
FIBONACCI CHAIN POLYNOMIALS: IDENTITIES FROM
SELF-SIMILARITY

Wolfdieter L a n g

E-mail: BE06@DKAUNI2.bitnet

Institut flit Theoretische Physik

Universitdt Karlsruhe

I Kaiserstrasse 12, D-761_8 Karlsruhe, Germany

Abstract

Fibonaccichainsare specialdiatomic,harmonic chainswith uniform nearestneighbour in-

teractionand two kindsof atoms (mass-ratior) arranged accordingto the serf-similarbinary

Fibonaccisequence ABAABABA..., which isobtained by repeated substitutionof A _ AB

and B _ A.

The implicationsofthe serf-similarityofthissequence forthe associatedorthogonalpolyno-

mial systems which govern theseFibonaccichainswith fixedmass-ratior are studied.

1 Introduction

Fibonacci chains are linear diatomic chains with nearest neighbour harmonic interaction

of uniform strength t¢ and the two masses (ratio r = ml/mo) follow the pattern of the binary

sequence {h(n)}_ ° obtained by repeated substitutions a in the following way.

(r(1) = 10 , a(0)---- 1 , (1)

startingwith 0. By definitiona(uv) = a(u)a(v) for any two stringsu and v. a"(0) -- H,_isa string

of length [H,[ = F_,+x,where F, = F,-x + F,-2, n = 2,3,...,F0 = 0, F1 = 1 are the Fibonacci

numbers, h(n) is defined to be the n_th entry of the half-infinitestringHoo := lim,_-.ooH,_.E.g.

Hs = as(0) = 10110101, h(1) = 1,h(2) = 0,etc. (1) iscalledthe Fibonacci substitutionrule,and

the masses of the half-infinitechain are taken to bc

mr, = mh(n) , r_ -- 1,2,... (2)

This sequence {h(n)}_° is self-similarbecause the stringH.o satisfiesa(Hoo) = H.o. Aperiodicity

followsfrom this invariance,or fixedpoint,property. (This sequence isin factalso quasiperiodic,

but thisdoes not concern us here.)

Chains of this type have been cortsidercdas models of binary alloys[1].For instance,one may

consider chains with an elementary unit determined by the firstN members ofthe {h(n)} sequence

and repeat it periodically,using certainboundary conditions. This then corresponds to (AB) °°

chains for N = 2, (ABA) °° chains for N = 3, etc.
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The dual of such chains (with equal masses but two springconstants _0 and _i followingthe

pattern of the Fibonacci substitutionsequence) are related to one-dimensional quasicrystals[2].

One can alsomake contact to artificiallymanufactured superlattices[3].

Originallysuch Fibonacci chainswere considered as models forthe study of the regime in between

periodic and random structures.[4,5].

The purpose of thisworklis to write down the identitieswhich are satisfiedby the characteristic

polynomials of these Fibonacci chains due to the self-similarityofthe substituiollsequence {h(n)}

which determines the pattern of the masses of the oscillators.These identitieswillbe expressed

in terms of the 2 × 2 transfermatrices Mn which are unimodular and real.The matrix elements

are given by the characteristicpolynomials {S(')(z)},where r isthe mass-ratio of the two types

of atoms and z is a normalized frequency squared (z -w2/2w0 2, w02 = _/ra0). The zeros of

S_)(z) determine the eigenfrcquenciesof finiteFibonacci chains with N atoms and both ends

fixed. One also encounters so-calledfirstassociated polynomials {S(_')(x)}.They correspond to

a right shiftby one unit in the substitution sequence. Hence, the zeros of S_)(x) produce the

eigenfrequenciesof chains with masses mh(2) -- m0, ...,mh(N+l). Both r-families of polynomials

generalizeChebyshev's {S,(p)} polynomials (S-I = 0, So -- I,S,,--yS,_I-Sn-2) to two variables
with the identification

S(1)(_:) = S(1)(x)= S,_(2(1-x)). (3)

They constitute, for fixed mass-ratio r, systems of orthogonal polynomials and have been studied

in some detail in refs.[6, 7, 8, 9].

2 Fibonacci Chain Polynomials

For the Fibonacci chains (tc,rah(,_)) defined in section I the equation of motion for longitu-

dinal, time-stationary vibrations q,,(t) = q,_ exp (iwt) are

q,_+l + q,_-I - Y(n)q,_ = 0, n = 1,2,...

with

(4)

2- 2(1- =  /mhc ) • (5)
We use the two variablesr _= ml/mo and x - w2/(2w_). We put Y(n) = r if h(n) = 1 and
Y(n) = y if h(n) = O. Hence

Y = 2(1-r_) , y = 2(1-x) . (6)

The equations of motion are rewrittenwith the help of the SL(2, R) transfermatrix R,,:

(7)

For the half-sided infinite

(8)

q"+l_=R_,( q" ) (Y(n) -01) ( q" )q,, ] q._: := 1 q,_-t

P_ is either R1 or R0 depending on the Y(n) value, i.e R,, = Rh(,_).
chains considered here iteration leads to

(q'_+l)=R,_P__l...Rl(qx) =:M,_(ql)q,, qo qo
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with the inputs ql and q[o (the mass at site number 0 is irrelevant). M, is real and unimodular.
The recursion M, = P_M,,_I with input M1 = Rx leads to

M,., = S,.,-: -S.-2/ '

where the recursion formulae for the generalized two-variable Chebyshev polynomials are

S_ = r(,,)S._,-S._, , S_,=O, S0=l , (10)

S. -= r(n-F 1)St,-:- S,_-, , S_, = 0, S0 = 1 (11)

These polynomials generate certain combinatorial numbers [10]. The meaning of these numbers

can be understood if one uses the intimate connection of the Fibonacci substitution sequence with

Wythoff's A and B sequences

A(n) = n + E h(k) , B(n) = n + A(n). (12)
k=l

These sequences { A(n) }_ and { B(n) } 7 cover the positive integers in a complementary way: every
number N > 0 is either an A- or a B-number. For an A-number n (i.e.ln = A(m) for some

m) h(n) = 1, and for a B-number n (i.e n = B(m) for some m) h(n) = O. Wythoff's sequences

are a special case of Beatty sequences: A(n) = In,J, B(n) = [nqo2J, with _o2 -- _o + 1, _o > 0, the

golden mean.
The characteristic polynomials {S(')(x)}, obtained from {Sn(Y,y)} by replacement of Y and

y according to eq.(6), constitute, for fixed mass-ratio r, a system of orthogonal polynomials.

{S(')(x)} are the first-associated orthogonal polynomials.

3 Self-Similarity Identities

The string, or 'word', Hoo defined in section I is invariant under the inverse substitution a -1,

with _r-:(1) = 0, a-:(10) = 1. This is equivalent to the self-similarity of the sequence {h(n)}_

which is shown in the FIG.

1 2 3 4 5

0.-1

(I-I-i) ... ..

1 2

6 7 8 9 10 11

6 73 4 5

12 13 14 15 16

8 9 10

FIG. Self-similarity of the sequence {h(n)}_. Circles stand

for th_ value 1 (A-numbers n), and disks stand for the value

0 (B-numbers n). o'-:(I0) = I ,a-:(1) = 0. Level (I)is

mapped to level (l + 1) by a-:.
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The upper level, called (I) in the FIG., shows the numbers marked as A- and B-numbers. The

h(n) value is 1 or 0, denoted by a circle or disk, respectively. When the substitution a -1 is

applied one reaches the next higher level, called (! + 1) in the FIG., on which the same sequence

is reproduced. Let the position of the n's number at level (l) be z_ ) for l = 0, 1, .... Level I = 0 is

assumed to correspond to the original sequence. Then one finds for p 6 No =- N U {0}

z(z+_) z(O
alp) = B(v) ,

(l+_) .(0
xB(v) = _AB(v) ,

(13)

(14)

The numberwhere AB(p) stands for the composition A(B(p)) of Wythoff's sequences. E.g.

A(4) = 6 at level (l + 1) occurs in the FIG. at the same position as B(4) = 10 at level (l), or

B(2) = 5 at level (1 + 1) corresponds to AB(2) = A(5) = 8 at level (1).

Iteration, depending on the parity of the level number, leads to

zC2k+l) _.C0)
aCp) = "_B_+,(p) ,

z(_k+l) _(o)
B(v) = "_AB_+'(v) ,

z(_)) = ..(o) (15)"_AB_(v),

z(_: )) = x(;_+,(v) (16)

R(l+l) W(t+l) (17)h(.) "'"*h(1) ,

-Ra=(Y1;1)
(18)

Consider the level (l + 1) transfer matrix

M (1+1) =

satisfying the recursion relation

R(t+_) _(_)_(l) R_0)a = _0 _1 ,

Ri') , Ri°)

Iteration leads, with M. _ M (°), to

R_ `+')= MF(,+,)

with the Fibonacci numbers F..

Due to (15) and (16) one has

:i?.;"' = ,

The recursion at each level is

M(Z+_) R(t+,) /bf(/+l)
= h(n) 'L"t n- 1 '

(19)

(20)p(t+a) MR(_0 = I+2) '

M A(_-k)
(v) -- MAB_(p) , (21)

MB(2k) = MB_+I(v) (22)(v)

Mx(t+x) _(z+a) (23)

Combining iteration and recursion, in a systematic way, leads to transfer matrix identities for

level (0), i.e. for the original matrices M, of eq. (8). One finds alltogether six families of such
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identities, dependingon the parity of the level one starts with and the specification of the index.

These identities are, for m E N and k E N,

(i)
(IIa)
(11b)
(ii1)
(ira)
(zvb)

MBt+l(m) = Mf'_l,+l MaBka(,-,,) ,

MB_A(A(m)+I ) = MF2_÷_ MB_+t(m) ,

Mn_,a(s(.0+l) : MF2_+t Masm,+t(,.,) ,

MAB_(m ) = Mr'_ MB_a(rn) ,

MABka(a(,_)+a) = MF_+_) MaBh+l(m)

MAB_'A(B(r,-,)+I) = MF2¢l,+t) MB_+'(,,,)

(24)

(I), (lla), (IIb) and (111) result from odd levels l = 2k + 1, with n put AB(m), AA(A(m)+ 1),

AA(B(m) + 1 and B(m), respectively. (III), (IVa) and (IVb) result from even levels l = 2k,

with n put B(m), A(A(m)+ 1) and A(B(m) + 1), respectively.

E.g. (I) and (III) produce for m = 1, due to A(1) = 1, Bk+l(1) = Fzk+3 and ABk(1) = F2(k+l),
identities which are the well-known recursion formula for transfer matrices with neighbouring

Fibonacci number indices

MR.+, = MF._I MF. (25)

Not all eqs.(24) are independent. E.g. if one puts rn = B(p) + 1 in (I), replaces k by k + 1 and

combines it with eqs. (IVb), with k _ k - 1 and m _ p, one finds eqs. (IIa), due to the identiy

B(p) + 1 = A(A(p) + 1) and eq.(25) for even n. ttowever, eqs.(IIa) provide identities for MB_a(p)

which complement those obtained from eqs. (IIb).

It is possible to combine (I) of eq.(24) with (III) specialized to m ---* A(m) and use (I) again

with k ---* k - 1 and m --_ A2(rn). Continuing this process one finds for k 6 N and m G N

(I') MB_,÷I(,-.) : Mr'_+l MF2_,'" "MF2 MBa2_,(,-,,)

(III') MaB_(_) = M_',_ MF___ "" M_'_ MBA_-t(m) (26)

(I) and (III) in (24) can be replaced by both eqs. (26), and the other eqs. of (24) can be rewritten

using (26).
The sum of the indices Sf the transfer matrices on the r.h.s, of eqs.(24) and (26) have to match

the index of the 1.h.s. This fact produces families of identities among iterated Wythoff A and B

sequences. A detailed investigation of these Wythoff composites identities will be given elsewhere.

All of these identities can be rederived as corollaries of a new theorem relating two seemingly dif-

ferent unique number systems: the Wythoff- and the Zeckendorf- (or Fibonacci-) representations.

The transfer matrix identities (24) are equivalent to those for their matrix elements, i.e. the

characteristic polynomials {S,(Y,y)} and {S,,(Y,y)}. In order to derive them one rewrites the

indices of all matrix elements as Wythoff composites. Consider, for example, (I). For the elements

of MB_+,(,,) one employs the simple identities Bk+l(m)- 1 = B(Bk(m)) - 1 = A2B_(m) and

Bk+l(m)- 2 = ABAB_-I(m). The last identity can be proved for m = A(p) and rn = B(p)

separately. On the r.h.s, of (I) one rewrites the indices of the matrix elements with the .help of

the identities F2k+t = Bk(1), F2k+t - 1 = A2Bk-_(1), F_k+a - 2 = ABABk-2(1) for k = 2, 3, ...,

and F_- 2 = 0. Moreover, AB_A(m)- 1 = BAB_-"A(rn), AB_A(rn)- 2 = A_B_-aA(m).
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Finally, (I) decomposes into the following four sets of eqs.

(I,(i,i))

(I,(I,2))

(I,(2,1))

(I,(2,2))

^

SBt+l(m ) = SBt(1 ) SABIA(.*) -- SA2Bt-*(1 ) SBABt_gA(m) ,

SAmBa(..) = SB_(1)SBAB_-'A(_) -- SA'B_-'(1)SA,B_-*A(._) ,

SA_B_(.,) = SA,B_-,(1 ) SABrA(m) -- SABAB_-,(1 ) SBAB_-*A(.,) ,

^ ^ ^ ^

SABABt-I(m) = SA2Bk-*(1 ) SBABt-*A(m) -- SABABt-2(I ) SA'Bk-'A(m)

The lasttwo setsof eqs. hold only for k = 2,3,....For k = 1 one has

(27)

SA2B(m) --- y SABA(m) -- SBAA(m) ,

(28)

The other eqs. in (24) decompose in a similar way. The arguments of the polynomials is always

(Y,y) , which can be replaced using eq.(6).

This concludes the derivation of the self-similarity eqs. for the Fibonacci chain polynomials. It is

clear that further work is needed in order to extract from this gamut of eqs. information pertaining

to chain properties, like structure of spectra and displacements.
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