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Abstract

Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscil-

lator are described belch for time-independent and tinle-dependent systems. We iapp[y th('_

to the description of a one diniensional atom-diatom collision. From the resulting evolution

operator, we evahlate vibrational tral,.sition probabilities as well as other time-depend('nt

properties. As expected, the ground vibrational state becomes a squeeze<l state during the
collision.

1 INTRODUCTION

Let us consider the l)roblem of translation-vii)ration eli(,r_y transfer in a colinear collision b(,lw(,(,en

an atom A and a diatomic moh,cnh' B(_. The systeln is (h,scribed I)y a tlanliltonian II

= Ho + Vs(,r, t),

with the molecule modele(I by a Morse Ilainiltonian

p2 )2
740 = _ + D( e-Ax - 1

and we rise a semiclassical approach [1] to construct all effective tim('-depend(_nt interaction Vs

between the particle and the molecule.

A harmonic tlamiltonian is usually related to 74o just by making a Taylor series expansion of

the potential around x = () and keeping up to second order terms. Itowever, as we shall show

here, this is not necessarily the best harmonic al)proximation to the Morse tlamiltonian.

In this work, we analyze the time evolution of several physical observables during the collision.

To that end, we obtain an apl)roximate time evolution operator by algebraic means. The resulting

vibrational transition probabilities are coral)areal with results obtained by other authors [2]. We

also evaluate the occupancy of the ground state and the disl)ersion of the relative position and

momentum of the atoms in the diatomic molecule during the collision.
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2 ALGEBRAIC TECHNIQUES

As usual in this type of problem, we shall work in the interaction picture where the behavior of

the free molecule is separated from that of the total system. The observables O evolve in time

according to

0t(0 =/gtO/go, (1)

where U0 is the time evolution operator corresponding to the Hamiltonian "H0, while the time evolu-

tion of states is determined by the operator/gl associated with the interaction picture Hamiltonian

_(t) = e_m(t-t°)/hVs(x, t)e -m°(t-_°)/h. (2)

For both time evolution operators we shall make a harmonic approximationtdescribed in the

following paragraphs.

a) On the harmonic approximation to the Morse Hamiltonian.

The harmonic approximation to the Morse Hamiltonian is usually carried out by just considering

the second order Taylor series expansion to the Morse potential

D(e -a* - 1) 2 _ DA2x _. (3)

Let us consider the introduction of creation and annihilation operators with arbitrary scale pa-

rameter a and a translation parameter d:

1 i
. = --_.(_. + --p)- d (4)

Vz ot

and

., = __2(.. _iP)_ d. (5)

The usual commutation relation still holds and the position and momentum operators are given

by
' 1

.- V,_ (a+a t+2d) p=-_(a-at). (6)

In terms of a and a t the Morse Hamiltonian can be written as

oo

7"[o = _ Gijat'a j
i,j=O

(7)

as can be easily shown using the fact

c_a t aa _½_2e c_(a+at) -- e e e . (8)

The coefficient G00 can be interpreted as an estimate of the ground state energy on the harmonic

basis determined by the scale parameter a and the traslation parameter d. Invoking the variational

principle we choose them such that

oa°°la=a o = 0 (9)
Od
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and OG°°l_,=_ o =0. (10)
0a

By direct evaluation of these derivatives it can be shown that the variational conditions are

equivalent to the diagonalization of the approximate Hamiltonian

= _..aYa j (11)H0 2[2 -_,s
0_<i+j<2

taking it to a form similar to the one of a harmonic oscillator

Ho = Gllata + Goo, (12)

but with a variationally optimized Goo.

b) Nonperturbative approximate solution for the time-dependent interaction ttamiltonian.

In many scattering problems, a perturbative technique is applied to obtain the major effects of the

collision on the state of the system. In the case of a collision between an atom and a diatom, even-

though transition probabilities may be small, perturbative results differ significantly from exact

numerical results. Besides, as is well known, there are several successful nonperturbative methods

to deal with the parametric harmonic oscillator model. Taking this into account, harmonic ap-

proximations to the time-dependent interaction between an atom and a diatom have been studied

[3] [4]. In this section, we describe an iterative procedure which has proven to take advantage of

this fact in an optimized way [6]. This method has been applied to the calculation of vibrational

transition probabilities when the molecule is described by the usual harmonic oscillator derived

from a Morse potential.'

Once the time-independent Hamiltonian 7"/0 has been approximated by the harmonic Hamil-

tonian H0 the evolution operator is simply

12o = e-i/ha°°t e -i/ha''t_t_ (13)

thus, tile interaction Hamiltonian 7-ll(t), Call be easily written in terms of tlle creation and anihi-

lation operators a and a t
_1(t) _ (o) _,' j (14)= % (t),,

i,j

with the coefficients ¢!o) simple functions of time. Solving this problem corresponds to find an

evolution operator/_1(t) solution of the equation

ihOtl.tl = 7/I/gI, (15)

with the initial condition U1(t0, to) = 2".

In analogy with tlle time-independent problem we split 7-/i as a sum of two terms [6]

as(H)
"1-/(1) + ,LI o7"/I = , _Io (16)

with

H(') E (I)l°)(t)at'ai
0<i+j<_2

(17)
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and

7_(11)1o = E _!°)(t) ai'aj
3<i+j

Accordingly, the time evolution operator will be a product,

(18)

//i b/(1)_j(11)= 1o _alo (19)

with b/}oO such that

ihOt_'_}/) = q'/(')?/(')'rio _1o _AIY) ( t0' l_0)

and/41(o H) an analogous solution for the effective Hamiltonian

= z, (20)

_"[ ( I)t'_'1( I1) 71(1) (21 )_-_11 = to 'rio _'_Io "

Due to the fact that the operators contained in _(*) form a finite Lie algebra, the evolution
i rio

operator///(oi) can be expressed as a product of exponentials [7]

U}/)= 1-[ e-a}°)"""' (22)
0_<i+j<_2

where the complex functions fl}°)(t) satisfy a set of coupled, first order differential equations which

can be solved numerically. With this expression for bt}[ ) we can construct the tlamiltonian 7_ h .

It again comprises a part which forms a finite Lie algebra and a part which does not. The time

evolution operator U}0H) is then again written as the product of two evolution operators and we

can proceed in a completely analogous manner as before. The evolution operator obtained after

k-iterations b/lk would correspond to the product

L/h. U}/) '7 (') (23)= ...t lk "

To approximate HI by H1k corresponds to neglect the Hamiltonian 7-l_ 1) with respect to 7/(1)Ik "

We call this the time-dependent iterative Bogolubov transformation (TDITB) method in analogy

with its quite efi3cient time-independent counterpart [8].

3 AN EXAMPLE

Let us consider, a colinear collision of an H2 molecule with an H_ atom. For the He molecule

the parameters of the Morse potential are taken to be A = 0.183385 and D = 2.33509 so that

comparison with the results of [2] can be done. To study how efficient is the TDITB method,

consider first the H2 molecnle modeled by the usual harmonic oscillator. In Table I we show the

transition probability from the ground to the first excited vibrational state for several values of the

collision energy E = NEo, Eo = hco with co as given by Secrest and Johnson [5] and for different

levels of approximation [6].
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TABLE I. Transition probabilities using a harnaonic oscillator representing tile di-

atomic molecule and one (P01) or two (P02) iterations for the time-dependent interac-

tion. Results are shown for comparaison with the Basis Set (BS) and Exact Quantum

Harmonic (UHA) of [5].

E/h 
4

6

8

10

12

16

gol

9.20(-4)

eo2

9.73(-4)

BS

9.84(-4)

3.50(-2) 3.76(-2)3.89(-2)

1.38(-1) 1.47(-1) 1.55(-1)

2.61(-1) 2.73(-1)

3.49(-1)

3.29(-1 )

3.45(-1)

3.44(-1)

2.87(-1)

3.59(-1)
2.96(-1 )

UHA

7.20(-4)

2.95(-2)

1.33(-1)

2.92(-1)

4.28(- 1 )

4.07(-1)

The results obtained with a basis set expansion (BS) are exact numerical results within the

semiclassical approximation. We also show in the table the exact quantum results of [5] (IIIIA).

The transition probabilities using the TDITB method after one (f)01) or two transformations (P02)

are also reported. That is , Pot corresponds to apl)roximating the time evolution operator in the

interaction picture by

H_ = H_o

with Ul0 tile operator which evolves according to the Hamiltonian "u(l)'_/o " Meanwhile P02 corresponds

to
L/(t)b/(_) (24)

/all = lo 11 "

In the procedure for finding L/}oI) and/g}_) ,,,p to quartic, 0 < i + j < 4, terms were kept.

Notice that for all the energies considered the transitions obtained after two transformations

are closer to the (BS) results than those obtained after one transformation. We also see that if we

compare our approximations with the exact quantmn results ([ItlA) then for some energies the

first iteration gives closer results than the second one. ltowever this fact may be misleading since

in our case the exact results are those obtained in the semiclassical approximation. Because the

difference between the results obtained after two transformations an(I the exact ones is very small

we did not pursue these transformations filrther. We believe that this example shows clearly that

our method deals quite eIficently with the time-dependent anharmonicities.

Now, consider the H2 molecule modeled by the alternative harmonic oscillator defined using

the variationaly optimized disl)lacement and scale parameters. In this case do = 0.17 while c_0

differs from the usual c_ in less than two percent. In Table II, we show tile results obtained

for the transition probabilities from the lowest three states for several values of the collision

energy. This table also shows tile transition probabilities obtained numerically for the exact

Morse potential (MP)[2] and the usual harmonic apl)roximation (UtlA)[5]. These results do not

comprise the semiclassical al)proximation for the atom-molecule interaction and use is made of

the full exponential fimction.
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TABLE II. Transition probabilities using the modified harmonic oscillator for dif-

ferent energies and transitions. The upper value corresponds to Exact Quantum Morse

Results (MP), the next corresponds to our's and the last to (UHA).

E/hw . P(O-1)

6 7.31(-3)

2.00(-2)

2.95(-2)

10

16

7.39(-2)
2.07(-1)
2.92(-1)
2.45(-1)

3.13(-1)

4.07(-1)

P(1-2)

1.25(-3)
2.75(-4)
1.42(-3)
8.15(-2)
1.62(-1)
2.17(-1)
3.18(-1)

1.92(-1)

1.56(-1)

P(O-2)

2.30(-6)

1.44(-6)

1.07(-5)

1.66(-3)

1.22(-2)

2.25(-2)

3.38(-2)
1.57(-1)
3.30(-1)

P(1-3)

1.22(-3)

2.16(-3)

5.39(-3)

5.72(-2)
1.72(-1)
2.85(-1)

P(2-3)

5.47(-2)

4.25(-2)

7.70(-2)

3.34(-1)

2.07(-1)

1.89(-1)

P(O-3)

1.17(-5)

7.04(-5)

2.31(-4)

2.72(-3)

3.30(-2)

9.88(-2)

We observe that our results are in general in better agreement with the exact quantal (MP)

results than the (UHA). If we compare P02 in Table I with the corresponding results in Table II

we see a large difference between them and this is due entirely to the slight change in frequency

that we have done defining the frequency of the transformed oscillator. Though the difference in

frequencies is rather small the differences in the values of the transition probabilities are rather

large, for example, for a collision energy E/hw = 4 we go from P0_ = 9.73 x l0 -4 to 2.51 x 10 -4

which is very close to the (MP) value of 2.46 x l0 -4. This is all indication of the quality of the
approximation made for the Morse oscillator.

Once we have constructed the matrix elements of the time evolution operator, we can calculate

the survival probability, that is, the probability for the molecule to remain in the initial state. We

have done that from a time long before the collision takes place up to a time where the collision
is over.

We see that the collision lasts the order of 1.5 time units (tool _ 3 x 10-14sec); the permanency

probability is one long before the collision begins and starts to decrese around to = -0.75 time

units reaching an asymptotic value at approximately tas = 1 time units. The frequency of the H2

oscillator is wH2 = 8.054 x 1014/sec and the corresponding period is of the order of TH2 ,_ 3/2toot

so that the molecule is able to make a couple of oscillations before the collision is over. From this

figure it becomes evident why a perturbative treatment of the problem may lead to wrong results.

Although the asymptotic transition probability may be small, in a short interval around t = 0 the

state of the molecule highly differs from the initial state.

In the interaction picture, the creation-annihilation operators can be written in the form

a(t) = dl(t)a I + d2(t)a + d3(t)

where di(t) are funtions of the time, and we have used the fact that the set of operators appearing

in the time evolution operators is closed under the operation of commutation. We can now consider

the time evolution of the expectation value of the momentum < p >, the coordinate < x > and

the dispersions Ax and Ap using the expressions for the momentum and the coordinate operators

in terms of the creation-annihilation operators.
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Figure 1: Time dependent survival probability for the ground state of an H2 molecule colliding

with a He atom for a collision energy E = 4hw.

It can be seen in figure 2 that, when the atom is far apart from the molecule, the average

value of the position operator in the ground state is zero as it should since we are dealing with an

effective harmonic oscillator.

As the atom approaches the molecule, this one recedes, taking also negative values of the

momentum, when t _ 0 the momentum changes sign and the average value of the position initiates

an increase towards the origin. Since the collision time is larger than the frequency of oscillation,

the projectile is hit again and the oscillator's momentum changes sign, the position does not reach

the origin and moves away from the origin. After that, the projectile leaves the range of the

interaction and the molecule is left in an excited state as indicated by the oscillatory behavior of

the position and momentum operators around the zero value.
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Figure 2: Time evolution of the average values of P (squares) and X (continous line) as the

collision takes place.

Finally, in figure 3 we see that, since we begin with a minimum uncertainty state the dispersion

in each coordinate is J]-/2 and it remains being a minimum uncertainty state during the collision

because we are dealing with an harmonic oscillator.

However, due to tile time del)endence of the parameters defining the oscillator, we can see

that there is squeezing in tim dispersions which become more pronounced as the energy increases.

Notice that as the projectile approaches the molecule, the dispersion in the momentum decreases

while that of the coordinate increases in such a way as to keep their product constant. The

squeezing of the dispersion reaches its peak value at the time of the collision (t=0). The presence

of squeezing is to be expected since the time dependence of the creation-annihilation operators

which define our harmonic oscillator has the form of a generalized Bogoliubov transformation.

Not long ago it was shown that states of light with nonclassical properties can be generated if the

frequency of the harmonic oscillator is swept as a fimction of time [12]. In that work, the authors

dealt with a simple time dependence for the frequency of the oscillator in order to obtain exact

analytical results. As we have shown here, the presence of these nonclassical properties is due to

the time dependence of the frequency irrespective of the fimctional form used to describe it.

4 CONCLUSIONS

In this work we have shown that a suitable harmonic approximation for the description of an

anharmonic potential like, for instance, the Morse potential, can yield very good results when

one is looking for properties like the transition probabilities between tile vibrational states of the

oscillator. We found that a slight change in the parameters defining tlle oscillator with respect to
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Figure 3: Time evolution of tile dispersion of the coordinate and nlomentun_ values for the ground

state of the molecule during the collision for E=4hw (thin lines) and E=12hw (thik lines).

their original values, when no optimization is made, can have a great importance for the evaluation

of transition probabilities. However, when we evaluate the dispersions and tile average values of

the position and momentum operators we get essentially the same results for the oscillator before

and after the optimization, this leads us to believe that the non classical behavior that we have

found, like the squeezing, is a property of the system and not of the particular model we are using

for its description.
The method we have used can be taken as a starting point for more accurate calculations

when anharmonic potentials are studied. Here, we are searching for tile best harmonic potential

to mimic tile anharmonic one and at least part of the information coming from the anharmonic

part of the potential is accounted for with the use of the generalized Bogoliubov transformations.
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