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Abstract

The following questions, concerning to the application of the hiarmonic oscillator represen-
tation (HOR) in the theory of scattering and reactions, are discussed: the forimulation of the
scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR;
separable expansion of the short range potentials and the caleulation of the phase shifts:
"isolated states” as generalization of the Wigner-von Neumann bound states embedded in
continuum; a nuclear coupled channel problem in HOR; the description of true three body
scattering in HOR. As an illustration the soft dipole mode in the "'Li nucleus is considered
in a frame of the °Li+n+n cluster model with taking into account of three body continnum
effects.

1 Introduction

Usually harmonic oscillator wave functions are used for the deseription of bound states of uantim
systems that belong to the discrete spectrum [1]. In this talk the application of the harmonic
oscillator (HO) basis to the solution of the scattering problemy i.e. i continuurm, will he discussed.

This line of investigations was begun in Refs. [2] (see also the papers cited there) and inde-
pendently in the papers of Kiev [3] and Moscow [4] groups. The similar approach, also connected
with an application of the HO basis to the scattering problem, was developed by the Hungarian
group [5].

In order to illustrate the essence of the approach to the scattering problem in the harmonic
oscillator basis, we shall consider at first the simplest problem of the scattering of a single particle
by the central potential V(r) [1]. Thus, we come to the Schroedinger equation
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[ts solution v, (r) = R,(r)Y}m(Q) will be sought in the form of an expansion in the cigenfunctions
of the harmonic oscillator
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Rl(r) = Z (‘anh)'nl(r)

n=0
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where 12
_ n 2n! Lpi41/2(,.2y ,—72/2
R =1 (ryg) T ®)

is the radial wave function of three-dimensional harmonic oscillator. This wave function cor-
responds to the eigenvalues of the oscillator energy E;* = (2n + 1+ 3/2)hw [1]. The value
ro = (h/mw)'/? is selected as a length scale in relations (1) and (2). Here w is the oscillator
frequency; the energy ¢ = ¢*>/2 is measured in units hw; the wave vector k is expressed in units
rg', ¢ = kro is the dimensionless momentum. Substituting expansion (2) in (1) and multiplying
(1) scalarly by Ry;Yim, we obtain the following equation determining the wave function t,, in the
harmonic oscillator representation (HOR):

Z(Hnnt — 6nn’5)Cn’l = 0 ) n = 0, 1,2, PPN (4)

nl

Here, H = T + V and only the following matrix elements of the kinetic energy operator T = P?/2

are nonvanishing:
1/2
1 1
Tnn_lz—‘i[ n(n+l+§> ] )

1 3
T =72 I+=), ‘
> (2n+143) (5)

1/2
1 3
Tnn“:—E{ (n+1)(n+l+§> ] .

As to behaviour of the coefficient C,; for n > N, their asymptotics are similar to the asymptotic
of the wave function in the coordinate representation [3] if r is substituted by 2n'/?ry:

Cot ~ 20 4 (2¢/nrg) , 1 — 00 . (6)

this result can be obtained if the WKB expression for the oscillator function R,(r) is substituted
in the expression for the coefficients

Cnl =< '(/Jnlm(r)l'/)lm(r) > (7)

and the integral (7) is calculated by the stationary phase method. The result (6) follows also from
the fact that the finite-difference equation

1/2
1
—[ n(n+l+§) Cn_1,+(2n+l+g—q2)0n,
1/2
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in the limit n > v = 1/2+3/4 can be replaced by the following second-order differential equation
[4]:

(l+1 oo
xp - Dy [ V(a2 )WerXi(e)de + ¢ Xi = 0. (9)

0
Here z = 2(n + )2, Xi(z) = 2'/*Cri. The Eq. (9) should be solved at the boundary condition

X(2v/r—1)=0. (10)

Thus, in the asymptotic limit for large n, the wave function of our system X; for the partal
wave with angular momentum [ in the HOR obeys the conventional Schroedinger equation with
nonlocal potential

V(z, o)Wz =~ 2 < nllV|n'l > [(n+ v)(n' + v)]'/* (11)

where the value 2(n + v)!/2ry plays the role of coordinate”. In actual calculations, the potential
matrix has to be cut off by the condition Vv = 0, if n or (and) »’ > N. Then a set of equations
(4) can be splitted in two parts:

N
a)n <N, Y (Hu — €60n)Crit = —6NTNN 1Ot (12a)
n'=0
b) n 2 N + 1 ) Tnn—lcn—ll + (Tnn - 5)Cnl + Tnn+1Cn+ll =0. (12b)

Thus, the coefficients C,,; with n > N obey the equation of free motion (12b) or, in the asymptotic
limit of continuous n, the Schroedinger equation of free motion

I+ 1
X{’————(:; )X+ X, = 0.

It means that the condition
Cur ~ onl/te2v/mk (13a)

(where ¢ = —k?/2 is the binding energy) must be satitfied for the bound states. The coeflicients
C,, for the scattering problem have the following asymptotic behaviour:

Cr ~ 2n4sin(2gy/n — Im/2 4+ &) (13b)

where ¢ = ¢%/2. According to Eq.(6) the phase shift 6 in Eq. (13b) coincides with the standard
phase shift of the wave function in coordinate spase. For the decaying resonance states, we get
(see in [3]):

Cpt ~ 2nM/4e¥VT (13c)

If the calculations are made up to sufficiently high values of N > 1 it is possible to use the
asymptotic expressions (13) [3] . At modest N it is necessary to use the exact, rather than
approximate, solution for the equation of free motion (12b) which was found in Refs. [2, 4] in
order to calculate the binding energy, the scattering phases etc. Before considering the solution
for the equation of free motion, we shall note that the solution for the set (12) is equivalent to the
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solution for the Schroedinger equation with Hamiltonian H = T + V¥ containing the many-term
separable potential

N
VY =3 <Vl > nd >< nl| (14)

with harmonic oscillator formactors. The technique of solving such an equation in the frame of the
momentum representation was described in [5, 6]. Here we shall describe an alternative method
for solving the same problem in HOR.

2 Solution for the equation of free motion in the har-
monic oscillator representation

Consider first the case of positive energy € = ¢*/2 > 0. The Schroedinger equation of free motion
in the coordinate space has two linear-independent solutions (regular and irregular) [1}:

rey . 1 : lﬂ'
R = ji(kr) ~ E—:sm(kr - 7) \
. 1
R = ny(kr) ~ — cos(kr — l—”) . (15)
kr 2

In accordance with this, the finite difference equation of free motion (12h) will have also two
fundamental solutions in the HOR [4] namely the regular solution

W+ 1+2)\"* ¢ ) 3
CTEQ — 2 .~ /2M . i 242y —

23/2 .
= (=) Rualq) ~ =" ji(2v/nq) (16)

Yren

satisfying the boundary condition (6) C"7, = 0, and the irregular solution

a1 /2 I —1=1
: 20(n + 1) ] (—1)q Yy 1 [
T g) = T PM(—n =1 — =, =14 —1¢%) =
23/2
~ —1/71‘/47”(2\/77(;) (17)
T
which is singular at the point n = —1.
The Casorati determinant /,,; for these two solutions which plays the same role for the differ-

ence equations as the Wronskian for the differential equations [7] is of the form:

. Creg Cirreg —1
T “nl l _
[\nl = Yn-Hn (w?;g 7ilrreg - (18)
‘n4+1l “n+11 nq

Since K,; # 0 for any values of n and [, the expressions (16) and (17) constitute the fundamental
set of solutions for equation (12b). An arbitrary solution for (12b) may be presented as a linear
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combination of fundamental solutions. In particular, the solution for the set (12) for n > N must
be of the form

Culq) = cos§C 7 (q) + sin é (9 (g) (19)

nl ‘nl

whence it follows that
(v ~yreg C CVTSQ
g1l T Yntdl

yirTeg irreg
( TLI( n+][ - (TL+11

nl

tan é; = (20)
The equivalent pair of fundamental solutions for the freec motion equation has the asymptotic form
of the type of Hankel functions

Cilg) = C () £1CT2(q) - (21)

nl nl

These solutions are useful for the calculation of the S-matrix and analyzing the decaying Gamov
states. If we are interested in bound states (¢ = —k*/2, ¢ = k) the solution for the equation of
free motion with a corresponding asymptotic

Crp (k) = it [0 (k) + 1O ()] (22)

must be used. The numerical values of solutions (16), (17) can be obtained by using the book [8],
where the function M(a, b; z) is tabulated. Similarly to the regnlar and irregular solutions of the

ey

T are oscillating functions of nand

free motion Schroedinger equation the functions (777 and €
the period of oscillations decreases with increasing energy ¢

3 The solution of the scattering problem in HOR

Consider now the solution for set (12). It follows from equations (12) that the coefficient (7, for
n > N + | obey the equation of free motion with an appropriate asymptotic, i.e. (' = (9,
where ('Y is the solution for the equation of free motion with asymptotic (19), (21) or (22). The
coefficients Cy(n > N 4 1) form the "external” part of the wave function in HOR. The coefficients

Cri(n < N) belong to the "internal™ part of this function. The equation

(VlntFT'll — (YPJ‘th7L (2’;)

plays a role of "fitting” condition of "internal” and "external” parts of the wave function. The
r.h.s. of this equation has one of the form (19), (21) or (22). Into the left hand side of Fq. (23)
the solution of the set (12a) must be substituted. The last one can be found in the following
manner [2]. At first we shall diagonalize the truncated Hamiltonian matrix ||H,, || using the
unitary transformation I', i.e. turn from (7,; to the new coetlicients

\l - E F\n(\"nl 3 A= 0, l,...,N . (21)
n=0

As a result of this transformation, equation (12a) takes the form

(Ey — )y = =DawTang1Ongu s A=0,1,.0N
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1e.
LanT,
Cu= ——’—/\g NN+ICN+1I (25a)
A»— €&

and N
_ 3.
Cn[ - Z E,\ — &

A=0

Tnn+1CNu (25b)

where Ej - is the eigenvalues of the matrix ||Ha.|| (n,n' < N).
Substituting the ”internal” solution (25b) at n = N into Eq. (23) we obtain

N T3, Dan

0 0 n

Pyni1 Cyyu = —Cniy Pan1 = Z - -
A=0 E’\ —£

TNN+1 . (26)

If we deal with bound states of Gamov resonances, C2, and CR,,, are the known functions of
energy (see (21) and (22)). In such cases the condition (26) is the transcendent equation which
may be used to find the energies ¢; of the bound or resonant states. For the scattering problem,
we get in accordance with (19):

0 re irre
CN[ = Cng + tan 6[ CNI 9 s

CR/+11 = C}rVngr” + tan g, Cﬁﬂfﬁ . (27)

Substituting these expressions in (26), we find in accordance with Refs. [2]:

CNi + Pnni1 Cniu
tan & = ———o - (28)

N+ Pune OG0
It can be seen now that the scattering phase at an arbitrary energy € can be obtained by diago-
nalizing the Hamiltonian matrix ||H,.|| (n,n’ < N) but one time.

In agreement with the Ritz variational principle, the negative eigenvalues Ey < 0 of the
Hamiltonian matrix ||Hn.|| (n,n’ < N) may be treated as approximate values of the energies
of discrete levels of a particle in the studied potential. In this case the approximation accuracy
improves with increasing the size of the matrix N. The question arises, what is the sense of the
matrix positive eigenvalues and of the respective wave functions? The question was answered in
works [2, 4, 9] as follows. In the limit ¢ — E, expression (28) takes on the form

Teg
tan & (E',\) = —g+::; . (29)
N+l
By comparing this result with formula (19) we get the coefficient Cy{,(Ex) = 0 for Ey. Thus,
by diagonalizing the Hamiltonian matrix ||Hy.|| (n,n’ < N), we find the solutions for equations
(12) in the region of the continuum at such discrete energies Ey > 0 which correspond to the
vanishing of the HORt wave function C,;(EX) at the point n = N + 1. The scattering phase
can be calculated at such energies using simple formula (29). In the a,sympt|otic limit of high N,
the diagonalization of the Hamiltonian matrix on the cutoff basis n < N means the solution for
the Schroedinger equation (9) with the additional condition X;(b) = 0, where b = 2(N + v)'/2,
i.e. when the system is placed within a rigid box of radius b. In this case the energy spectrum
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for equation (9) gets discrete and the energy of any level becomes a function of the position of
the boundary point b = 2[(N + v)h/mw]'/?. The condition X;(b) = 0 is nothing other than the
equation for the P-matrix poles in the system of radius b described by the Schroedinger equation
(9) [10]. Thus the eigenvalues F, of the Hamiltonian matrix ||H,./|| are poles of the discrete
analogue of the P-matrix. The important point is a convergency of this approach. The practical
calculations [3, 4] show that for rather smooth potentials V(r) it is sufficent to use a number of
terms N ~ 20 — 30 in the expansion (2) in order to calculate phase shifts and other scattering
characteristics in reasonable accuracy.Therefore the using of HOR, or J-matrix approach [2], is
a rather effective and practicable method for the study of continuum problems. Some additional
example of application of this method will be discussed in section 6.

4 Multichannel case

Let us consider the case of two open (binary, spinless) channel for simplicity. The wave function
has the form of a column
Di(r) .
= 30
'gb(T) ( wz(r) (30)

and the Hamiltonian is the operator matrix of a size 2 x 2:

Hll H12 .
H= . 31
( Hy Hy ) (31)

Let us assume that the wave function of the entrance channel 4, (r) is characterized by the following
asymptotic behaviour

Yi(n) ~ (€77 = Syt /r (32a)
while in the second channel only the outgoing wave presents
Pa(r) ~ — <(U]/v2)1/252161’k2r) /. (32b)

The transition into n-representation consists in the expansion of both channel wave functions

d)l(r) = chnmﬂ'm > )
n

Pa(r) = 20277L|"%T02 >, (33)

in terms of harmonic oscillator wave functions |n,rg; >, |m,roz > with a’ unique frequency hw
while the linear scale parameters ro; = (h/pw)'/? can be different for the channels 1 and 2 if the
reduced masses y; and u; of two fragments in these channels are different. Assuming that it is
possible to restrict ourselves to a truncated matrix of the potential energy

‘/1n,1n’ (0 S 7l,7l, S Nl)v VZm,'Zm’ (0 S Tn3nl( S N2)a

vln,‘lmw Vlm,]n (O S n S Nlao S m S NZ)
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(generally speaking Ny # N;) we obtain the following set of equations for Ci,, Csy, coefficients

instead of Egs., (12), (23), (27)
(H-E)C =-TC",

Y 4] Y Y0
(—"lNl = ClN 3 (/"'2N2 C "2N5 3
(YO =C7, - 511C1n ,n Z Nl y

In

CZ’m - q2/q1 1/2 52]C2n1, y M Z N2 . (34)

Here C is a column of N, + Ny + 2 coefficients CyC1q...Cin1Ca0...Con2, H is the matrix of
Hamiltonian in a truncated basis |n,rg; >, |m,rez > (n < Ny, m < Ny). The column T'C’ contains
only two nonvanishing elements, namely Ty, N1+101N +1 in the Ny + 1-th row and TN2N2+IC‘2)N2+1
in the last row. The functions C% = 77 + 1C79 are the same ones as in Eq. (21). As it
was shown in Ref. [2, 11] the asymptotic of the function P = 0 ,CE In > is of the form
k exp(+ikr) for — oo. This fact and the difference of ry; in various channels are the origin of the
factor (g2/q1)"* in Eq. (34) instead of the usual velocities ratio (v5/v1)"% in Eq. (32). Solving
the Eq. (34) similarly to Eq. (12) we oblain the following results instead of kEq. (26)

Civy = Ciay — SOy, = Pu(Cingsr — SuCii 41)+

+1)12( ([z/(ll e 2N2+1) )
Cony = =S Oy, (g2/ ) = Pay ( TN — S Gt

+Pn (_(fh/‘h )1/2521(7;/\}”1) (35)
where Coo T
AN AN
P, =) ———2T, )
7 z\: E/\ _FE NyN;+1
E, is the eigenvalue of the truncated matrix H, (I'y...Tyn,...Lan, ) 1s the corresponding eigenvector
of this matrix. '
The relations (35) should be considered as the equations for elements of the S-matrix. The
solutions of these equ.?tions are of the form
1 i
Su = 5 [( am T PLC LNy +1)( N, T PpC “2N; +1) - P21P1201_N1+102_N2+1]

L 2¢P, P
Sy = — o 2m (36)
D /7q19;
D = [(Ch, + PuCi,41)(Cv, + PaCilyi1) = PaPuCly, 1 Gy -

Here the property of the Casorati determinant

— + Oy

T Cxn Cy | 2
NN+1 - ~+ -

“N+1 ‘N +1 Tq

was used. The elements Sy;, Sy, of the S-matrix can be obtained from (36) by substitution of
indices | and 2. Obviously the S-matrix is symmetrical in accordance with the time reflection
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symmetry of the Hamiltonian. As in the previous section, the eigenvalues [, are the poles of the
discrete analogue of the P-matrix.

The eigenfunctiong 1y = 3, T\, [n > are discrete analogs of "primitives™ (in terms of the
paper [10]).

The expressions (36) allow us to find the numerical values of the S-matrix elements and then
to calculate the cross-sections of elastic scattering and reactions

oo = |G — 1 (37)

AT (39)

the differential cross-sections, various polarization characteristics (taking into account the spin
degree of freedom) ete. I we want to describe the reaction with three-four fragments in the final
states it is necessary to extend the above developed formalism, which is valid only for two body
(binary) channels, to three, four body collisions.

5 The description of ”true” many body scattering in a
hyperspherical HOR

We restrict ourselves by the case of the so called "true” many body scattering (TMBS) when the
wave function of an A body system is in the asymptotic region of the form
DR (P ) = Ok koo € Y igro () = D Sprnr Kgno € Yiy () L p — 00 . (39)
Ry

p? =34 (r; — R)? is a global radius in 3(A — 1) dimensional space, the angles (2 are hyperspher-
ical coordinates in this space. R is the center-of-mass of the system, Y, (1) is a hypersperical
harmonic with a global momentum K. 5 substitutes all the rest quantum tumbers labelling this
harmonic. The approximation taking into account only the contribution of TMBS is valid if there
is a "democracy” in the A body system i.e. there is no pair of particles with dominating interac-
tion between them in comparison with the rest of the interactions. The TMBS - approximation is
applicable to a lot of processes of three, four body decay of light nuclei and hypernuclei [17] (for
example disintegration *C' — 3« etc.).

For the description of TMBS we shall use the expansion of the A-body wave function ¥ (7}...7°)
in terms of A-1 body oscillator wave function (the center of mass variable R is excluded)

InKy >= Rax(p)Yi, () (40)
depending on hyperspherical coordinates p, §):

P = Z <nKylp > |nKvy> . (11)

nK-~

Further consideration is totally parallel to sections 1-4 and we represent the result in very short
form. Instead of Eq. (3) we have for the many body case

Rni(p) = p~CAD20L(p) | (42)
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2n! 2 .
$i(p) = (—1)"\} F_(n_+L£_+-T)p“16_p PLEYY(p?) (43)
2

£ =K + (3A—6)/2, p is taken in units of ro. The Eq. (4) takes on the form

Z < nK7|H En'K'y ><n'K'y|¢ >=0. (44)
iK'y

The kinetic term T in the Hamiltonian H = T + V is diagonal in the quantum numbers K and 7.
As for the main quantum number, n, the matrix is three diagonal with respect to n and its matrix
elements coincide with Eq (5) except for substitution of [ by £. We also truncate the matrix of
potential energy V = }:,(J Vijton <N, K < Kyoz. Then for n > N the expansion coeflicients
< nK~vl|p >= Cyy obey the three term recurrent relation similar to Eq. (12b)

1 3
n(n+£+§)<n—1K7|¢>—(2n+£+§—q2> <nK~ylyp >+

1
\/(n+1)(n+£+—2—)<n+1K7|1/)>:O,q:\/QE. (45)
~ This difference equation has two fundamental solutions
Cres — 2n! q£+le-—q2/2L£+1/2(q2) (46)
o T(n+ £+43) "
|
and reg reg( ,)
C::Teg — re /oo ‘0 n..C q da' 47
£ g q — q q ( )
or the equivalent pair of solutions
2¢ [~ Cof(9)C°(d)
Cd: - — / 0L nl . da' . 4
T TR ek )

The problem of TMBS is similar to the multichannel problem described in section 4. Thus the
wave function (39) with ingoing wave in some channel K¢y, and outgoing waves in each channels
K'+' under consideration takes on the form at n > N (in principle the truncation boundary N
may be different in the various channels Kv):

< nKAY|Y >= 6k ko Cne(@) = D SkvkiyCile(g) - (49)
I\l ]

In analogy with Eq. (36) we can obtain
S=A"B (50)

where
(A)kysin = ProopinCiian 2(0) = b1 ki Cii (@) |

(B)K"y’,l\"r = PK"Y',K’YC;/+1£((I) - 61\"7.1\’"1’01;.6(‘1) ) (51)
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< NKyA >< AINK'Y >
Proy Koy = Z il E E| ! TNE' N+1K' -
) — B

E, and < NK~|A > are eigenvalues and eigenvector components of the truncated Hamoltonian
matrix < nK~y|H|n'K'y' > (n,n’ < N). The poles of the S-matrix (i.e. bound states and Gamov
resonance states) can be found from the equation

det A=0. (5h2)

Thus we have all expressions that are necessary for the construction of the wave function for few
body states belonging to continuum or discrete spectrum in the frame of TMBS approximation.

6 Soft dipole mode in ''Li and three body continuum

In order to demonstrate the effectiveness of the HOR in an analysis of concrete nuclear processes
the calculations of the properties of the low energy El excitations in the 'Li nucleus were done.
The remarkable feature of this nucleus is a presence of a large neutron halo formed by two neutrons
weakly bound with t‘h'i‘ 9Li core. 1n this connection the following model was used for the description

of this nucleus.

6.1 The model

It was assumed that the ""Li ground and continuum states can be interpreted in the framework
of the three-body cluster structure "Li+n + n.

1) The cluster °Li is supposed to be structureless and the excitations of its internal degrees of
freedom are not considered.

2) We don’t account for non-central components of the interaction between two valence nen-
trons and between valence neutron and the cluster 9Li. Therefore, the wave function can be
characterized by the three-body orbital angular momentum L, spin S = 3/2, total angular mo-
mentum J and its projection M.

3) The states with the total spin of the valence neutron pair S = 0 are only considered, and
the ground state three-body orbital angular momentum is supposed to be equal to zero: L = 0.

1) n-°Li interaction is described by the shallow potential of Johansen et al [13]. N N-interaction
is described by the Gaussian potential [13].

5) Only democratic decay channels are allowed for.

The wave function of the system “Lid+n +n, ¥ (X, ¥), is expanded in three-body hyperspher-
ical functions, ®=%/M(Q) (including the internal wave function of 9Li with a spin S = 3/2)

J lely JM .
(X y) = 3 v ()@ () (53)
Kl tly :

where K is hypermomentum, [, and [, are the angular momenta corresponding to the Jacobi

mw [18mw 1y + T,
X = ﬁ(rl - Pz), y= _l—l_h_(-l_z_z - I‘a)v (H4)
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respectively, m is the neutron mass, r; are coordinates of the valence neutrons (: = 1,2) and the
cluster °Li (i = 3), p= (x* + y*)'/? is a three-body hyperradius.
In the c. m. frame the Hamiltonian is of the form:

H:'T‘}‘VIZ‘FV‘IJB‘{‘VB’ (55)

where T is the three-body relative motion kinetic energy operator, and Vj; are the two-body
potentials. For the radial wave functions d)h, ,,(p) we have the usual set of the K-harmonic
method coupled equations (see, e.g., [12]). The equations are solved by expanding the radial wave
function.

l\l,ly Z Dnl\lxly(E en(p), (56)

n=0

in the six-dimensional harmonic oscillator eigenfunctions. To calculate the bound state energy,
L.e. to locate the corres’pondmg S-matrix pole, one should solve the nonl mea{ equation [11]

det A =0 | (57)

where the matrix A is given by the Eq. (51).
For the continuum spectrum states we calculate S-matrix for any positive energy F using (50)
The interactions of the valence neutrons with each other and with the cluster “Li are described
by the potentials Vi3(ri2) and Viz(r13) = Vis(ras), respectively. We use the following parametriza-
tion of the potentials [13]:
1)y - 1)5:
Vi(r) = Vi exp [= (/b)) + VP exp[=(r/8))7],
v = —31 MeV, viH =, B = 1.8 fin:
Vil = —7Mev, VP =-1Mev, t)=24fm oY =30 fm.

In the external asymptotic region n > N we consequently allow for channels I' characterized
by K = Kpnin, Kin + 2,... (Kin i1s the minimal possible value of K for a given J) until the
convergence for all physical properties under consideration is achieved. The convergence is found
to be very good, and the allowance for the decay channels with K > K,,;,, + 2 do not yield any
visual variation of the results. So, we consider in the external asymptotic region n > N the
channels with & < K,,.;, + 2 only. Note, that components with all possible values of K < N are
accounted for in the calculation of the wave function in the inner region n < N.

The parameter hw is set to be equal to 7.1 MeV in our calculations. This value corresponds
approximately to the minimum of ground state energy E.

6.2 The ground state

The results for the ''Li ground state for different values of the truncatlon parameter N are pre-
sented in the table 1. The variational ground state energies, EO , obtained by the pure diagonal-
ization of the truncated Hamiltonian matrix are listed in the second column, while the J-matrix
results, Ey, which are the solutions of the eq. (57), are listed in the third column. It is seen,
that by locating the S-matrix pole using eq. (57) that is equivalent to the allowance for the
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Table 1: 'Li ground state properties (see text for details).

Ground state energy, Neutron halo
Truncation MeV mean square radius
boundary NV <r? >i{2, fm
S R T il e
12 -0.012 -0.150 2.83 3.31
16 -0.116 -0.199 2.91 3.29
l 20 -0.171 -0.225 2.98 3.31
24 -0.202 -0.240 3.04 3.32
Experiment -0.24740.080 3.164+0.11

long asymptotic tail of the wave function, we improve essentially the convergence for the binding
energy.

The results presented in the table | have been obtained using Lanczos smoothing of the three-
body potential energy matrix [5, 14].

The "'Li r.m.s. radius, < r? Y2 can be calculated by the following equation:
11 » J g |

9 .
<rlsp=—<ri>y 4+ < pt >, (5%)

I 11mw
where < r? >_(1)/2 is the °Li r.m.s. radius and the mean square value of the hyperradius, < p? >,
can be easily calculated using the ground state wave function. The values of < r? S and
< 12 >1/2 obtained by the pure diagonalization of the truncated Hamiltonian matrix and with the
allowance for the asymptotic tail of the wave function, respectively, are presented in the 1-th and
the 5-th columns of the table 1.

It is seen that in calculation of the ground state, the allowance for the wave Tunction asymp-
totics is very important for a weakly-bound system like HLi. The terms of expansion (H6) with
the number of total oscillator quanta N ~ 100 that cannot be obtained in the usual oscillator-
basis variational calculations, play an essential role in the description of the transverse momentum
distribution. r.m.s. radius, etc. The convergence of < r? >!/2_ transverse momentum distribution
and other properties of the wave function in the full J-matrix calculation is rather good. Nev-
ertheless, it is seen that the r.m.s. radius converges to a value that is somewhat larger than the
experimental one, and the calculated transverse momentum distribution appeares narrower than
the experimental one. These shortcomings can be overcome by the adjustment of n YLi potential.
We have not aimed to fit the potential to the 'Li properties, we have just take its parameters

from ref. [13].

6.3 The soft dipole mode

The dipole transition operator in our model is of the form

N, Z
A

M(ELp) = - ey Yiu(9) (59)

95



where e is the proton charge, A = 11, Z = 3 and the number of valence neutrons, N, = 2. The
operator (59) corresponds to the excitation of the three-body cluster modes only. The excitation
energy of the first excited state of °Li is relatively high (~4 MeV). So, low-energy El-transitions
correspond to the excitation of the cluster degrees of freedom only and should be described by the
operator (59).

B(El;i — f), €* fm* / MeV

1411

0.6
0.4+
0.2

0.0 T T T T T T T T —
00 02 04 06 08 1.0 12 14 16 1.8 2.0

E, MeV

Figure 1: Comparison of our results for B(E1;g.s. — continuum) in ''Li with results of other
authors. 1 this work (J-matrix method), 2 — ref. [15]., 3 - ref. [16], 4 —- experimental data
parametrization of ref. [17].

The cluster reduced probability of the El-transition, B(E1l; E; — E,), associated with the
operator (59), is displayed on the figure 1.

This figure shows the comparison of the results of our calculations of cluster B(E'l; E; — Ey)
with the parametrization of experimental data of ref. [17]. The agreement is reasonable. The
form of the B(El; E; — E,) peak is well reproduced, the discrepancy in the position of the
B(El; E;— Ey) maximum is supposed to be eliminated by the adjustment of the potentials. The
results of the B(E1; E;— Ep) calculations of refs. [15, 16] are also depicted. All these colculations
give a low energy peak which can be associated with the soft dipole mode.

The soft dipole mode exhausts about 90% of the cluster sum rule (EWSR) associated with the
operator (59). The contribution from the soft dipole mode to the total EWSR is relatively small.
In the vicinity of the sharp B(F1; E; — Ey) maximum at the excitation energy £ ~1-2 MeV only
~8% fraction of the total EWSR is exhausted. Nevertheless, the account for the soft dipole mode
results in an essential increase of the electromagnetic dissociation cross section of 0.8 GeV /nucleon
1i beams on Pb and Cu targets. Using the sums of the ''Li and target nucleus charge radii as
impact parameter we obtain for the electromagnetic dissociation cross sections the values of 0.966
barn for the Pb target and 0.132 barn for the Cu target; the corresponding experimental values
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are 0.890 + 0.110 barn and 0.214+0.04 barn, respectively [18]. E0- and E2-transitions give only
1.2% contribution in the cross sections. ,

Thuse, it is shown, that cluster model °Li+n+n yields a good description of the ground state
properties and El-transitions in the ''Li nucleus. The HOR may be used successfully in the
studies of weakly-bound systems with long-tailed wave functions, e.g., in the study of neutron
halo properties. For both bound and continuum states the correct account of the wave function
asymptotics in the framework of the oscillator representation of scattering theory is very important
in such studies. Low-energy El-transitions in ''Li are of the cluster nature. The widths and the
position of resonant states calculated in the democratic decay approximation are in a reasonable
agreement with experiment.

Appendix. Isolated States. The scattering problem with nonlocal separable potential V'V
can display some peculiarities which we explain here using a simple example when the Hamiltonian
H is approximated by the matrix of a size 2x 2 (i.e. N = 1). In specific situation when Ty, = —Vor.
i.e. the nondiagonal matrix elements of the kinetic and potential energies cancellate cach other
Hgy, = 0, we obtain that the Harmonic oscillator wave function Rg(r) is an eigenfunction of this
Hamiltonian corresponding to the eigenvalue Eq = Too + Voo. If £ > 0 we find an example of the
bound state embedded in continuum [19]. It is clear that the eigenfunction Roo(7) 1s not connected
with the rest basis states R,o(r). Thus it is isolated from continuum states and can be called an
isolated states. The phase shift 8 (k) displays a narrow resonance near energy f2, at small value
of hg. It transforms into the resonance of zero width when fl,; — 0.

Acknowledgments
We are thankful to Profs. J.Bang, B.Danilin, M.Moshinsky, I Thompson and J.Vaagen for valuable
discussions.

References

(1] M. Moshinsky Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Gordon and
Breach, 1969)

[2] A.U.Hazi and H.S.Taylor, Phys. Rev. A 1, 1109 (1970); E. J. Heller, H. A. Yamani, Phys.
Rev. A 91201 (1974); H. A. Yamani, L. Fishman. J.Math. Phys. 16 4110 {1975); J. T. Broad.
Phys. Rev. A 18 1012 (1978).

[3] G.F. Filippov, Yad. Fiz. (Sov. J. Nucl. Phys.) 33 928 (1980); G. F. Filippov, V. 5. Vasilevsky,
L. L. Chopovsky, Part. and Nucl. 16 349 (1985); G. F. Filippov, Riv. Nuovo Clim. 12 1 (1989).

(4] Yu. I. Nechaev, Yu. F. Smirnov, Yad. Fiz. (Sov. J. Nucl. Phys.) 35 1385 (1982); Yu. .
Smirnov, in Symmetries in Sciences III, eds B.Gruber and F.lachello, (Plenum Press) 349

(1989).

[5] J. Révai, Preprint of JINR, (Dubna) E 4-9429 (1975); B. Gyarmati, A. 1. Kruppa, Nucl.
~Phys. A 378 407 (1982); J. Révai, M. Sotona, J. J. Zofka, Phys. G11 745 (1935); A. L
Kruppa, Z. Papp, Comput. Phys. Commun. 36 59 (1985).

[6] L. M. Kuznetsova, V. I. Kukulin and V. G. Neudatchin, Yad. Fiz. 13 694 (1971).

97



[7] A. A. Mirolyubov and M. A. Soldatov, Linear Homogeneous Difference Equations (Nauka,
Moscow, 1981)

[8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of
Standard, Applied Math. Series, 55, 1964)

[9] F. E. Harris, Phys. Rev. Lett. 19 173 (1967).
[10] R. L. Jaffe and F. E. Low, Phys. Rev. D 19 2105 (1979).

[11] Yu. F. Smirnov, A. M. Shirokov, Preprint ITP-88-47P, (Kiev), (1988). T. Ya. Mikhelashvili,
A. M. Shirokov, Yu. F. Smirnov, J. Phys. G 16, 1241 (1990)

[12] R. L Jibuti, N. B. Krupennikova, Hyperspherical harmonics method in quantum mechanics

of few bodies (Thilisi, Metsniereba, 1984 (in Russian)).
[13] L. Johansen et al., Phys. Lett. B 244, 357 (1990).
[14] J. Mares, Czech. J. Phys., B 37, 665 (1987).

[15] J. M. Bang, B. V. Danilin , I. J. Thompson, J. S. Vaagen, M. V. Zhukov, Private communi-

cation.

[16] G. F. Bertsch, H. Esbensen. Ann of Phys. 209, 327 (1991); H. Esbensen, G. F. Bertsch, Nucl.
Phys. A 542, 310 (1992);

[17] D. Sackett et al., Preprint MSUCL, Michigan State University, (1993).
[18] T.Kobayashi et al. Phys. Lett. B 232 51 (1989).
[19] J. V. Von Neuman, E. Wigner, Phys. Z. 30 465 (1929).

98



