and the smallest grains, about 0.2 pro, correspond

to the lead phase. This microstructuraJ, characterisdc is relatively

insensitive to the PLZ'I" composition. It is shown that the metallic

Pb grains constitute a continuous phase in the reduced PLZT

ceramics, which is consistent with the good electrical conductivity
of these materials.

(3) Near the interface between the PL.ZT' and reduced phases

of a Rainbow, the two phases coexist. The thickness of the

interface was found to be associated with the grain size of the
PLZT phase. The values of the interface thickness for Rainbows

1.0/57/4.3, 9.5/65/35 and 5.5/57/43 are about 20, 4, and 2 pro,

respectively.
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Abstract -- On-going studies have shown that tile PLZT

compositional system is one which yields materials possessing

some of the highest coefficients for piezoelectric and
electrostrictive actuators. It has also been found that PLZT

ceramics are near ideal for achieving the ultra-high displacements

recently reported for the Rainbow (Reduced and INternally

Biased Oxide Wafer) actuators. In order to determine the

optimum composition or compositions for these Rainbow

actuators, a study was conducted by preparing and processing

selected formulations throughout the PLZT system. Results from
this study indicate that, like the conventional direct extensional-

mode materials, the maximum Rainbow bending displacements

occur in materials located compositionalfy at the morphotropic

(FErho,,b - FE, e,) and Curie point (FE - PE, PE - AFE) phase

boundaries. Examples of specific compositions for each of these
regions are 2/53/47, 9/65/35 and 8.5/70/30 (La/Zr/Ti), respectively.

Microstructural (grain size), electrical (dielectric constant,
dissipation factor) and electromechanical (axial displacement)

data are presented for selected compositions in the system.

INTRODUCTION

It has long been known that the PLZT compositional

system is a very versatile one which yields materials possessing

maximum dielectric properties and some of the highest known

electromechanicai coefficients for piezoelectric devices such as

speakers, hydrophones, ignitors, accelerometers, motors, sensors

and actuators [1-21 . In general, these optimum properties are

found in materials located compositionally along the

morphotropic (MPB) phase boundary (FE,_, - FE, c,) separating

the rhombohedral and tetragonal ferroelectric phases, as shown

in Figure I by the double cross-hatched region. Other properties

of interest (e.g., pyroelectric and electrooptic) are optimized in

compositions located along the boundaries separating the FE

polar phases from the antiferroelectric (AFE) and paraelectric

(PE) non-polar phases. Compositions which typify these

materials are more popularly known as electrostrictive relaxors

and are indicated in Figure 1 by the single cross-hatched region

identified as the SFE (slim FE hysteresis loop) region [3].
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Figure 1. Room temperature phase diagram of the PLZT system

showing phase stability regions and phase boundaries of interest.

Although the PLZT relaxor materials were developed over two

decades ago for electrooptic applications such as shutters,
displays and modulators, they have now been found to be quite

suitable for electrostrictive actuator devices where non-memory,

lower hysteresis properties are required.

Also, it has recently been reported that PLZT ceramics

are excellent materials for achieving ultra-high displacements

when they are processed into Rainbow actuator benders which

are similar in operation to the unimorph benders with the

exception that the Rainbows are a monolithic structure [4-5]. As

single-element Rainbows, the PLZT materials are able to

achieve very high displacements (up to 3mm) at moderate

loading or lesser displacements at loads of up to 10 kg. A variety

of applications are foreseen for these devices, however, before

they can be developed it is necessary that the phenomena

producing the high displacement in these materials be understood

more thoroughly and that the composition of the material

selected for a given application be the optimum one.

Therefore, it is the purpose of this investigation to (1)

study the characteristics of a broad range of compositions in the

PLZT solid solution system as Rainbow benders, (2) identify

specific compositions with maximum displacement properties and

(3) gain more insight into the strain amplification mechanisms
involved in the Rainbow ceramics.

EXPERIMENTAL PROCEDURE

Several series of compositions in the PLZT system were

prepared from the raw material oxides via a conventional mixed

oxide process as outlined in the flowsheet of Figure 2. These
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Figure 2. Flowsheet for Rainbow process.

compositions, compounded according to a B-site formula{3l,
ranged in Zr/Ti ratio from 90/10 to 30/70 and La content from 1

to 15 atom percent. A total of sixty individual compositions

were formulated, weighed, wet mixed with distilled water, dried

and calcined at 925°C for 2 hours in closed alumina crucibles.

The milled and dried powders were first cold pressed as pre-form
slugs and then hot pressed at 1200°C for 6 hours at 10 MPa.

This procedure yielded a fully dense material with grain sizes



varying from 1.5 to 6 microns. Subsequent steps in tile
fabrication of the wafers included slicing and lapping them to a
thickness of 0.5 ram.

A Rainbow was produced from a lapped part by placing

the wafer on a flat graphite block which was supported on a

zirconia carrier plate. A second zirconia plate of the same size

as tile wafer was placed on top of the wafer in order to shield the
top side of the wafer from chemical reduction and to minimize

thermal shock to the part during processing. The assembly was

placed into a furnace preheated to 975°C and held there for one

hour, removed from the furnace while hot and cooled naturally
to room temperature in about 45 minutes. When cool, the dome

shaped wafer was lifted from the graphite block, sanded lightly
on the reduced (concave) side to remove ally metallic lead

particles and to expose the reduced layer, and then electroded

with DuPont 5504N epoxy silver paint cured at 200"C for 30

minutes. Although a silver electrode was applied to the reduced
side of the wafer, it was used primarily to insure good electrical

contact to the conductive reduced PLZT which actually was the

bottom electrode. Since the reduced PLZT layer was measured
to be 0.15mm thick for the selected reducing conditions, the net

thickness of the PLZT piezoelectric was 0.35mm.

Standard electrical measurements of capacitance (I kHz),

dissipation factor and dc hysteresis loops were run on all of the

samples after electroding. Displacement measurements were
usually made using a positive pulse voltage source and a

mechanical dial indicator 181, however, selected tests were also

run using a LVDT in order to compare results and to obtain the

full displacement loop with + and - voltages.

Grain size measurements were determined from optical

micrographs of polished and etched parts at a magnification of
x1250 using the linear intercept method.

RESUI.TS AND DISCUSSION

Grain Size

Grain sizes of the hot pressed PLZT parts ranged from

1.5 microns (urn) average diameter to 6.0 um. In general, the

larger grain size materials were found to be located along each

of the phase boundaries mentioned previously; i.e., between the

AFE, PE and FE phases, while compositions in the interior of

the phase stability regions possessed minimal grain sizes with the

4% La series having the smallest. Examples of this behavior are'

illustrated in Figures 3 and 4 as functions of Zr/Ti ratio and La

content, respectively. The reason for this behavior is not
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Figure 3. Grain size as a function of composition for materials in
the PLZT system at 2 and 4 atom % La.
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Figure 4. Grain size as a function of composition for materials in

the PLZT system at a Zr/Ti ratio of 65/35.

understood at this time; however, previous experience with PLZT

materials for electrooptics confirms the existence of large grain

sizes (up to 15 um) for 9/65/35. Obviously, this present set of

grain sizes exists for the materials hot pressed at the selected

conditions, and this would change as the as the temperature or

time was varied; but when comparing all compositions at the

same conditions, one can only speculate at this stage that
chemical and structural factors such as excess lead oxide in the

B-site formula, vacancies in the lattice or mixed phases in the

phase boundary compositions are instrumental in producing these
results.

Grain size is an important factor in the displacement

characteristics of Rainbows just as it is already known to be a

significant factor in other properties of piezoelectrics such as

dielectric constant, coupling and d constant. Figure 5 shows the

effect of grain size on axial displacement for composition 1/53/47.
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Figure 5. Grain size dependence of axial displacement for PLZT
1/53/47 Rainbow.

The grain sizes for this composition were obtained by hot

pressing at temperatures from 1000 to 1200"C. As can be seen,

grain sizes less that approximately 2 um lessen the displacement
characteristics and those greater than about 8 microns are of

little additional benefit. An optimum grain size range is
estimated to be from 6 to 7 microns.

Electrical Properties

Dielectric Properties - Small-signal dielectric properties of



several compositions of varying Zr/l'i ratio at 2% and
concentration are given in Figures 6 and 7, respectively.
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Figure 8. Small signal dielectric properties of composition series
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Figure 7. Small signal dielectric properties of composition series
at 6% La.

ranged from a low of 44:1 for 2/60/40 to a high of 1896 for
6/56/44. As expected, dielectric constant peaked at the MPB for
both series of compositions, however, the anomaly was especially
pronounced for the 2% La series. The maximum value of 1416
was possessed by composition 2/52/48. Dissipation factors
ranged from 2.4% to 9.7% with the higher values occurring in
the MPB compositions.

A second series of compositions with varying La contents
at ZrlTi ratios of 65/35 and 70/30 are shown in Figures 8 attd 9,
respectively. In this series, dielectric constants were observed to
increase in a regular manner from low values at 2% La to
maximum values at 8.5 - 9% La. Actual values ranged from 486
to 3264 for the 70/30 group, and the 65/35 values also fell within
this range. Dissipation factors as high as 9.8% and as low as
2.8% were measured, again with the higher values occurring at
the FE - AFE and FE - PE phase boundaries. These values are
typical of those obtained in previous work on PLZT materials.

Hysteresis Loops - Typical examples of dc hysteresis
loops for compositions 1/53/47 and 9/65/35 are given in Figure
10. The loop in Figure 10 (A) was taken on the ferroelectric
Rainbow element (1/53/47) in its virgin condition before any
other measurements were made. It should be noted that on the

initial application of positive voltage to 5450V there was
approximately 60% of the total remanent polarization switched
rather than the usual 50% one ordinarily observes in a virgin,

% LI

Figure 9. Sinall signal dielectric properties of con)position series
at 70/30 Zr/Ti ratio.

randomly oriented ceramic.. This behavior is highly unusual and
indicates that the Rainbow ceramic was partially poled before
testing. Additional audio and piezoelectric tests of other virgin
parts also indicated that the elements were partially poled to
varying degrees; i.e., some very little and others as high as 75%.

One explanation for this condition occurring in the
electrically virgin state is that the mechanical compressive and
tensile stresses produced in the Rainbow wafer during processing
are acting together to switch some of the domains in this soft
ferroelectric/ferroelastic material. Since uniform stress is a

P

I
i

/

(A)

E

(B)

P

Figure tO+ Typical hysteresis loops for Rainbow PLZT
compositions (A) 1/53/47 and (B) 9/65/35.



symmetricalquantity,it isrecognizedthat it alone is insufficient
to produce a net polarization in a given direction even though it
may be of sufficient magnitude to switch domains; however, a
stress gradient such as produced by the Rainbow bending process
is a vector quantity and can, indeed, produce the observed effect.
This non-uniform stress is believed to be responsible for the
partial poling of the Rainbow wafers.

Measured properties on the above wafer were: P_ = 44.8
uC/cm-', Ec = 7.5 kV/cm, dielectric constant = 1210 and
dissipation factor = 0.047.

The virgin loop of Figure 10(B) is a typical one for the
electrostrictive (9/65/35) type of Rainbow materials and is very
similar to that obtained on bulk electrooptic material. Measured
properties on this wafer were: PmKWCM=28.3 uC/cm 2, dielectric
constant = 3142 and dissipation factor = 0.085. As a matter of
course, no unsymmetrical hysteresis loops were observed in the
electrostrictive materials, and none was expected, since there are
no stable domains in these materials at zero electric field.

Conceivably, a high enough stress could precipitate stable
domains in a very near-ferroelectric material, however, a study of
this effect is beyond the scope of this investigation.

Displacement Loops - Displacement vs. electric field
(butterfly) loops for the Rainbow wafers described above are
shown in Figure 11. As before, Figure l l(A) illustrates the
Rainbow axial motion as the sample is electrically switched from
zero to +450V, to -450V and back to zero, however, in this case
this loop was not taken on the virgin wafer. It may be noted that
this loop is remarkably similar to that observed when measuring
the direct extensional (longitudinal, lateral) displacements via the
piezoelectric d, or d3, coefficients. The value of displacement
in the + voltage direction was measured at 190.5 urn, and the
total amount of displacement (+/-) was 432 urn.

E E

(A) (B)

Figure 11. Axial displacement loops of samples in Figure 10.

Figure IL(B) shows the displacement loop of the
electrostrictive Rainbow material (9/65/35) mentioned above.
Since 9/65/35 is a relaxor material there should be little or no

memory, and the same value and sign of displacement should
be obtained whether a + or a - voltage is applied. One can see
by switching this sample through a full voltage loop that a small
amount of remanent displacement (strain) is present which is
probably due to the close proximity of this composition to a FE
phase. A further indication of this incipient FE phase is the
higher than normal value of P,0 (Pro = 28.4 vs. 18.0 uC/cm 2) as
given above. Measured value of total displacement for this wafer
was 178 urn.

Displacement vs. Composition - Displacement data as a
function of composition in the PLZT phase diagram is shown in
Figurei2. In this figure, the stars indicate the location of most
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Figure 12. Rainbow displacement data for the PLZT system
overlaid with the phase diagram of Figure 1 (values in microns
are to be multiplied by I00).

of the compositions prepared, and the values given are those
obtained from the dial micrometer measurements at zero to

+450 volts. As such, they represent approximately one-half of
the total switching displacement available from the FE materials
but all of the displacement available from the SFE relaxor
materials. It may be noted in this diagram that the maximum
displacements were found to occur along the same phase
boundaries mentioned previously; i.e., the FEa - FEr, FE - PE
and FE - AFE boundaries, where other properties also are
maximized. It should also be mentioned that the phase
boundaries shown in Figure 12 are the same as those of Figure
1 because Figure 1 was simply overlaid on the displacement data
and drawn in. The location of these boundaries were determined

to be nearly identical to those which could be located by the
displacement data. A comparison of these boundary locations
at various levels of La are given in Table I.

Table 1. Morphotropic phase boundary compositions
determined from displacement data compared with ref. 3.

% La PLZT PLZT Rainbow

(Ref. 3) (This Work)
.........................................................

2 2/53/47 2/53/47
4 4/55/45 4/55/45
6 6/58/42 6/57/43
7 7/60/40 7/61/39
8 8/62/38 8/60/40

Boundary 8.6/65/35 8.5/70/30

The values of displacement varied from essentially zero

(eqt, ivalent to the direct extensional modes) to a high of 210 um
for composition 2/52/48, which would indicate that maximum
displacement occurs just on the tetragonal side of the MPB
boundary. Other maxima occur at 9/65/35 (152 um) and
8.5/70/30 (168 urn) for the electrostrictive materials at their
respective boundaries. It is interesting to note that no significant
anomaly or trend occurred near the AFE - FE boundary where
one would expect a large electric field induced volt,me change in



going from a small AFE unit cell to a larger FE unit cell. For

compositions 2/90/10 and 4/90/10 which are near this boundary,

it was observed that the Rainbow curvature was reversed from

convex up (reduced side concave) to near flat or convex down

(reduced side convex). In some cases, an electroded part of this

type exhibited an axJal displacement which could be tested simply

by turning the wafer upside down and then operating as normal.
Obviously, this region of the phase diagram should be studied

further, but such depth was beyond the scope of this
investigation.

Some of the possible reasons for maximum Rainbow

displacements to occur at phase boundaries are (1) maximum

piezoelectric constants (d. and d3L) occur at the boundary, (2)
mixed or metastable phases exist, (3) maximum domain

reorientation is possible, (4) higher mechanical compliance of the

structure exists, (5) electric field enforced phases are possible
and even probable in some cases and (6) larger grain sizes may

occur in the mixed phase region at the boundary. To some

degree, all of these effects are probably operative in the

Rainbow devices, however, a more in-depth study is required to
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ceramics as a function of La content at a 65/35 Zr/Ti ratio.

identify the dominant mechanisms.
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Figure 13. Displacement characteristics of PLZT Rainbow
ceramics as a function of Zr/Ti ratio at selected levels of %La.
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ratio (% Ti) at several levels of La concentration or of % La at

several different Zr/ri ratios. Each of these figures again

emphasizes the significantly larger displacements existing in the

phase boundary compositions.



CONCLUSIONS

This investigation indicates that the PLZT compositional
system is a very fruitful area for producing and studying the
unique characteristics of the Rainbow ceramics. No difficulty was
experienced in fabricating any of the compositions into Rainbow
wafers with the exception of four compositions near the AFE -
FE phase boundary. The results of this investigation clearly
show that (1) maximum axial displacement is obtained in
compositions in or near the morphotropic phase boundary or the
phase boundary separating the FE phases from the non-polar
(AFE, PE) phases, (2) grain size is a factor in achieving high
displacement, i.e., larger grain size is desirable, (3) the
compressive and tensile stresses produced in the Rainbow process
are instrumental in partially pre-poling the Rainbow ceramic and
(4) other mechanisms, in addition to the piezoelectric d31
coefficient, are very likely responsible for the unusually large
displacements observed. A maximum displacement of 210
microns for a single, dome-mode Rainbow ceramic was found to
occur in PLZT 2/52/48 when activated from zero to +450 volts.

Since all of the displacements in this investigation were obtained
on Rainbow ceramics with a diameter-to-thickness ratio (31.75
mm x 0.5 aim or 63.5 to 1) conducive to producing a dome-type
displacement rather than a saddle type, significantly higher

displacement values are to be expected for larger diameter and
thinner parts with a higher ratio [4].
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ABSTRACT

It has recently been shown that the selective reduction of
one surface of a high-lead-containing piezoelectric or electros-
trictive ceramic wafer results in a stress-biased wafer with a

unique domed structure that leads to high electromechanical
displacement and enhanced load-bearing capability. These
ceramics have been called rainbow ceramics and their very

high displacements make them very promising materials for
transducers and actuators. The dielectric, piezoelectric and

hydrostatic properties of a variety of PLZT based rainbow
ceramics have been measured and analysed. The samples

exhibited a strong piezoelectric effect in the poling direction

(effective d33 of the order of 10 .8 C/N) under low planar and

hydrostatic pressures but as the pressure was increased there
was a marked decrease in the strength of the piezoelectric

response which passed through a minimum and then
increased to the level of typical values for PZT ceramic. Some
samples were plated and these had a low pressure hydrostatic
voltage coefficient that was considerably greater than that of

PZT along with a reasonable level of thickness mode electro-
mechanical coupling. However, as the hydrostatic pressure

was increased, the hydrostatic voltage coefficient decreased
towards typical values for PZT. The rainbow ceramics show
considerable promise as material for actuators and, possibly,
for shallow water sonar transducers.

and hydrostatic properties of a range of PLZT based rainbow
ceramic specimens which are described in Table 1. The speci-
mens had a lanthanum content of 1.0 % and a lead zirconate

content of 53 %o The samples were 0.5 mm thick discs which

were electroded with Dupont 5504N silver epoxy and they all
had a dome like appearance. Samples 4 and 5 had their rims

glued to 1 mm thick brass plates whose diameters are given in
Table 1. A specimen without electrodes was used to determine

the density which was found to be 7575:1:100 kgm 3.

Table 1: The Specimens

Sample
Number

Diameter/
Plate

Diameter (cm)

Plate

I 1.31 none

2 315 none

3 3.14 none

316
4

plate - 3.4

1.31
5 plate - 132

brass

brass

INTROOUCTION

A new type of ceramic bender has recently been produced

by the high temperature chemical reduction of one surface of a
high-lead-containing piezoelectric or electrostrictive ceramic
wafer which results in a stress-biased dome like structure that

is capable of achieving very high axial displacements [1]. The
reduced (concave) side of the wafer can serve as one of the
electrodes. This type of ceramic has been called a "rainbow"
(reduced and internally biased oxide wafer) ceramic. When a
voltage is applied to a rainbow ceramic, the dome height varies

as a f_nction of the magnitude and polarity of the voltage and
this motion is largely a consequence of the lateral contraction
produced in the material due to the lateral piezoelectric coeffi-
cient d31. Rainbow ceramics have been produced using ceram-

ics.such as lead zirconate titanate (PZT), lead lanthanum
zirconate titanate (PLZT) and lead magnesium niobate (PMN).
Single elements of rainbow ceramics, 0.2 mm thick, have pro-
duced displacements of 1 mm which represents a very high
strain of 500%. Since rainbow ceramics are also easy and

cheap to produce, they show considerable promise as materi-
als for actuators and sonar activators. This paper reports on

the measurement and analysis of the dielectric, piezoelectric

RESONANCE MEASUREMENTS

A Hewlett Packard Model 4192 Impedance Analyser was

used to measure the impedance of the samples as a function
of frequency. In addition to radial and thickness mode reso-
nances, the samples showed bending mode resonances; in the
case of sample 1 the bending mode resonance occurred at

about 30 kHz. The impedance spectra of the samples have
been analysed using Smits' method [2] and our own tech-
niques [31 although it should be stressed that the geometry of
these dome shaped samples does not correspond strictly to

the geometry assumed in deriving the resonance equations.
An analysis of the thickness and radial mode resonances of
samples 1, 2 and 3 gave the material constants shown in
Tables 2 and 3 in which the symbols used have the usual defi-
nitions as given in the IEEE Standard on Piezoelectricity [4].
These tables show that there are large differences in the mate-
rial constants measured for the various samples and this is
likely to be due to small differences in the curvatures and
aspect ratios of the dome shaped samples The curvature is a
result of the reduction process and small variations in composi-
tion and processing conditions would produce differences in



Table 2: Thickness mode material constants measured

at 4 MHz and 20°C

O
C33 (1011Nlm 2)

3
E33 (10"9Fire)

1133 (109V/m)

Sample 1

0.359(1 - 0.12_

1.3S(1 * 0.020i)

8.39(1 - 0.33i)

1.62(1 + 0.049i)

Sample 2

0.355(1 - 0.31i)

1.06(1 ÷ 0.069i)

6.87(1 - 1.11)

1.23(1 + 0.15i)

Sample 3

0.327(1 * 0.12i)

1.19(1 ÷ 0.068i)

11.3(1 - 0.35i)

0.99( 1 + 0,33i)

Table 3: Radia! mode material constants measured at 20°C

S?l (10"11m2/N)

$1% (10"11m2/N)

Sampte 1

1.55(1.0.023i)

-0.517(1 - 0.023i)

Samp4e 2

1.81 (1 - 0.023i)

-0.742(1 - 0,023i)

Sample 3

2.15( 1 - 0.038i)

-1.22(1 * 0.038i)

d31 (10"12CIN) -140(1 - 0,088i) -123(1 - 0.085i) -83(1 - 0.22i)

T

E;33 (10"gF/m) 13.3(1 - 0.0915i) 11.6(1 - 0,077i) 7,8(1 - 0,21i)

(3.p 0,334 0,410 0.566

kp 0.52(1 - 0,043i) 0.48(1 - 0.047i) 0.43(1 - 0.1 li)

the curvatures of the samples which would significantly affect

the material constants.

In Figure 1, which shows the thickness resonance of sam-

pie 1, the experimental points are compared to the fit obtained

by using the material constants found for this sample. It can be

seen that the fit is acceptable around the fundamental mode

but there is significant dispersion at higher frequencies.

Besides, the first thickness resonance occurs close to 4 MHz

and it follows that a non-dispersive material would have a sec-

ond resonance at around 12 MHz whereas this occurs at about
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Figure 1, The resistance and reactance versus frequency for

sample 1. The experimental points are compared with the

lines which represent fits obtained by using the derived mate-
rial constants.

7.5 MHz in the figure. Finally the figure shows that the base-

lines for the data and the fit differ substantially at frequencies

higher than the first resonance frequency. All of this evidence

points to a significant dispersion in the dielectric, elastic and

piezoelectric constants of the material.

Another interesting feature is that the second thickness

mode resonances of the larger samples are inductive and yield

negative values of permittivity; this is due to the high conductiv-

ities of these samples at high frequencies.

Samples that were bonded to plate electrodes had thick-

ness resonances that saturated the measuring circuit while

their radial modes were smaller than those for the unbonded

samples. This suggests that the electrode plate acts to clamp

d31 more than #33 with a resulting enhancement in k t.

DIELECTRIC MEASUREMENTS

The capacitances of the specimens were measured at a

frequency of 1000 Hz at room termperature. The average val-

ues for the permittivity, the dielectric constant and the loss tan-

gent for samples 1, 2 and 3 are given in Table 4.

Table 4: Dielectric Constants

(averaged over samples 1, 2 and 3)

Property Units Value

T
Permittivity E33 10 .9 F/m 14:1:1

Dielectric Constant K "T 1540:1:110
_3

Loss Tangent tan 6 0.086 + 0.012

THE PIEZOELECTRIC CHARGE CONSTANT

The value of the piezoelectric charge constant, d33, for the

material was obtained by using a point force head on a Berlin-

court type d33 meter which was operated at a frequency of

200 Hz. The value of o'33 was found to vary over the surface of

the samples; to find if this was due to coupling to the bending

mode of the sample, measurements were made at 12 points

spaced 1 mm apart along a diameter of the slightly domed

samples. Our results for sample 1 are shown in Figure 2 where

the three curves represent the values obtained (a) when the

measurements were made with the curvature of the dome

shaped sample facing downwards so that the sample formed a

cavity with the base plate of the meter with the positive terminal

at the point head (indicated as "+ up" data in the figure, (b)

when the measurements were made with the sample curvature

facing upwards ("+ down" data in the figure) and (c) the aver-

age of the two measurements made in (a) and (b). Figure 4

shows that the apparent d33 values are quite large and can

reach up to 12,000 pC/N at the centre of the specimen. It is

likely that this large value is due to the addition of the normal

uniaxial compression of the ceramic material and the bending

modes of the dome shaped sample. In order to elucidate this

better the d33 was measured as a function of uniaxial compres
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sion using a method which has been reported earlier [5]. Our

results for sample 2 are shown in Figure 3 and it can be seen
that (/33 has a value of about 10,000 pC/N at low applied force

but it then decreases rapidly as the dome shaped sample is
flattened out as a result of increasing force and it passes

through a minimum at a force of about 200N from which point it
rises up to typical ceramic values as the ceramic undergoes
compression. It can therefore be concluded that the large d33

values are indeed caused by the bending of the dome shaped
sample when a stress is applied; after the rainbow material has
become flat, it begins to act like a plain bulk ceramic disc.

It should be noted that the voltage - force curves of the

specimens show hysteresis and this behaviour is very similar
to that shown by bulk PZT discs [5]. The hysteresis is due to
the time-dependence of the piezoelectric response of the rain-
bow ceramic.

HYDROSTATIC PROPERTIES

The hydrostatic voltage constants, gh, of the rainbow speci-

mens have been measured at a frequency of 400 Hz and as a

function of pressure using a SENSOR gh apparatus. Our

results for samples 1, 3 and 5 are shown in Figure 4. Two
series of measurements were carried out on sample 1: the
results indicated by "+ up" correspond to the dome shaped
sample being placed with its curvature facing down and form-
ing a small cavity with the base plate of the apparatus while the

results indicated by "+ down" correspond to the rainbow
ceramic sitting on the base plate with its curvature facing up.

The hydrostatic voltage response is the sum of the contribu-
tions arising from the bending of the dome shaped rainbow and
the compression of the ceramic itself. In the case of sample 1,

the bending effects are small since the edge of the rainbow
ceramic can move laterally on the base plate and so the gh
value iS close to that of standard bulk PZT ceramic. The small

difference between the two series of measurements on sample
1 is probably due to the different contributions from the bending
of the specimens. Samples 1 and 3 are similar in that both

were not bonded to a base plate so that the hydrostatic pres-
sures are identical on both faces and the dome does not

undergo any flattening due to the hydrostatic pressures. Sam-

ple 3, which has the bigger radius, has a larger value of gh and

this is perhaps due to the larger bending deflections which are
possible in this case. Sample 5 is a rainbow ceramic of the
same radius as sample 1 but it is bonded to a brass plate about

1 mm thick so that the hydrostatic pressure is not now transmit-
ted to the inner surface of the rainbow and the dome gradually
flattens as the external static pressure is increased. At low
pressures the flattening is negligible, but since the rim of the
rainbow is bonded, the bending response to the signal is con-
siderably greater than in the case where the rainbow is not
bonded (as in sample 1) and hence the much larger value of

gh. As the pressure increases, the rainbow gradually flattens,

the bending contributions decrease and the gh value

approaches that of a normal bulk PZT ceramic.
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Figure 5 shows the hydrostatic figure of merit, ghdh, of sam-

ples 1, 3 and 5. The small rainbow (sample 1) has a figure of
merit that is substantially lower than that of PZT while the

larger rainbow ceramic (sample 3) has a figure of merit which is
comparable to that of PZT.

The ghdh values for sample 4 are shown as a function of

pressure in Figure 6. This sample is a large rainbow ceramic,
3.16 cm in diameter, bonded to a 1 mm thick brass plate and
its behaviour is qualitatively similar to that of sample 5 which is

smaller. At high pressures the values are slightly lower than the

nominal values for normal bulk PZT but they rise dramatically
at low pressures. At low pressure this sample has a very high
gh value of about 0.8 VmlN

Finally it may be noted that both Figures 3 and 6 show
minima. This is explained by the fact that there are two contri-

butions to charge generation: bending of the dome shaped
samples and compression of the ceramic. These two contribu-

tions are not independent but are coupled with the strain being
relieved by the bending action of the monomorph.
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Figure 6. The hydrostatic figure of merit as a function of pres-
sure for sample 4.

CONCLUSIONS

The set of PLZT based rainbow specimens analysed by us
have shown a strong piezoelectric response under low planar
and hydrostatic pressures but there is a marked decrease in

the strength of the response as the pressure is increased. The
larger response at low pressures is thought to be due to the

bending of the samples and the consequent release of charge.
The resonance curves of the specimens were somewhat

distorted by the presence of the bending modes. The material
constants were determined for the radial and thickness modes

of operation and these were found to exhibit geometric effects
and dispersion.

The rainbow samples that were not bonded to a base plate

had hydrostatic properties in the same range as ordinary bulk
PLZT with some variation depending on the orientation of the
sample in the measurement apparatus. However the rainbow
samples that were bonded to electrode plates showed sub-

stantially better hydrostatic properties but, as the static pres-
sure increased, these decreased to values similar to those of
bulk PLZT.

The dielectric properties of the rainbow samples were simi-
lar to those of PLZT.

In conclusion, the rainbow ceramic material shows consid-

erable promise as an actuator material where large displace-
ments are required (solid state speakers, pumps, switches,

positioners etc..) and, possibly, for shallow water sonar projec-
tors. The large pressure dependences exhibited by the mate-
rial reduce its applicability in deep water applications, although,
with proper design, it may be possible to maintain a pressure-
independent sensitivity that will be somewhat greater than that
of PZT, the current standard in sonar transducer materials.
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[3]
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Abstract- A stress-biased, domed, electromechanical Rainbows also differ from tmimorph benders by the

bender called a Rainbow was recently developed. Displace- presence of large internal stresses developed during the I

ment characteristics for Rainbow devices based on process of reduction and cooling to room temperature, i
piezoelectric PLZT compositions were studied in the Because of the volume decrease during the reduction step and I
frequency range far below the fundamental resonant mode the higher thermal expansion of the reduced layer compared i
frequency. Experimentally obtained field-induced displace-' to the oxide layer, the stress-free equilibrium dimensions of ',
meats were compared with those predicted by a finite element I tile reduced layer are smaller than for the oxide layer. To i

r

model. The model underestimated the observed displace- retain continuity at the interface between the oxide and the i

merits. Low frequency relaxation of the displacements was reduced layers and to minimize stored elastic energy, the i
observed experimentally, sample develops curvature. For the Rainbows with a large_

reduced/oxide layer thickness ratio, the o,,dde layer is in
IN'r'RODUC'rIoN compression tiu'oughout its volume. For a sufficiently small

reduced/oxide layer thickness ratio, the neutral axis is in the
There are a number of applications including pumps, oxide layer with the oxide material close to the interface

speakers, laser deflectors, optical scalmers, and relays for being in compression and further away in tension.
which displacements well above those obtained using linear
actuators are desirable. For these applications, piezoelectric EXPERIMENTALPROCEDUI',E
benders have traditionally been used [ 1-4]. Benders are based
on a bimorph or unimorph structure. Bimorphs contain two Batches with various PLZT compositions wet'e prepared
electromechanically active layers, and unimorphs have an using the mixed oxide method. The powders were calcined at
active and a constraining layer. In both cases, layers must 925 *C for two hours in closed alumina crucibles. The

have good bonding since bending occurs as a result of field- samples were either sintered at I250 °C for 6 hours in oxygen

induced lateral strain being nonuniform in different parts of a or hot pressed at 1200 °C for 6 hours at 14 NIPa. For the
structure. To accmmtaodate this strain, the sample bends, reduction process, a lapped sample was placed on a graphite

producing vertical displacement. The key parameter for these block and introduced into a preheated furnace held at 975 °C
devices is the piezoelectric d31 or electrostrictive QI_ for approximately one hour, and then removed from the hot
coefficient, wt_ich should be maximized, furnace. Silver electxodes were used tltroughout the testing

Recently, a new type of bender called a RAINBOW I [6].
(Reduced And htternally Biased Oxide Wafer) was devel-, Field-induced displacement was determined using LVDT-
oped with promising characteristics [5]. Rainbow devices t based apparatus. Displacements were determined for the
with maximum displacements of 3 mm and sustaining point i forward-biased case and for the complete loop cycling. For
loads up to I0 kg were demonstrated [6]. The trade-off the forward-blazed case a Rainbow was poled at room temp-

between the displacement and load-bearing capabil ties was erature with approximately 900 volts applied until the
established.

displacement stabilized, and then the displacement was
In this paper the electromechanical properties of Rainbow measured in the poling direction quasi-statically from zero

devices well below the fundamental resonance mode volts to the poling voltage. The procedures for determinations
frequency will be described and compared to tliose predicted of the thermal expansion coefficients and elastic constants

i by a finite element model (FEM). will be published elsewhere [8].

rLAINq3OWACTUATORS MODELING

' Rainbow actuators consist of an electromechanically Finite-element modeling of complicated piezoelectric
active layer and a constraining layer, similar to conventional structures has been used successfully [9]. For tltis study the

unimorphs. Unlike the unimorph, however, the Rainbow is a ABAQUS commercial FEM package (Hibitr, Karlsson &
monolithic structure. The constraining layer is formed by Sorenson, Inc., version 5.2) was used to simulate therTnO-
exposing one side of a lead-containing ceramic to a reducing mechanical and electromechanical properties for the Rainbow

i atmosphere at high temperature produced by placing a devices. The model uses linear piezoelectric, dielectric, and

ceramic in contact with a carbon block. The reduction of lead elastic properties of the oxide and reduced layers..
i lanthanttm zirconate titanate (PLZT) ceramics occurs as a The constituent equations for the piezoelectric media
' result of oxidation of the solid carbon block, first to carbon used in the modeling are:
monoxide and then to carbon dioxide gases [7]. The reduced
layer is no longer piezoelectric, a,ld is, in fact, a good S_=s,_T_+d',,E i (1)

electrical conductor due to a presence of a large amount of D ---d,Tj +e,iEir (2)
lend. The reduced layer functions as the electrode and the
constraining part of the bender, r. , where Si is the strain, D i is the polarization, "l'j is the stress.
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! isthe
t dielectric permittivity, and dij is the piezoelectric compliance.

2) IVlodelia)g of Rainbow devices includes three major pans:
.1) the definition of materiat properties and sample geometry,

the modeling of the cool down from the reducing temp-
erature to room temperature, and 3) the determination of the

response to the specified set of boundary conditions.
For the modeling of the cool down step nonlinear

analyses were used to account for the considerable stiffening
of the Rainbow structure during this step. The model pel'mits
linear analyses of the piezoelectric properties. Currently,

nonlinear piezoelectric effects and electrostrictive properties
cannot be modeled. For the calculation of the field-induced

displacements a structure based on 60 elements gave
satisfactory results for the modeling of the quasi-static field-
induced displacements.

RESULTS AND DISCUSSION

In the case of piezoelectric ceramics there are three
piezoelectric, two dielectric, and five elastic coefficients
which are permitted by syrrunetry to be nonzero. The
complete set of these values are known for only_.a_.few

:ceramics. Fortunately, for PZT 5 all of the above properties

_have been characterized [I0]. PZT 5 is a soft PZT, and it

i shou[d have values similar to those of PLZT ceramics with
: low lanthanum content. Piezoelectric, dielectric, and elastic
constants of PZT 5 were used in the model. [n addition,

: Young's modulus, Poisson's ratio, densities, and thermal
expansion coefficients for the reduced layer formed from
PLZT 5.5/57/43 (La/Zr/'l'i) ceramics have been experimen-

tally determined [8]. The data used in the modeling work are
shown in Table 1. A rate of formation of the reduced layer of

127 _.rnAlour was used in the model.
To verify the model, a comparison was made between the

predicted displacement from the FEM model and the
i analytical model of the cm, tilevered bimorph [3]. For one

(bimorph, the FEM predicted a field-induced displacement of
61 microns compared to the 50 microns predicted by the

I
l analytical model. The FEM correctly predicted the field-

[induced displacement to be proportional to the length of the
cantilever squared, again in good agreement with the
analytical model.

There was reasonable agreement between the experimen-
tally determined spontaneous displacements measured at the
center of a Rainbow after cool down and the modeling

predictions as is shown in Table 2. Rainbow devices were
found to be partially poled during the cool down which
lowers their spontaneous displacement (Rainbow devices

become flatter when poled).

7 1:" :! _1 15.'1': I" q,I ....'lt!'('"t, '" f'.]'ll _1 I,'_. x II I:.'_(_E i(.) ,_, ' .,':
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Table 1. (a) PZT 5 data used for the oxide layer modeling,

•and (b) experimental data for the reduced layer prepared from
PLZT 5.5/57/43.

Material

(a) PZT 5

Property

c a

C3)

E
C.u

d33

d31

Magnitude
12.1,10 to N/m 2

7.54* 10 t° N/m 2

7.52,10 t° N/m 2

11.1 *10 l° N/m 2

2.11.10 t° N/m 2

374* 10"12C/N

-171.1042 C/N

(b) Reduced

Layer

dis

_;r / _o

r /¢o

Density

Young's modulus
Poisson's ratio

Thermal Expansion

584,10 "12C/N
1730

1700

8.00 gm/cm 3
6.86,10 l° N/m 2
0.381

~10.10-6 oC-I

The experimentally obtained displacements are signifi-
cantly higher than those predicted by the model (Table 2).
There are appreciable variations from sample to sample in the
ratio of total displacement to the forward biased displace-
ment. The larger experimental displacement compared to the
model may be accounted for by considering additional non-
linear contributions from the non-tS0* domain walls and

phase boundaries [ll] and higher linear piezoelectric
coefficients.

The model was used to compare the effects of the

reduced/oxide layer thickness ratio on a Rainbow's field-
induced and cool down displacements. The magnitude of the
displacement on cool down is determined by the difference in
the effective thermal expansion coefficients between the
oxide and reduced layers, the geometry of a sample, and the
elastic constants. Figure I shows that the maximum predicted
spontmleous displacement should occur for the reduced/oxide
layer thickness ratio of approximately one. This result is in
qualitative agreement with Timoshenko's model of the bi-
metal thermostat [12], which also predicts maximum
displacement near the layer thickness ratio of one for the _vo
layers having properties of the oxide and reduced layers. As
is also shown in Figure 1, the maximum field-induced and
cool down displacements occur at the same Rainbow

geometry. This result is applicable if the magnitude of the
electric field is kept constant in the oxide layer as the

geometry changes, which was done in the case described in
Figure I. For the case of constant voltage across the oxide

Table 2. Experimental results and FEIVlpredictions of electromechanical properties.

Oxide Layer

Composiuon

Reduction

Tcmpcrncurc/
Time

(*C / minutes)"

Calculated

Forward Bias

Displacement

(Fm)
ao

Experimental Experimental
Total R:,inbow Full Cycle Full Cycle Fonvard Bias

Thickness Vollnge Displacement Displacement

flaml (Volts) f_tn,l f/am)
762 :t: 1026 3OI 116

635 "["912 177 78

864 "912 I50 :]5

508 ± 11)26 357 129

i 508 _ 912 307 1,10

/

............ '" ' l: " "i, ;,, X v X X X X " v

Experimental
Cool Down

Displacement

t_tml
54.71.0 / 53/.17 975 / 105

60 / 595 t 405 975 / 90 42 759 844.

601 59 5 / 40.5 975 / 105 27 742 70.5

6,0 / 57 / 4.:] 075 / 60 51 1067 82_

60156/.t..t ,]75175 53 668 j _g4.

Calculaled

Cool Down

Displacement

tH.m)
789

O@o,_ N.,,( .... ,uf.- ,., . . I_.,,.
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Normalized displacements induced by cool

down and application of voltage.

layer the displacement continues to increase with the
reduction of the oxide layer thickness. This is consistent with
'the electrical energy stored in the oxide layer being inversely

proportional to its thickness, permitting greater field-induced
lateral strain which increases tile degree of bending of a
Rainbow.

The shapes of the Rainbow samples having different
diameters before and after the electric field application are
shown in Figure 2. Tile flatter samples have no applied
voltage; file more curved Rainbows bend up as a result of
voltage applied in the opposite direction to the poling
direction (the magnitude of movement is exaggerated). For
the thicker Rainbows, there is less flattening in the middle
portions. The model predicts this shape as a result of the
nonlinear cool down step. Because FEN[ predicts that the

curvature of a Rainbow is-nonuniform, it is not compatible
with the predictions of linear models, mentioned above,
which ignore nonline_ effects. In particular, the model

predicted smaller displacement than the diameter squared
dependence of the field-induced displacement.

Rainbow samples are capable of significant load-bearing
capability. As is shown in Figure 3, there is excellent

reproducibility in field-induced strain for a sawtple with up to
500 grams point load applied to the center of the sample.
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Figure 3. Field-induced displacements as a function of
voltage for different loading conditions.

After _,olta_e is applied
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t
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After voltage is applied

J,

t"

Before voltage is. applied (after cool down)

Figure 2. Shapes of Rainbows with diameter 635 cm

(top) and 1.59 cm (bottom) before and after
voltage is applied. Reduced/oxide layer thick-

hess ratio: 1:3, thickness: 508 /.ira, applied
voltage: 500 V for bodl samples.

Rainbow samples have pronounced low frequency
relaxation of the field-induced strain. [t usually is manifested
strongly for only one polarity. The response is relatively fast
for the other polarity. An example of the low frequency
contribution to the Rainbow displacement is shown in Figure
4. This sample was poled at 800 volts, and the field-induced
displacements were measured at .+.53volts. It can be observed
that the field-induced displacement fits a straight line on
semilog paper, indicating that the displacement becomes
especially large at low frequencies.

The intriguing possibility to consider is whether the
strong frequency-dependence of displacements and displace-
ments exceeding the FEM's predictions are enha_aced in
Rainbow devices compared to conventional benders. Because
Rainbows have large internal stresses it is reasonable to
expect greater density of ferroelastic domain walls compared
to ferroelectric devices without the macro-scale internal

stresses, which could lead to enhanced displacements.
Another possible contributing factor to the large displace-
ments observed in Rainbow devices is unique to its structure.
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Because of thegradual change in the stress level in the oxide

layer, different domain orientations are favored in different

parts of the sample. Free charges may be trapped to compen-

sate for polarization discontinuity at high temperature where

conductivity is relatively high. As file sample is cooled down

rapidly to room temperature it remains partially poled, and

there may be net trapped charge in the bulk of the sample.

Slow migration of charges during the domain switching may

account for low frequency enhanced displacements. Finally,

since a greater volume fraction of the oxide layer is in

compression, higher switchable polarization should be

available compared to the unstressed bender, as was shown

for thin _fihns m compression [ 13].

CONCLUSIONS

Electromechanical properties Of Rainbow devices were.

studied at low frequencies and the results were compared to

the FEM. The distinguishing characteristic of Rainbow

devices is large and nonuniform stress on a macroscopic

scale. Possible reasons for larger than expected displace-

ments and frequency-dependent properties were discussed,

and are believed to be related to a unique Rainbow structure.
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In the last fifteen years considerable progress has been made in developing novel materials and devices
for ¢lectromechanica| actuator applications based on a variety of ferroelectric materials. Recently a

novel type of high displacement actuator was developed. It is a monolithic, domed, stress-biased wafer

consisting of oxide and reduced layers. These actuators are envisioned to be used in a variety of

applications ['or which the knowledge of the resonance modes is essential. In this paper measurements

of the resonant modes are compared to the predictions of the finite-element model. A number of low

frequency modes were observed and identified as the bending modes. A higher frequency radial mode

was determined to be less dependent on the sample dimensions than the bending modes. Effects of the

boundary conditions on the resonant modes were modeled and investigated experimentally. For the
modeling aspect of the study it was necessary to measure elastic constants, thermal expansion coeffi-

cients, and bulk densities of the oxide and reduced portions of the actuator. Experiments to measure

these properties were performed and are described.

Keywords: unimorph, bender, actuator, piezoelectric, Rainbow, resonance, bending

modes, radial mode, finite element analyses

1. INTRODUCTION

In the last fifteen years there has been considerable progress in developing novel

materials and devices for electromechanical actuator applications based on a variety

of ferroelectric materials, t Much of the work was directed toward developing ma-
terials with enhanced electric field-induced strain. Currently linear strain actuators

are based on piezoelectric, electrostrictive and antiferroelectric materials. For ac-

tuation, these devices rely on either piezoelectric d33, d3t, electrostrictive Qtt, Qtz,

or an antiferroelectric-ferroelectric phase transition volume change. Unfortunately,

the maximum realizable strain in these devices is less than one percent.'- For a
multilayer actuator with a one centimeter thickness, the maximum obtainable total

displacement is less than 10 microns.

There are a number of applications including pumps, speakers, laser deflectors,
optical scanners and relays for which displacements well above 10 microns are

desirable. For these applications piezoelectric benders have traditionally been

used. 3-6 Benders are based on a bimorph or unimorph structures. Bimorphs contain

two active layers bonded together, and unimorphs have an active and a passive

layer. In both cases, bending occurs as a result of field-induced lateral strain. To
accommodate this strain, the sample bends, producing vertical displacement. Key

parameters for these devices are piezoelectric d3, or electrostrictive Q_2 coefficients.

A further advantage of benders is their lower mechanical impedance, which allows
more effective energy coupling into gases and liquids. One consequence of the

357
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higher compliance of benders is a reduction of the resonant frequencies compared
to stiffer linear actuators. 6

Benders are used in three types of applications: quasi-static, non-resonant dy-
namic, and resonant) For the non-resonant dynamic and resonant applications,

knowledge of resonant modes of a bender device is of crucial importance.

Recently a new type of bender called a RAINBOW (Reduced And Internally

Biased Oxide Wafer) was developed which has promising characteristics. 7 Rainbow

devices with 1 mm displacement and a 10 kg load-bearing capability were built.

The purpose of this paper is to describe the resonant properties of Rainbow

devices. The basic structure and the principle of operation of Rainbow devices is
described in section II. In section III the experimental procedures for preparation

and characterization of Rainbow devices are given. Section IV describes the finite-

element modeling procedure. In section V experimental results are compared with

the finite-element model. Likely mechanisms for the various vibration modes are
identified.

II. RAINBOW ACTUATORS

A unimorph consists of a piezoelectric or electrostrictive active layer bonded to a

metal foil. Electric field induced lateral dimensional change in an active layer is

opposed by a flexible metal plate. Rainbow actuators, similar to conventional

unimorphs, consist of an electromechanically active layer and inactive layer. Unlike
the unimorph, the Rainbow is a monolithic structure. The inert layer is formed by

exposing one side of a Lead-containing ceramic to a reducing atmosphere at high

temperature produced by placing a ceramic in contact with a carbon block. The
reduction of lead lanthanum zirconate titanate (PLZT) ceramics occurs as a result

of oxidation of the solid carbon block, first to carbon monoxide and then the carbon

dioxide gases, s The reduced layer is a good electrical conductor, and it acts both

as the electrode and inert part of the bender.

Rainbows also differ from unimorph benders by the presence of large internal
stresses developed in the process of reduction and cooling down to room temper-

ature. Various steps involved in internal stress and shape development of a Rainbow

are shown in Figure i. Because of the volume reduction occurring during the

reduction step and larger thermal expansion of the reduced layer compared to the
oxide layer, stress-free equilibrium dimensions of the reduced layer are smaller

than for the oxide layer. External stresses shown in Figure l(b) must be present

in order to prevent the composite from bending. The removal of external forces
results in a net bending moment, which accounts for the Rainbow shape.

III. EXPERIMENTAL PROCEDURE

PLZT ceramics were prepared using a conventional mixed-oxide process. Following
calcination at 925°C for 2 hours in a closed alumina crucible, the milled and dried

powders were cold pressed as preform slugs and then hot pressed at 1200°C for 6

hours at 14 MPa. Hot pressed PLZT samples were placed on a graphite block, and
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FIGURE 1 Formation of a Rainbow device, showing the oxide layer (light) and the reduced layer
(dark): (a) at zero stress level; (b) with compressive force applied to the oxide layer and tensile force
to the reduced layer to match the layers at the boundary; (c) after the removal of external forces.

the assembly entered into the furnace preheated to 975°C. Exposure of the samples

to the reducing atmosphere ranged from 45 minutes for a typical Rainbow sample
to many hours for the completely reduced samples used in the measurements of

the coefficient of thermal expansion, and elastic constants of the reduced layer.

For electrical studies, samples were electroded with silver epoxy paint (5504N, E.
I. du Pont de Nemours & Co.) at 200°C for thirty minutes. Further details of

Rainbow preparation can be found in reference 7.

The majority of the characterization work described in this paper was performed

on PLZT ceramics with the nominal composition 5.5/57/43 (La/Zr/Ti). This com-

position was chosen because of the large lateral strain observed in PLZT samples
with this composition, and its proximity to the morphotropic phase boundary in-

sured high electromechanical coefficients. 9

Densities of the oxide and reduced samples were measured using a water im-
mersion method. Ultrasonic pulse-echo measurements were performed on the oxide

and completely reduced samples. Panametrics model 5052PR Ultrasonic Pulser/

Receiver was used with 10 MHz longitudinal and 5 MHz shear transducers acous-

tically coupled to samples polished with five micron powder. The samples had less

than two percent variation in thickness and a diameter-to-thickness ratio sufficiently
large to avoid diffraction effects.

A HP 54504A digital storage oscilloscope was interfaced with the pulser, and

both excitation and echo responses were recorded. Measurements of shear velocity
(v_) and longitudinal velocity (v/), combined with the measurements of densities,

permitted calculation of Young's modulus (Y) and Poisson's ratio.
An Orton dilatometer model 1600D with an environmental chamber was used

to perform thermal expansion measurements from room temperature up to 10(_)°C.
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Completelyreducedsamplesweremeasuredin flowingnitrogen,andunreduced
PLZTsamplesin air.

Resonantmodesof theRainbowdeviceswerecharacterizedwithanHP4194
impedanceanalyzer.Samplesweresupportedat thecenterof thetopandbottom
surfaceswithpointcontactsfor the majority of the experiments.

In the model, both resonant and antiresonant modes were characterized. The

resonant modes were obtained by specifying the short circuit electrical boundary
conditions. The open circuit electrical boundary conditions were used for the de-
termination of antiresonant modes.

IV. MODELING

The finite-element modeling, FEM, of complicated piezoelectric structures had

successfully been used in the past. to For this study the ABAQUS commercial FEM

package (Hibitt, Karlsson & Sorenson, Inc., version 5.2) was used to simulate

thermomechanical and electromechanical properties of the Rainbow devices. The
model uses linear piezoelectric, dielectric, and elastic properties of the oxide and

reduced layers.

The constituent equations for the piezoelectric media used in the modeling are:

s, + aoE, (1)= s, r,

Di dii Tj + r= _,,E, (2)

where Si is the strain, D, is the polarization, _ is the stress, E_ is the electric field,

s_ is the elastic compliance, eT is the dielectric permittivity, and d o is the piezo-

electric compliance.
Rainbow modeling includes three major parts; (1) definition of material prop-

erties and sample geometry, (2) modeling of the cool down from the reducing

temperature to room temperature and (3) determination of response to the specified
set of the boundary conditions.

In the case of piezoelectric ceramics there are 3 piezoelectric, 2 dielectric and 5

elastic nonzero coefficients, and their values are known only for a few ceramics.

Fortunately, for PZT 5 all of the above properties have been characterized. 11PZT
5 is a soft PZT, and it should have values similar to those of PLZT ceramics used

in this study. Piezoelectric, dielectric, and elastic constants of PZT 5 were used in

the model. Actual values used are listed in the Appendix. In addition, Young's
modulus, Poisson's ratio, densities, and thermal expansion coefficients for the oxide

and reduced layers were determined in this study and were used in the modeling.
The parameters and sample geometry were entered into two separate models.

The simpler model is a two dimensional axisymmetrical model. A full three di-

mensional model was also developed for a more complete characterization of the
resonant modes.

For the modeling of the cool down step nonlinear analyses were used because

of the considerable stiffening of the Rainbow structure during this step.
For the calculation of the resonant and antiresonant modes using the axisym-

metric model, a structure based on 60 elements gave satisfactory results (about 2%

stiffer than the model with 120 elements). A relatively small number of elements
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wassufficientbecause of the primary interest in the frequency range below 100
KHz.

V. RESULTS AND DISCUSSION

Measurements of densities and elastic constants for the oxide and reduced layers

based on PLZT 5.5/57/43 nominal composition are summarized in Table I. A slightly

larger density and Poisson's ratio for the reduced layer compared to the oxide layer
is due to a large quantity of lead metal present in the reduced layer as determined

by X-ray diffraction.S The specific gravity of lead is 11.35 and it has a large Poisson's

ratio of 0.43. t2 The pulse-echo measurements used gave elastic constants at a

constant displacement. A large measured value of Poisson's ratio for the oxide

layer is consistent with the literature values for the PZT materials for the constant
displacement condition. 13

Lead metal with its high coefficient of thermal expansion of 16 * 10 -6 °C-t

contributes to a higher value of thermal expansion of the reduced layer compared

to the oxide layer. _2It was not possible to determine the precise values of coefficient

of thermal expansion up to 975°C for the oxide and reduced layers due to creep
observed in both materials at high temperature. Creep in the oxide layer occurred

for temperatures above 750°C, and for the reduced layer above 850°C. Creep of

the oxide layer is more pronounced compared to the reduced layer, and amounted

to 1.2 percent change of the measured sample length for a room temperature to
1000°C thermal cycling. CTE values in Table I represent actual values used in the

modeling, and resulted in a fairly good agreement between the predicted and

measured curvatures of a Rainbow on cool down. The amount of the volume change

during the reduction of PLZT at 975°C was not estimated directly, but was con-
sidered as a contributor to the effective thermal expansion constant of the reduced

layers. In the temperature range where creep is not significant, the following mea-

sured CTE values were obtained: for the oxide sample 6.7 * 10 -6 °C- t in the range
of 27 to 700°C, and for the reduced sample 8.2 * 10 -6 °C-t in the range of 80 to

850°C. A significant creep in the oxide layer at higher temperatures is the reason

for the lower oxide CTE used for the whole temperature range. Similarly, volume

reduction during the reduction at 975°C is the justification for the higher value of
its CTE used.

A comparison between the experimental determination of the resonant fre-

quencies for the different boundary conditions and axisymmetric FEM is made in

Table II. Experiments were performed on the Rainbow with the oxide composition
of 5.5/57/43. Two boundary conditions were used: (1) a sample supported at top

TABLE I

Experimental data obtained for the PLZT 5.5/57/43 oxide and reduced layers

Property Oxide layer Reduced layer
Daasitr (p'cm3) 7.93 800
Youn_'s modulus (N/m 2) 779.1010 6.86.1010
Poisson's ratio 0.377 0,381

Thermal Expansion (*C "1) -5.10 -6 ~10.10 -6
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TABLE II

Effect of the boundary conditions on antiresonant frequencies of PLZT 5.5/57/43

Rainbow determined experimentally and from the axisymmetric modeling

Boundary Condition

_Io Sideways Constraint

' Sideways Constraint

Experimental Frequency

(m)
1534

Modeling Frequency

(m)
1611

1642

6547

7100 7218

7368

7608

16816

18116 18544

32290 35347

not observed 57086

76740 74854

23533844

4189

5900

10900 9767

12533

14370

27000 23224

not observed 42117

not observed 66277

76969 74008

m

_"i"i ..............i......................_i ..............".............._........_i'_ ........:

?"_'""_"*" .............. i.............. _....... _'""i""r ......................... Radial Mode ........

"g":."""'"i.................. !.............. - ....... i'""i'"'; ..................................... ""

__..-.-.; .......;....-i-.-.i............._:-__,:!---! ........i
,r-_--_-.--_ _.._.=:_,__------___- _ .....
_,T_ -- _ ._- -i_ ............. _.............. _-_-----_.----_---,z,_ ............. _........ --- _[_.---- .......

_.7.-_:-.77-._....:.,,...._....'.'..:..._-_._-..;7._.i..... ......... _..;....:.'....7..:,-.._._.-_....'2..,._. _
_' i i _ iJI,q ! i I i : _--,/'_
': ___L..-.-___--_.;_'-5.__: ' _ _-__-L--..-:_. :..__.......
1..;..... .................. ;.............. ;....... .;....: ....... ._......... _.............. ;........ "...,_. ............

::::::::::::::::::::::"_"-:__::-_i....._-_._-

I tO tO0

Frequency (KH_)

FIGURE 2 Resonance spectra for PLZT 1/53/47 Rainbow for two boundary conditions: (;,) plane/

point support; (b) point/point support. The two spectra are separated vertically for clarity.

and bottom surfaces with point contacts and (2) a sample resting on a rigid plate

with point contact at the top center. Good agreement between the model and

experiment was observed for the point contact arrangement. The model predicted

frequencies that are typically slightly higher than the experiment. Increasing the

number of elements used in the modeling reduced the stiffness of a Rainbow and
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TABLE 1II

Resonant modes of PLZT 5.5/56/44 Rainbow determined experimentally and

predicted by the axisymmetric and three dimensional models.

Experimental Frequency

1501

Axisyrmnetric Model

(ru)
1566

Three Dimensional Model

(ru>
1525

1537

3612

6200 6394

6915

7100 7102 7179

9929

11344

14366

15000 14883

16687

19027

18265 19379

19746

23056

363

(Dimensions: 3.20 cm diameter; thickness 0.053 cm; reduced layer thickness 0.015 cm)
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FIGURE 3 Axisymmetric modeling of the effect of the Rainbow sample diameter on the resonant

frequency. Modeling parameters: number of elements: 60, reduced layer thickness: (].015 cm, total

thickness: 0.1153 cm. M: ideal slopes for comparison. F: fundamental mode, BI, B2: pure bending
modes. R: radial mode.
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FIGURE 4 Axisymmetric modeling of the resonance stiffening during the cool down step. Stiffening is

the change in frequency on cool down divided by the frequency prior to cool down, expressed in percent.

resulted in further improvement in its ability to predict actual resonant spectrum.

A number of observed modes are not predicted by the axisymmetric model because
they do not contain infinite fold rotational axes of symmetry. For the plane-to-

point boundary condition, observed modes occur at significantly higher frequencies

than those predicted by the model. The model does not account for the frictional

forces present as a result of a lateral displacement of a Rainbow.
The experimentally obtained resonance spectra for PLZT 1/53/47 Rainbow for

two different boundary conditions are shown in Figure 2. In addition to stiffening

of the modes for plane/point support, broadening and damping of the modes oc-

curred. As compared to the radial mode occurring at 72 KHz, the low frequency
modes are weaker; in fact, some of the modes predicted by the model were not

observed experimentally. The radial mode is also less sensitive to the boundary

conditions as compared to low frequency modes.

The principle advantage of the three dimensional FEM model is that the full
spectrum of possible resonant modes becomes available for the analyses. This is

achieved at the price of significantly higher computational time. For a few samples

on which three dimensional modeling was performed, good agreement with the

axisymmetric model was obtained. An example of this is shown in Table llI, in

which the experimental data is also included.
The shape of the mode has to be consistent with the boundary conditions pro-

vided. For the case where sideways motion of the Rainbow is restricted to a planar

motion, the resonant mode shapes and the order in which they occur follow the
predicted modes for a circular membrane, j_
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FIGURE 5 Axisymmetric modeling of the resonance and antiresonance mode frequencies as a function
of the oxide layer thickness. Modeling parameters: number of elements: 60, total thickness: 0.051 crn,
diameter: 3.175 cm. R: resonance mode, A: antiresonance mode.

For the oxide PLZT circular disc, the lowest frequency mode is the resonant or

planar mode. In the case of a Rainbow device, the radial mode is no longer the

lowest mode of resonance. There are two types of modes which may occur in a

Rainbow at lower frequencies: the thin sphere breathing mode which has no har-

monics, and a flexure or bending mode existing in a composite structure. TM Res-

onance modes for the Rainbow samples with different diameters were modeled to

determine the mode of vibration. The radial and the sphere breathing mode fre-

quencies are proportional to the inverse of the diameter, for the bending mode

the resonant frequency is proportional to the inverse of the diameter squared. The

results of the axisymmetric modeling are shown in Figure 3. Over a wide range of

frequencies, the radial mode follows a slope of - 1. Except for the smallest diameter

case, the second and third lowest modes follow closely a slope of -2 indicating a

pure bending mode. For the lowest mode, Rainbows with small diameters have a

bender mode resonance as deduced from the slope, but for larger diameters the

slope does not fit either the thin sphere breathing mode or bending mode.

It already has been shown (Figure 2) that the low frequency modes are more

sensitive to the boundary conditions as compared to the radial mode. It can be

observed from Figure 4 that the low frequency modes are also more sensitive to

the cool down step. The resonance modes for the Rainbow cooled down from

975°C were compared to a similar sample which was not cooled down. All of the

modes for the cooled down sample were at a higher frequency implying that the

stiffening of the structure occurs during the cool down step. However, the relative

change of the resonant frequency, plottcd on the vertical axes, is again the highest
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(a)
RESONANCE
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(b)
RESONANCE

ANT]RESONANCE

(c)
REZOH..kA'N C F.,

r , __.

ANTIRESO,NANCE

FIGURE 6 Axisymmetric modeling of the shapes of the resonant and antircsonant modes for the five

lowest frequcncics. (a) first mode: (b) second mode; (c) third mode: (d) fourth mode: (e) fifth mode.
Modeling parameters: number of clcmcnts: 60, reduced layer thickness: 0.013 cm, totnl thickness: 0.05 !
cm, diameter: 3.175 cm.

for thc low lying modes. The fifth mode is a radial mode and the least sensitive to
the effect of the cool down.

In addition, the effect of the oxide to reduced thickness ratio for Rainbows with

constant total thickness was modeled. The strength of the resonance is proportional
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FIGURE 6 (Continued)

tO the frequency separation between resonant and antiresonant modes divided by

the resonant frequency. Figure 5 illustrates that the strengths of modes 1 through

3 are inversely proportional to the oxide layer thickness. The radial mode is the

strongest mode observed since it has the largest separation between resonant and

antiresonant modes.

Shapes of the modes provide useful information for possible applications, and

also provide information about possible coupling between the modes. The five

lowest frequency modes for the typical Rainbow device are shown in the Figure

6. For each mode, the structure which is more fiat represents the Rainbow after

cool down. From the previous discussion, the first mode may not be a simple

bending mode. Its shape is characterized by the entire surface moving in phase.

The second, third, and fourth modes each have one additional nodal circle rep-

resented by a nodal point in the cross sections shown. Inner and outer surfaces of

a Rainbow are now moving out of phase. Stavsky and Loewy _5 have indicated that

for a composite circular plate there is a coupling between the radial and bending

modes. They have considered a purely elastic system. Apparently their conclusion

is also applicable for the case of a piezoelectric composite system. As can be seen

from the fifth mode in addition to lateral motion associated with the radial mode,

there is also bending present. Bending is more pronounced for the antiresonant

mode. The radial mode is usually stronger than the bending modes, as determined

by a separation in frequency between the resonant and antiresonant conditions.
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For this sample geometry, the resonant and antiresonant frequencies for the sixth
mode (a bending mode) occur between the resonant and antiresonant modes of

the much stronger radial mode.

The knowledge of the location and shape of the resonant modes can be beneficial

in the design of Rainbow-based devices. For speaker applications it is advantageous

to work well below second mode. Because of its shape, different parts of the
Rainbow are being displaced out of phase near this resonance, which would diminish

speaker efficiency. For pumps, it may be useful to operate at the first resonant

mode, where the volume displacement should be large. Figure 3 can be used as a

guideline for the determination of the appropriate geometry to operate at reso-
nance.

VI. CONCLUSIONS

Experimental characterization and finite-element modeling of the resonant modes

of Rainbow devices were presented. A good agreement between the experimentally
determined resonances and finite element modeling was obtained. The identity of

various modes was deduced from the frequency dependence of the resonant mode

on its diameter. A large number of low frequency bending modes exist in the

Rainbow devices, The coupling between the bending and radial modes was estab-
lished.

The effects of the boundary conditions on the resonance behavior of Rainbow

devices were investigated. The more constraining boundary conditions resulted in

higher resonant frequencies. The bending modes were more affected by the bound-

ary conditions as compared to the radial mode.
The thermal expansion coefficients, elastic constants, and densities were mea-

sured for the oxide and completely reduced samples. Higher values of the thermal

expansion coefficient, Poisson's ratio, and density observed in the reduced layer

are all consistent with a large amount of metallic lead present in the reduced
samples.

APPENDIX

c3_

d3_

d33

3yr-,

Material Parameters for PZT 5 _

12.1 * 10 "_ N/m-"

7.54 * 10 t° N/m 2

7.52 * 101° N/m'-

11.1 * 10'" N/m-"

2.11 * 10"j N/m-"

374 * 10-i,_ C/N

-171. 10-t2C/N
584 * 10-i-. C/N

1730

1700
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RAINBOWS AND FERROFILMS - SMART MATERIALS FOR HYBRID

MICROELECTRONICS

Gene H. Haertling

Gilbert C. Robinson Department of Ceramic Engineering

Clemson University, Clemson, SC 29634-0907

ABSTRACT

This review paper describes the materials, processing, properties and

applications of the newly developed ultra-high displacement Rainbows and

thick/thin ferroelectric Ferrofilms. Their applicability to hybrid and fully

integrated microelectronics is discussed in regard to each of these areas of
concern.

INTRODUCTION

Current trends have shown that industrial and commercial hvbrid

microelectronic components designed for the automobile, home, office and

factory are becoming an increasingly more important segment of present-day

automation. The materials for such applications are required to be more

sophisticated in that they must be able to perform more than one function

(e.g., actuation and sensing) during operation or provide a unique

combination of highly specialized properties. These materials are now

commonly known as smart or intelligent materials and are exemplified by such

general groups as ferroelectrics, piezoelectrics, pyroelectrics, electrooptics,

electrostrictive materials and composites.

Key factors in the application of these materials to hybrid circuits and

microelectronics are (1) their ability to be scaled down in size

(i.e.,miniaturized or fully integrated) without loss of bulk properties, (2) their

capability of achieving the proper form factor for the substrate and (3) their

processing compatibility with other components on the substrate. Recent

research and development work has shown that significant progress has been

made in the last several years in each of these areas. _5 A new processing

technique has recently led to the development of ultra-high displacement



ceramic actuatorswhich have been coined as RAINBOWS (Reduced And

INternally Biased Oxide Wafers), an acronym for the chemical reduction

process used to transform ordinary planar piezoelectric and electrostrictive

wafers into domed, high displacement, two-dimensional bending actuators of

moderate load-bearing capability. 6"7 Rainbow devices such as speakers,

pumps, switches, deflectors and linear actuators have been made in sizes as

large as 10 cm. in diameter and as small as 2 mm. in diameter or length.

An assessment of the present-day ceramic actuator technologies for bulk

materials is given in Table 1. As seen from the table, a variety of direct

extensional configurations, composite flextensional structures and bending

mode devices are used to achieve an electromechanical output. Trade-offs

between stress generating/loading capability and displacement are commonly

made when designing for particular applications. Maximum displacement can

be seen to be achieved with composite or bender structures; however, this is

usually accomplished at the expense of less load bearing capability, greater

complexity and higher cost. The recent introduction of the Rainbow bender

to this family of actuators has served to either extend the stress capability of

the bender technologies without sacrificing displacement or extending the

displacements achievable with equal load-bearing capacity. Additionally,

because of their unique dome or saddle-type structure, small discrete Rainbow

elements for hybrid circuits can be fabricated from larger, bulk processed
wafers.

For the fabrication and integration of actuator/sensors and other devices at

the microelectronic (micron) level, one must consider different technologies

than those previously mentioned. Among these techniques are vacuum

deposition, spinning, dipping, chemical vapor deposition and laser ablation;

however, those which have been reported to successfully produce both thin

(0.02 - 5 um in this paper) and thick (5 - 30 um in this paper) films of the

above mentioned materials are considerably fewer in number, and the most

promising of these, in the near term, is dipping. Using an automated dipping

apparatus, Li, et.al., _ were successful in fabricating thin and thick films of

PLZT ferroelectric and electrooptic compositions on Ag, Si, sapphire and

glass substrates. Films as thick as 15 microns have yielded properties quite

similar to those of the bulk material and show excellent promise for future
devices.

It is the object of this review paper to describe the materials, processing and

properties of two types of recently developed smart materials; i.e., Rainbows

for discrete and hybrid structures and thick/thin ferroelectric films (Ferrofilms)



for hybrid and integrated structures.
discussed.

Examplesof typical applications are

Table 1. Present-DayCeramic Actuator Technologies

Type Configuration

Max. Actuator Actuator Actuator

Stress* Movement Type Displacement
(MPa) (wNoltage) (P or E) (%)*

Monolithic I +

(d,,mode) oi__+

Monolithic -_
(d n mode)

D

Monolithic
(s u mode) i _i_!i_:_!i:_i'_i_!_i

ol I

Monoli_ _
(stzmode)

0

Composite
Structure

(d,,mode) i(flex'ten.) o - . v

Composite

Structure(d3;/dn) i i
(Moonie) o I I vI -

40 Expansion P 0.40

40 Contraction P -0.15

40 Expansion E 0.24

40 Contraction E -0.08

10 Contraction P -1.0

0.023 Expansion P/E 1.3

Unimorph 0.002 Expansion/ P/E I0
(be_IdeI) _t r11 ....... _ _ _ Contraction

O -- V

Bimorph + I 0.002 Expansion/ P/E 20
(bender) oI_' + Iv Contraction

Rainbow ii_ ii 0.020 Expansion/ P/E 35-500Monomorph o v Contraction
(bender)

Notes: V = Voltage; D = Actuator Displacement; P = Piezoelectric; E = Electrostrietor
" = Max. generated stress; ÷ = Displacement at _ 10 kV/em based on thickness



MATERIALS

Although a number of different compositions have been successfully prepared

as Rainbows and Ferrofilms, those most compatible to the specific processes

used and most amenable to achieving the desired properties are in the PLZT

solid solution family. Typical high displacement ferroelectric compositions

are 1/53/47 (La/Zr/Ti) and 5.5/56/44 for low and high dielectric constant

applications, respectively; whereas, the usual compositions for the

electrooptic, electrostrictive-type applications are 9/65/35 or 8.6/65/35. 9 These

specific compositions are pointed out in the PLZT phase diagram given in

Figure 1. As may be noted, the ferroelectric materials are morphotropic

phase boundary compositions and the non-memory, electrostrictive materials

are compositionally located along the ferroelectric-to-paraelectric phase

boundary.

....d

o

PbZrO3 PbTiO3

tOO 80 60 40 20 0

Ol \' 1 %-I# I I

30

Figure 1. Room Temperature Phase Diagram of the PLZT System

Compositions are indicated by triangular markers

PROCESSES

In this section, the specific processes which have been reported for both the

Rainbows and the Ferrofilms are described. Since Rainbows are produced via

a bulk-type process and the Ferrofilms are fabricated with a thick/thin film

technique, they are distinctly different, by nature, and thus, are discussed in



separatesections.

Rainbow Process

The Rainbow technology fundamentally consists of a new processing method

that is applied to standard, high lead-containing ferroelectric, piezoelectric and

electrostrictive ceramic wafers which are transformed by the process into a

monolithic, composite structure consisting of a stressed dielectric and a

chemically reduced, electrically conductive layer which acts as the stressing
element as one of the electrodes for the final device. Since all of the

materials are ferroelectric or electrically-enforced ferroelectri¢ materials, they

are multifunctional and smart, by nature, and are thus capable of performing

both actuator and sensor functions, simultaneously.

The high temperature chemical reduction process involves the local reduction

of one surface of a planar ceramic plate, thereby achieving an anisotropic,

stress-biased, dome or saddle-shaped wafer with significant internal tensile

and compressive stresses which act to increase the overall strength of the

material and provide its unusually high displacement characteristics.

According to previously reported work, the chemical reduction process

proceeds via simple reactions consisting of the oxidation of the solid carbon

(graphite) block to carbon monoxide and further oxidation of the carbon

monoxide gas to carbon dioxide with the associated loss of oxygen from the

PLZT oxide in contact or in near contact with the graphite block.

Rainbow ceramics are produced from conventionally sintered or hot pressed

ceramic wafers by means of a few simple steps requiring approximately two

hours of additional time as shown in the process flowsheet of Figure 2. A

Rainbow is produced from an as-received wafer by placing it on a flat graphite

block, placing a protective zirconia plate of the same size on top of the wafer

and introducing the assembly into a furnace held at temperature in a normal

air atmosphere. The part is treated at a temperature of 975°C for one hour,

removed from the furnace while hot and cooled naturally to room

temperature in about 45 minutes. A reduced layer approximately 150 um

thick is produced in the wafer under these treatment conditions, When cool,

the dome shaped wafer is lifted from the graphite block, brushed lightly on

the reduced (concave) side to remove any metallic lead particles and to

expose the reduced layer, and then electroded for test and evaluation. A

variety of electrodes can be used such as epoxy silver, fired-on silver and

vacuum deposited metals. After depositing appropriate electrodes, the

Rainbow is completed and ready for operation.
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Figure 2. Process Flowsheet for PLZT Rainbow Ceramics

In regard to operation, a Rainbow is similar to a device known in the industry

as a unimorph bender. A unimorph is composed of a single piezoelectric
element externally bonded to a flexible metal foil which is stimulated into

action by the piezoelectric element when activated with a ac or dc voltage and

results in an axial buckling or displacement as it opposes the movement of the

piezoelectric element. However, unlike the unimorph, the Rainbow is a

monolithic structure with internal compressive stress bias on the piezoelectric

element; thus producing the dome structure, rendering it more rugged and

able to sustain heavier loads that normal. The integral electrode (usually the

bottom electrode) consists ofmetaUic lead intimately dispersed throughout the

semiconductive oxide layer. The change in shape of the wafer after reduction

is believed to be due to the reduction in volume of the bottom reduced layer

(largely metallic lead) compared to the unreduced material, as well as the

differential thermal contraction between the reduced and unreduced layers on
cooling to room temperature.

Like other piezoelectric devices, Rainbows may be operated with a dc, pulse

de, or ac voltage; however, when driven with ac, the largest displacements are

usually achieved at 100 Hz or less. In operation, the dome height of the

Rainbow varies as a function of the magnitude and polarity of the voltage.

When a given polarity of voltage is applied, the dome decreases in height

depending on the magnitude of the voltage; and alternatively, when the

polarity is reversed, the dome increases. The large axial motion of the dome



is largely due to contributions from a lateral contraction produced in the

material via the d31 coefficient and a stress-directed domain switching process.

It should be noted that although Rainbows are processed in bulk wafer form,

after heat treatment they may be diced or scribed into smaller elements for

a pick-and-place operation onto a hybrid substrate. This technique is possible

since each individually diced element possesses a smaller but similar dome

structure with a radius of curvature identical to the larger wafer. Even

though the displacements of the smaller individual elements are

proportionately less than the parent wafer, they nevertheless, are large enough

(5 - 50 microns) to be useful in some devices. Some typical examples of sizes

and shapes of Rainbows are shown in Figure 3.

Figure 3. Typical Examples of Sizes and Shapes of Rainbows

Ferrofilm Process

Thick and thin films of ferroelectrics, piezoelectrics and electrostrictive

materials are presently being fabricated from a water-soluble, acetate-

precursor, liquid chemical system (Metal Organic Decomposition type) using

an automated dipping process. An operational flowsheet for this process is

given in Figure 4; however, the details of the process and the apparatus have



previously been reported as part of a overall effort involving the intelligent
processingof ferroelectric films} °

Subacetate

1 l t
I

FORMULATION

,,

SUBSTRATE _[ DEPOSITION _-_I
I 1

I

I

I

pH/METHANOL 1ADJUSTMENT

DIPPING ]
SPINNING
SPRAYING

Figure 4. Process Flowsheet for PLZT Acetate MOD Process

Briefly, the process consists of formulating the stock solution from as-received

precursors of Pb (lead subacetate), La (lanthanum acetate), Zr (zirconium

acetate) and Ti (titanium acetylacetonate) by mixing them together in the

requisite amounts along with the appropriate amount of methyl alcohol for

viscosity control. This simple, five minute operation yields a clear, light

yellow solution which is water soluble and stable for long periods of time.

The solution is then deposited on the selected substrate via automatically

controlled dipping and withdrawal operations. Drying occurs in a matter of

a few seconds, and the coated substrate is subsequently sintered very quickly

by introducing it directly into a furnace pre-heated to the sintering

temperature. Multiple dipping, drying, sintering and cooling cycles are

required in order to build up the necessary film thickness for the specific

device. Depending on the dilution ratio of the solution, individually dipped

layer thicknesses may vary from approximately 0.05 to 0.3 urn, yielding films



asthick as12 um for a 40 layer device. For a cycle time of three minutes, the

total time required to dip a 40-layer device is about two hours.

The final sintered film deposited on a suitable substrate such as a 0.125 mm

thick Ag foil is usually transparent and crack-flee with a smooth, shiny

surface. After applying suitable electrodes such as air dried Ag, epoxy Ag or

vacuum deposited metals, the film is ready for operation; however, it should

be remembered that poling may be required if it is a ferroelectric thick film.

Some examples of electroded and unelectroded thick films on Ag substrates

are shown in Figure 5.

Figure 5. Typical Examples of Unelectroded and Electroded Ferrofilms

Although Ferrofilms lend themselves well to a number of different fabrication

processes at the totally integrated level, for discrete components at the hybrid

microelectronics level the dipping technique has been found to be reliable and

predictable and can easily be implemented in a totally hands-off environment.

In addition, industrial equipment is readily available to dip very large as well

as small, discrete parts at minimal cost. The acetate process, being water

insensitive, is especially suitable for the dipping process since the open

solution is usually exposed to the atmosphere for long periods of time and

during this period must withstand chemical interactions as well as minimal

evaporation of solution.

PROPERTIES

In the last two years since the Rainbow ceramics were first developed at



Clemson University, there has been a considerable on-going effort to (1)
understand the details of the reduction processin the PLZT materials, (2)
measuretheir propertiesand characterizetheir unusuallyhigh displacement
and load bearing capabilities asbenders, (3) model their electromechanical
behavior and frequency dependent properties and (4) construct working

models illustrating various proof-of-principle applications. Some of this data

for the Rainbow ceramics will be presented in this section, along with the

limited amount of data available, to date, for the Ferrofilms. In most

instances, a standard Rainbow size of 31.75 mm diameter and 0.5 mm thick

was used to obtained the data. Additional technical data on the Rainbow

ceramics has been reported in a document prepared by Sherrit, et.al., of the

Royal Military College of Canada. u

Rainbows Characteristics

Dielectric Properties - The temperature dependent dielectric behavior for two

PLZT compositions; i.e., 1/53/47 and 8.6/65/35, are shown in Figures 6 and 7,

respectively. It can be seen from Figure 6 that a gradual rise occurs in the

relative dielectric constant (1 kHz) of 1/53/47 from a room temperature value

of approximately 1100 to about 2700 at 200°C. No peak is observed in this

range for this composition because its Curie point is 330°C. On the other

hand, composition 8.6/65/35 in Figure 7 shows a change in K from 3200 to

5700 over this same temperature range with a peak occurring at 105°C, which

is its usual Curie point as determined from small signal measurements. Since

this composition is an electrostrictive, relaxor-type material, this Curie point

does not coincide with its loss in polarization which occurs at about 20°C;

thus, making it one of the most sensitive, high displacement, electrostrictive

Rainbow materials. It may be noted that the dielectric constants and

dissipation factors for both compositions are comparable to previously

reported values, and this indicates that the Rainbow reduction process does

not change the dielectric properties of the unreduced part of the structure.

Hysteresis Loops - Typical examples of dc hysteresis loops for compositions

1/53/47 and 9/65/35 are given in Figure 8. The loop in Figure 8(A) was taken

on the ferroelectric Rainbow element (1/53/47) in its virgin condition before

any other measurements were made. It should be noted that on the initial

application of positive voltage to + 450V there was approximately 60% of the

total remanent polarization switched rather than the usual 50% one ordinarily

observes in a virgin, randomly oriented ceramic.. This behavior is highly

unusual and indicates that the Rainbow ceramic was partially poled before

testing. Additional audio and piezoelectric tests of other virgin parts also



indicated that the elementswere partially poled to varying degrees;i.e., some
very little and others ashigh as75%.
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Figure 8. Virgin Hysteresis Loops for Rainbow PLZT Compositions (A)

1/53/47 and (B) 9/65/35

One explanation for this condition occurring in the electrically virgin state is

that the mechanical compressive and tensile stresses produced in the Rainbow

wafer during processing are acting together to switch some of the domains in
this soft ferroelectric/ferroelastic material. Since uniform stress is a

symmetrical quantity, it is recognized that it alone is insufficient to produce

a net polarization in a given direction even though it may be of sufficient

magnitude to switch domains; however, a stress gradient such as produced by

the Rainbow bending process is a vector quantity and can, indeed, produce

the observed effect. This non-uniform stress is believed to be responsible for

the partial poling of the Rainbow wafers. Measured properties on the above

wafer were: PR = 44.8 uC/cm 2, Ec = 7.5 kV/cm, dielectric constant = 1210

and dissipation factor = 0.047.

The virgin loop of Figure 8(B) is a typical one for the electrostrictive (9/65/35)

type of Rainbow materials and is very similar to that obtained on bulk

electrooptic material. Measured properties on this wafer were: P10kv/_=28.3

uC/cm 2, dielectric constant = 3142 and dissipation factor = 0.085. As a

matter of course, no unsymmetrical hysteresis loops were observed in the

electrostrictive materials, and none was expected, since there are no stable

domains in these materials at zero electric field. Conceivably, a high enough

stress could precipitate stable domains in a very near-ferroelectric material,

however, this was not experimentally confirmed

Displacement Loops - Displacement vs. electric field (butterfly) loops for the

Rainbow wafers described above are shown in Figure 9. As before, Figure



9(A) illustratesthe Rainbowaxialmotion asthe sampleiselectrically switched
from zero to +450V, to -450V and back to zero, however, in this case this

loop was not taken on the virgin wafer. It may be noted that this loop is

remarkably similar to that observed when measuring the direct extensional

(longitudinal, lateral) displacements via the piezoelectric d33 or d31 coefficients.

The value of displacement in the + voltage direction was measured at 190.5

urn, and the total amount of displacement (+/-) was 432 urn.

DAX_l_

l _t.E

E

(A) (8)

Figure 9. Axial Displacement Loops for Rainbow PLZT Compositions (A)

1/53/47 and (B) 9/65/35

Figure 9(B) shows the displacement loop of the electrostrictive Rainbow

material (9/65/35) mentioned above. Since 9/65/35 is a relaxor material there

should be little or no memory, and the same value and sign of displacement

should be obtained whether a + or a - voltage is applied. One can see by

switching this sample through a full voltage loop that a small amount of

remanent displacement (strain) is present which is probably due to the close

proximity of this composition to a FE phase. A further indication of this

incipient FE phase is the higher than normal value of P_0 (P_0 = 28.4 vs. 18.0

uC/cm 2) as given above. Measured value of total displacement for this wafer
was 178 urn.

Displacement Characteristics - The displacement characteristics as a function

of applied voltage are given in Figure 10 for some selected compositions.

One of the most striking features of this figure is the very high displacements



achievedby theseRainbowceramicsat moderate electric fields; e.g., 400 volts

is equivalent to an electric field of 10 kV/cm. Composition 8.6/65/35 is noted

to possess the highest displacement of 210 um at a maximum voltage of 600
volts, however, its displacement is characteristically non-linear because of its

electrostrictive nature. Compositions 1/53/47 and 5.5/56/44 are ferroelectric

materials, and thus, are more linear in behavior. As a general rule, the
displacements of the ferroelectric materials are lower than those of the

electrostrictive compositions, particularly when operated at higher voltages

and one polarity; however under bipolar operation, the displacement values

of theferroelectric materials will commonly be double the values shown in

Figure 10.
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A measure of the difference in displacement between the planar (lateral

extensional mode) direction and the orthogonal axial (Rainbow bender mode)
direction is given in Figure 11 for PLZT 8.6/65/35, which also shows the

temperature dependence of these two modes. This figure clearly

demonstrates the very large displacement amplification of the bending

phenomenon when one considers the data showing a change in displacement

from approximately 0.07% to 22% at 25°C; i.e., an amplification of 315%.

Although not shown on the figure, both displacements are negative (i.e., a

contraction) when voltage is applied.
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Bending Displacements in PLZT 8.6/65/35 Ceramics

Figure 12 illustrates the profile of the vertical bending displacement across the

diameter of a Rainbow wafer during activation at 10 kV/cm. As might be

anticipated, the highest displacement is in the center of the wafer, dropping

off to zero at the circumference. This zero displacement at the edge of the

wafer is beneficial because a Rainbow can be conveniently placed on a planar

surface and operated as a linear actuator device or its circumference can be

sealed off, and it can be operated as a cavity-mode pump.

The variation of a Rainbow's axial displacement as a function of wafer

diameter is given in Figure 13. For a 0.5 mm thick wafer of composition

1/53/47, the values of displacement can be seen to vary from 170 um for a

diameter of 31.75 mm (1.25 inch) to approximately 3 um at 6.5 mm diameter.

Thus, a discrete 15 mm diameter Rainbow component on a hybrid substrate

could be expected to have a displacement of about 40 um when operated with

a single polarity and about 80 um when operated bipolar.

Wafer thickness has been found to have a significant effect upon axial

displacement primarily because of the change in motional mode; i.e., from

dome to saddle-type, as the wafer thickness is reduced to approximately one

one-hundredth of the diameter. For example, a 31.75 mm (1.25 inch)
diameter wafer usually develops a saddle-mode configuration when its
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thickness is less than 0.32 mm (0.013 inch). Saddle-mode operation provides

maximum displacement with minimum load bearing capability; and therefore,



should only be considered for spedal applications. Figure 14 illustrates the

unusually large range of displacements obtained for Rainbows as a function

of thickness. Please note that the displacement ax/s is a log scale.
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The effect of an unconstrained point load on the displacement of an activated

Rainbow is given in Figure 15 for compositions 1/53/47 and 9/65/35. PLZT

1/53/47 can be seen to be relatively ineffective when loaded with a dead

weight of 1.5 kg (3.3 lbs), whereas, composition 9/65/35 is still effective at a

load of over 3 kg. This result is not too surprising since the elastic modulus

of 9/65/35 (10.9 xl04 MPa) is noticeably higher than that of 1/53/47 (5.7 x 104

MPa). Another point to note from the figure is the increase in displacement
with the introduction of a finite amount of load on the device. This effect

was previously reported by Furman, et. al. _2 The tradeoff between thickness

and maximum sustainable point loading is given in Figure 16 for 1/53/47.
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Another concern.of actuator designers is the amount of force that can be

generated by an actuator when voltage is applied. This is shown.in Figure 17

for a 1/53/47 Rainbow of standard size. As can be seen, the force generated

is a linear function of voltage until the onset of saturation for this particular

configuration. A maximum force of 1.3 kgf was achieved at 450 volts.

Finally, displacement and sustainable overpressure data for PLZT 5.5/56/44

as a function of wafer thickness are presented in Figure 18. The left ordinate

scale represents the maximum allowable pressure differential across the wafer

thickness before the wafer contacts the planar surface and stops flexing
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usually <0.5 mm thickness) or the wafer mechanicaUy fractures (>0.5 mm

thickness). The right ordinate log scale is the percent displacement (based on

wafer thickness) of the device when operated at 450 volts dc while only under



the loading of the dial gage (80 grams). Also indicated on the figure are the

wafer thickness regions where the saddle and dome modes of operation are

dominant for a wafer 31.75 mm (1.25 in.) in diameter. The data shown in the

figure indicate that Rainbow displacements span an unusually large range

from near zero to at least 500% with actual displacements of up to 1 mm

(0.040 in.) for a 0.2 mm (0.008 in.) thick wafer. Of course, such large

displacements are not possible when operating under significant pressure

differentials or under moderate point loading situations near its capacity.

Resonance Characteristics - The resonant, frequency dependent properties of

a standard Rainbow wafer is given in Figure 19 which displays both

impedance and phase angle as a function of frequency. Some outstanding

features of this figure are the large radial resonance anomaly at 70 kHz and

the several bending resonances between 1 to 20 kHz. Other resonances not

shown in this figure are (1) overtone resonances of the fundamental radial

resonance in the range from 100 kHz to 1 MHz, (2) thickness resonances in

the low megahertz range around 4 and 8 MHz for the fundamental and first

overtone and (3) very low frequency structurally-dependent resonances in the

range of 25 to 500 Hz which can be noted when a Rainbow is operated as

part of a working device.
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Figure 19. Resonance Characteristics of a Rainbow PLZT 1/53/47 Wafer

Table of Properties - A summary of selected properties which have been

determined, to date, for the Rainbow ceramics are given in Table 2. In



addition to these, a number of advantages and features of the Rainbows are:

(1) simplicity, (2) solid-state type, (3) monolithic, (4) pre-stressed for greater

strength and durability, (5) can sustain/generate moderate loads, (6)

mechanical overload protection, (7) medium fast response, (8) very high axial

displacement, (9) surface mountable, (10) above-the-plane displacement, (11)

no bonding layers, (12) temperature compensation possible, (13) can be

stacked to multiply strain, (14) easy to fabricate and (15) cost effective.

Table 2. Some Selected Properties of Rainbow Ceramics

Thermal Expansion

Modulus of Rupture -

Modulus of Elasticity. -

Acoustic Velocity

10.0 xl0_FC (reduced layer)
5.4 x 10"6FC (oxide layer)

1_58 xl02 MPa (22,500 psi)

5.7x10 _ MPa (8.1 x106psi)(bending)(1/53/47)
10.9 xl0 _ MPa (15.5 xl0 ° psi)(bending)(8.6/65/35)

6.9 xl0 _MPa (reduced layer)(acoustic)(5.5/56/4-4)
7.8 xl0 _ MPa (oxide layer) ( " )( " )

4015 m_/sec (reduced layer)
4248 m/see (oxide layer)

Poisson's Ratio 0.38 (reduced layer)
0.38 (oxide layer)

Resistivity 3.8 x 10" ohm-cm

Effective d33(_,t,_,) 2.5 x 10"s m/V (bending mode)
d33(no,,,) 2.8 xl0 "7m/V (bending mode)

Hysteresis - 5 - 35%

Displacement (31.8 ram) -

(102 mm dia.)-

Capacitance (1.25" dia.)-

178 microns (0.007 inch)(0 - 450V)(dome mode)
381 microns (0.015 inch)(+/-450V)(dome mode)
1143 microns (0.045 inch)(0 -450V)(saddle mode)

3175 microns (0.125 inch)(O- 450V)(saddle mode)
1016 microns (0.040 inch)(O - 450V)(dome mode)

15 nF (PLZT composition 1/53/47) K = 1200
30 aF (PLZT composition 5.5/56/44) K = 2400
60 nF (PLZT composition 9/65/35) K = 3800



Ferrofilms

The properties of Ferrofilms were determined from PLZT composition

2/53/47 prepared via the acetate process and automatically dip coated for 40

layers onto Ag substrates ranging in thickness from 0.025 to 0.25 ram,

yielding an overall film thickness of approximately 12 urn. Standard, l-ram

diameter, vacuum evaporated Cu electrodes were deposited on the surface of

the films for testing.

Dielectric Properti_ - The small-signal dielectric measurements of the PLZT

thick films revealed that they possess properties very similar to bulk material

of the same composition. For the particular composition evaluated, relative

dielectric constants (1 kHz) ranged from 1400 to 1800 and dissipation factors
from 3.5% to 4.6%.

Hysteresis Loops - Hysteresis loops (1 KHz) were obtained with an ac looper

constructed in-house because thick films require higher voltages (> 100 V)

than normally available from standard thin film testers. An example of a

typical loop is shown in Figure 20. As can be seen, the loop (polarization vs.

electric field) is very square with sharp, saturated loop tips at maximum field,

indicating a high degree of domain switching and good, insulating

characteristics well into saturation at 100 kV/cm. The loop of Figure 20

displays typical properties for these films; i.e., that of: Pa = 42 uC/cm z and

Eo = 15.7 kV/cm (40 V/rail). It should be recognized that this low value for

Eo is more typical for bulk material than for thin films which characteristically

possess E_s of 75 kV/cm or higher.

Figure 20. Typical Hysteresis Loop of Ferrofilm PLZT 1/53/47 on Ag



APPLICATIONS

A number of examples of applications are given in this section in order to
demonstrate the versatility of the Rainbow and Ferrofilm technologies. These

working models are essentially discrete, proof-of-principle devices which
require further engineering design, miniaturization and modification in order
for them to be suitable for hybrid microelectronics or integrated structures.
In any case, it is believed that the Rainbow technology best serves the

application range from macroelectronics to miUielectronics, whereas the
thick/thin Ferrofilms are best suited for the range from millielectronics to
microelectronics.

The Rainbow devices shown in Figures 21 and 22 are typical examples of a
number of applications envisioned for this technology. As can be seen, they

range from actuators to sensors, and speakers to pumps. A more extensive
list of applications include (1) linear actuators, (2) cavity/piston pumps, (3)

loud speakers, (4) reciprocating motors, (5) relays/switches/thermostats, (6)

Speakers
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Figure 21. Examples of Working Model Devices Using Rainbow Ceramics as
Actuators



sensors, (7) hydrophonesfaydroprojectors, (8) variable-focus mirrors/lenses, (9)

optical deflectors/scanners, (10) vibrating delivery systems, (11) liquid delivery

systems, (12) antivibration/noise cancelling devices, (13) displays, (14) sonic

and ultrasonic devices and (15) auto-leveling platforms.

SI[.'¢ DA_CIEI_'I_ S£NSOR

PIll"ON

PUMPS

Figure 23. Additional Examples of Working Models Using Rainbow Ceramics
as Actuators and Sensors

A single Ferrofilm device is shown in Figure 23. It simply consists of a 25 x

50 mm x 12 um thick film which was dip coated onto a 0.125 mm thick Ag

substrate and electroded on the top major surface with vacuum-deposited Cu.

After poling the film at 70 volts, the film/substrate is mounted to a resonating

enclosure (in this case the enclosure is a cardboard box) and connected to the

output of a radio. As with most ferroelectric/piezoelectric audio devices, the

quality of the audio is only moderate, at best, when operated over the full

audio range of the radio.

CONCLUSIONS

The prospects for utilizing Rainbows and Ferrofilms in discrete hybrid and



totally integrated microelectronics are promising for future applications

involving smart ceramics such as ferroelectrics, piezoelectrics, pyroelectrics,

electrooptics and electrostrictive materials. Rainbows have opened up a new

dimension in ultra-high displacement actuators while Ferrofilms have now

bridged the gap from bulk materials to thin films. The key to adapting these

materials to specific devices and applications is the manner in which answers

are found to questions concerning their reproducibility, reliability, longevity

and cost effectiveness. Further development and design work are obviously

needed in order to answer these questions.

I

Figure 23. A Ferrofilm Speaker for a Stereo System
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