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Abstract

The following questions, concerning to the application of the harmo.i(" os(illator wl)r('son

tation (HOR) in the theory of scattering and reactions, are dis('ussed: the formulali(m ()fth(,

scattering theory in HOR; exact solutions of the free mot.ion S('hroe(ling(,r e(lUal, i(m in ll()i{;

separable expansion of the short i'ange potentials and the ('ah'ulati<)t) (,[" l h(, phas+' shills:

"isolated states" as generalization of the Wigner-von Neumann bound Sla,t('s ombedd(,d in

continuum; a nuclear coupled channel problem in lt()R; the descril)tion of t ru(, lhroe b()dv

scattering in HeR. As an illustration the soft dipole mode in the 1115 nuch'us is ('o)_si(ter(,d

in a frame of the 9LiTn+n cluster mo(lel with taking into ;t(1(l()iI[]_ ( )f l.hreo hody (:()nlitluum
etfects.

1 Introduction

Usually harmonic oscillator wave filncti(ms are used for tit(' (t('scril>l i<))kof h()ull(I slat(,s (,f (t)lallt _lltl

systems that belong to the discrete sl)ectrum [1]. In this talk tlw al)l)lication ()f l lw har)n(mi('

oscillator (He) basis to the solution of the scattering i)rot)l(,m, i.e. in col_lilzuu)_z, will t,(, (lis('llss(,d.

This line of investigations was begun in Refs. [2] (sec also th(' I)apers cit(,(t tlwre) a)J(l i,_&'

t)endently in the papers of Kiev [3] and Moscow [4] groups. The similar a t)t)roa(h, also (o)_n('(t(,,I

with an application of the He basis to the scattering t)rol)lem, was (h'v(,Ioped by lh(' tlu)lgaria)l

group [5].

In order to illustrate the essence of the at)t)roach to the scattering probh,n_ in th(" harmoni(:

oscillator basis, we shall consider at first the simplest problem of the scattering of a single parti('l("

by the central potential V(r) [4]. Thus, we come to the Schroedinger equation

)_ + Y(,.) _/,_,,,(r)= c,i",_,,_(r). (l)

Its solution _'lm(r) = /_z(r)k)._([_) will be sought in the form of an expansion in th(' ('igenflmctio)Js

of the harmonic oscillator

&(,.) = _ (:,_f¢,.(,,) (_)
_t=0
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where

2n! "_'lirtL_il2(v2le-_12 (3)Ro(,) = (-l? r(n 77+ _)7

is the radial wave function of three-dimensional harmonic oscillator. This wave function cot-

responds to the eigenvalues of the oscillator energy E °so = (2n + l + 3/2)hw [1]. The value

ro = (h/moo) 1/2 is selected as a length scale in relations (1) and (2). Here w is the oscillator

frequency; the energy _ = q2/2 is measured in units hw; the wave vector k is expressed in units

ro l, q = kro is the dimensionless momentum. Substituting expansion (2) in (1) and multiplying

(1) scalarly by R,_lYl,_, we obtain the following equation determining the wave function _bzm in the

harmonic oscillator representation (HOR):

_(H.., - _..,z)C:,_ = 0, ,_= 0, l, 2, .... (4)
n t

Here, H = T + V and only the following matrix elements of the kinetic energy operator T = P2/2

are nonvanishing: 1/2

1[ (1) ]Tnn_i=--_ n n+l+

1 (2n+l+ 3) (5)T._= 7
1/2

1 [ (n _l_l) (n + l + 23__/ ]T.:+, = -7

As to behaviour of the coefficient Grit for n > N, their asymptotics are similar to the asymptotic

of the wave fimction in the coordinate representation [3] if r is substituted by 2nll2ro:

Grit "_ 2nll4_blm(2V/'ffro) , n --_ oo. (6)

this result can be obtained if the WKB expression for the oscillator function R,-,t(r) is substituted

in the expression for the coefficients

C,. =< _t.,(r)l_tm(r) > (7)

and the integral (7) is calculated by the stationary phase method. The result (6) follows also from

the fact that the finite-difference equation

3
C=_II + (2n + l + _ - q2) Cnt

C.<+_t+ 2 __. < nllVIn'l > C,_,t = 0
yI, #

(8)
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in the limit n >> u = 1/2 + 3/4 can be replaced by the following second-order differential equation

[4]:

X[' l(Ix 2+ 1)X, - fo°°V(x, x')_zz'Xt(x')dx + q2X, =0 . (9)

Here x = 2(n + v) 1/2, Xt(x) = xl/_C,_,. The Eq. (9) should be solved at the boundary condition

Xt(2V/'_ - 1) = 0 . (10)

Thus, in the asymptotic limit for large n, the wave function of our system Xt for the partal

wave with angular momentum l in the HOR obeys the conventional Schroedinger equation with

nonlocal potential

2 < nglWl 'l > [(n + .)(n' + .)l 1/' (11)

where the value 2(n + u)a/2ro plays the role of "coordinate". In actual calculations, the potential

matrix has to be cut off by the condition V,_,e = 0, if n or (and) n' > N. Then a set of equations

(4) can be splitted in two parts:

N

a) n <_ N , _ (H,,v- ¢6n,v)Cn,t = --_nNTNN+ICN+ll , (12a)
nt__O

b) n > N + 1 , T,_n-iC,,-u + (T,._ - e)C,_t + T,._+IC,_+u = 0 . (12b)

Thus, the coefficients C,_l with n > N obey the equation of free motion (12b) or, in the asymptotic

limit of continuous n, the Schroedinger equation of free motion

l(1 + 1)Xl + q2Xl = 0 .x:'
x 2

It means that the condition

Cnl _ 2n l/4 e-2v_k (13a)

(where c = -k2/2 is the binding energy) must be satitfied for the bound states. The coefficients

Cr_t for the scattering problem have the following asymptotic behaviour:

C.,-_ 2n_/4 sin(2qvf_ - 17r/2 + 6t) (13b)

where e = q_/2. According to Eq.(6) the phase shift _t in Eq. (13b) coincides with the standard

phase shift of the wave function in coordinate spase. For the decaying resonance states, we get

(see in [3]):
Cnl _ 2n 1/4 e2iqv/'ff • (13c)

If the calculations are made up to sufficiently high values of N >> 1 it is possible to use the

asymptotic expressions (13) [3] . At modest N it is necessary to use the exact, rather than

approximate, solution for the equation of free motion (12b) which was found in Refs. [2, 4] in

order to calculate the binding energy, the scattering phases etc. Before considering the solution

for the equation of free motion, we shall note that the solution for the set (12) is equivalent to the
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solution for the Schroedingerequation with Hamiltonian H = T + V N containing the many-term

separable potential
N

v N = _ < ,_lfvln'l > I_t >< ,_'*1 (14)
n_n t

with harmonic oscillator formactors. The technique of solving such an equation in the frame of the

momentum representation was de.scribed in [5, 6]. Here we shall describe an alternative method

for solving the same problem in H()R.

2 Solution for the equation of free motion in the har-

monic oscillator representation

(kmsider first the case of positive energy g = q2/2 > 0. The Schroedinger equation of free motion

in the coordinate space has two linear-independent solutions (regular and irregular) [4]:

1 l_

HI_' = j,(_,.)._ _ si,,(k,. - T),

Ri_g = nt(kr) ,-_ 1 cos(kv lre) (1,5)' U -T"

In accordance with this, the finite difference equation of free motion (12b) will have also two

fundamental solutions in the ItOR [4] namely the regular solution

c,. (q) = \ F-(,77-_)
_/2 ql 3

r(1 + _)_-_/_M(-,_,l + 7;q _) =

23/2

= (--[)'_/¢,d(q) "_ "_'_'zl/4jt(2v_q)

t'*reqsatisfying the boundary condition (6) -*-it = 0, and the irregular solution

(16)

t

which is singular at, the point n = -1.

1/2 (_ l)lq_t_ 1
1 (2, c.-,_/2g(-,_ -l- _ -I + _;_ ) =r(-I + _) 2'

,23/2

roll 2 n l/4'tt (2 V/-n-q) ,(17)

The Casorati deternlinant h',a for these two solutions which plays the same role for the differ-

ence equations as the Wronskian for the differential equations [7] is of the form:

, i,-_reg (wirre9
, v-_nl t_nl

l£_a = 77t+ln fwre 9 t,_,rre9
V'n+ll _-'n+ll

-1

req
(is)

Since K,a :fi 0 for any values of n and l, the expressions (16) and (17) constitute the fundamental

set of solutions for equation (12/3). An arbitrary solution for (12b) may be presented as a linear
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combination of fundamental solutions. In particular, the solution for the set (12) for n _> N must

be of the form
-,re9 c /_irreg t

(,_t(q)=cos_t(',a (q) + sin alt',a tq) (19)

whence it follows that
, g_reg __ _ g_re 9

(',,_-',_+1_ ',,+lt_'_l (20)
tail(5 l = t-_ (_irre 9 f_ f_irreq

V,n/t,n+l/ -- v n+ll,, nl

The equivalent pair of fundamental solutions for tile free motion equation has the asymptotic form

of the type of Hankel fimctions

_4- -drrefl _ . ,req,(.,. (q)6,.(q) = (,,,_ . (q) + (21)

These solutions are useful for the cah'.ulation of the S-matrix and analyzing the decaying (ialnov

states. If we are interested in bound states (e = -k2/2, q = ik) the solution for the equation of

free motion with a corresponding asymptotic

(,bo_,._ i t r.,i_g, .., i(._,a(i/,:)] (22)..,, (k) = [t.,,_t t_c)+ ....,,

must be used. The numerical values of solutions (16), (17) can be obtained by using tlw book [8],

where the function M(a, b; z) is tabulated. Similarly to the regular and irregular solutions of the

free motion Schroedinger equation the functions ('_g and r'i_""_,_t _',_t " are oscillating functions of, and

the period of oscillations decreases with increasing energy e.

3 The solution of the scattering problem in HOR

Consider now the solution for set (12). It follows from equations (12) that the coefficient (' ,_l for

n > N + 1 obey the equation of free motion with an al)prol)riate asymptoti(', i.e. (7,_t (,o

where (',° L is the solution for the equation of free moli(m with asymptotic (l.q), (21)or (22). The

coefficients (7,_t(7_ >_ N + 1) form the "external" part of the wave function in I[()R. The coetficients

C_t(Tz _< N) belong to the "internal" part of this function. The equation

(*intern f*ea'te rn
'Nl = t,Nl (2:_)

plays a role of "litting" condition of "internal" and "external" parts of the wave function. The

r.h.s, of this equation has one of the form (19), (2t) or (22). Into the left hand side of Eq. (23)

the solution of the set (12a) must besubstituted. The last one can be found in the following

manner [2]. At first we shall diagonalize the truncated ttamiltonian matrix IIH,_,_,IIusing the

unitary transformation F, i.e. turn from C,_l to the new coefficients

As a result of this transformation, equation (12a) takes the form

(Ex - _)(7'xt = --F.\NTXN+1(TN+1I , A = O, 1,..., N
I
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i.e.

and

FANTNN+I CN+I l

g *

FA.F_N TNN+ 1 CN+I l
C,a=-_ E_-e

3,=0

where E:,- is the eigenvalues of the matrix IIg_n, II (n,n' <_ N).

Substituting the "internal" solution (25b) at n = N into Eq. (23) we obtain

(25a)

(25b)

PNN+,CN+,t0 N--TNN+, (26)

0
If we deal with bound states of Gamov resonances, COt and CN+ll are the known functions of

energy (see (21) and (22)). In such cases the condition (26)is the transcendent equation which

may be used to find the energies ¢i of the bound or resonant states. For the scattering problem,

we get in accordance with (19):

CONI prey K_irreg: _'Nl AV tan _l tJNl

0 __ (-_re 9 (-rift eg
CN+lt "N+ll + tan 51-- 'JN+ll "

Substituting these expressions in (26), we find in accordance with Refs. [2]:

(27)

creg f_re9

Nl + PNN+I _N+llg._irreg (28)tan _l = - (-y/rreg + rl

, "'Nl I-'NN+ 1 "-"N+ll

It can be seen now that the scattering phase at an arbitrary energy _ can be obtained by diago-

nalizing the Hamiltonian matrix I]H,_,_,ll (n,n' < N) but onc time.

In agreement with the Ritz variational principle, the negative eigenvalues Ea < 0 of the

Hamiltonian matrix I[H,_,_,t] (n,n' < N) may be treated as approximate values of the energies

of discrete levels of a particle in the studied potential. In this case the approximation accuracy

improves with increasing the size of the' matrix N. The question arises, what is the sense of the

matrix positive eigenvalues and of the respective wave functions? The question was answered in

works [2, 4, 9] as follows. In the limit e ---* E_ expression (28) takes on the form

(-_rcg

tan St (E_) = - '_N+,l (29)
czrre 9

N+ll

[_reg / _ ,'_By comparing this result with formula (19) we get the coefficient _N+lttc, x_ = 0 for E_. Thus,

by diagonalizing the Hamiltonian matrix IIH , ,ll _' _< N), we find the solutions for equations

(12) in the region of the continuum at such discrete energies Ea > 0 which correspond to the

vanishing of the HORt wave function C,a(EA) at the point n = N + 1. The scattering phase
I .

can be calculated at such energies using simple formula (291. In the asymptotic limit of high N,

the diagonalization of the Hamiltonian matrix on the cutoff basis n _< N means the solution for

the Schroedinger equation (9) with the additional condition X_(b) = 0, where b = 2(N + u) _/2,

i.e. when the system is placed within a rigid box of radius b. In this case the energy spectrum
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for equation (9) gets discrete and the energy of any level becomes a function of the position of

the boundary point b = 2[(N + u)h/moo] 1/2. The condition Xt(b) = 0 is nothing other than the

equation for the P-matrix poles in the system of radius b described by the Schroedinger equation

(9) [10]. Thus the eigenvalues E_ of the Hamiltonian matrix ][H,_,,,{I are poles of the discrete

analogue of the P-matrix. The important point is a convergency of this approach. The practical

calculations [3, 4] show that for rather smooth potentials V(r) it is sufficent to use a number of

terms N --_ 20 - 30 in the expansion (2) in order to calculate phase shifts and other scattering

characteristics in reasonable accuracy.Therefore the using of HOR, or J-matrix approach [2], is

a rather effective and practicable method for the study of continuum problems. Some additional

example of application of this method will be discussed in section 6.

4 Multichannel case

Let us consider the case of two open (binary, spinless) channel for simplicity. The wave function

has the form of a column

(_b,(r) ) (30)

and the Hamiltonian is the operator matrix of a size 2 x 2:

Hll Hi2 ) (31)fI = H21 H22

Let us assume that the wave function of the entrance channel g'l (r) is characterized by the following

asymptotic behaviour

while in the second channel only the outgoing wave presents

" - ((v,/v2)'/L%,d k:T) I,. (a2b)

The transition into n-representation consists in the expansion of both channel wave functions

l/)l(Y) ---- E Clnln, rol > ,

1-1,

tit

in terms of harmonic oscillator wave functions In,r01 >, Ira,r02 > with a unique frequency ha

while the linear scale parameters r0_ = (h/#_w) _/2 can be different for the channels 1 and 2 if the

reduced masses #1 and #2 of two fragments in these channels are different. Assuming that it is

possible to restrict ourselves to a truncated matrix of the potential energy

V_n,,n, (0 <__n, n' <_ N, ), V2,,,,2,,,, (0 <_ m, m' <_ N2),

Vln,'2,,,, V2,,_,l,, (0 <_ n <_ N1,0 <_ m <_ N2)
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(generally speaking NI 5¢ N2) we obtain the following set of equations for CI,_, C2m coefficients

instead of Eqs., (12), (23), (27)

( H - E)C = -TC ° ,

CIN, = C O _ _o'IN1 _ ('2N2 = (_2N2

-_0 -,- , +
('ln _--- ("ln -- '_llCln ,?_ _> N1 ,

-_0
C2_ = (q2/ql) 1/2 ' +- 521C>,_ , ra >_ N2 • (34)

Here C is a column of NI + N2 + 2 coefficients CIOCll...CIN1C2o...C2N2, H is the matrix of

Hamiltonian in a truncated basis In, tin >, Ira,r02 > (n _< Na, m _< N2). The column TC contains

0 in the N 1 "k-1-th row and TNzN2+ICON2+tonly two nonvanishing elements, namely 7 N_,N_+1CIN1 +1
{_re 9 ",,_irregin the last row. The functions Ci_ .... ik =1: tt.ik are the same ones as in Ee t. (21). As it.

= _,_=0Cn ]n > is of the formwas shown in Ref. [2, 11] the asymptotic of the function _j_+ o_ 4-

k exp(+ikr) for --+ oc. This fact and the difference of to, in various channels are the origin of the

factor (q2/q_) _/2 in Eq. (34)instead of the usual velocities ratio (v2/Vl) _/2 in Eq. (32). Solving

the Eq. (34) similarly to Eq. (12) we obtain the following results instead of Eq. (26)

C_N, (_- - & Cl+N,+l)+'INI -- 'q'll ('*I+]V, Pll(_- --= -- 'lNl+l 1

where

( 7'2N2

+l>12 (--(q21qi)il'x5;_iC:+N_+,) ,

= -,%_C: _(q21ql)_i2 = &_ ( ,N,+, - &_C ,+_+

+Pz2 (-(q21q, ''l'2q'l, 2, _'7+2N2+1) (3s)

FaN, F,XNj T
t)ij "-_ E E_ - E NjN,+I .

,k

" FEx is the eigenvalue of the truncated matrix H, (I x0....\x_ ...FAN2 ) is the corresponding eigenvector

of this matrix.

The relations (35) should be considered as the equations for elements of the £'-matrix. The

solutions of these equations are of the form
!

I

1 [((7_N, + pli(71_N,+I)(C2N2 + P22C2-N2+,)- P21Pi2C1N,+iC2-N2+,],_,_ = --a-
/2

1 2iPl'2P21

'21-O _¢-_7_

_+
D : [(C+N, + P,,C_+N,+,)(C+2N_ + P22C2N_+,

Here the property of the Casorati determinant

- c,+,,,,+, ]

(36)

TNN+I
c;_ c +

('N4-1 ('N+I

2i
m

_-q

was used. The elements $22, S12 of the 5'-matrix can be obtained from (36) by substitution of

indices 1 and 2. Obviously the S'-matrix is symmetrical in accordance with the time reflection
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symmetry of the Hamiltonian. As in the previoussection,the eigenvaluesE_ are the poles of the

discrete analogue of the P-matrix.

The eigenfunction_ 0x = _,_ F_n In > are discrete analogs of "primitives" (in terms of the

paper [10]).

The expressions (36) allow us to find the numerical values of the fi-matrix elements and then

to calculate the cross-sections of elastic scattering and reactions

rr 15;_1 _ i t2 (37)
cYel = k--7

= _ ' 12 (38)
_ _IS_, ,

the differential cross-sections, various polarization characteristics (faking into a.ccounl l.h( spin

degree of freedom) etc. If we want to describe the reaction with three-four fragmenls in th( _ final

states it is necessary to extend the above developed formalism, which is valid only for two body

(binary) channels, to three, four body collisions.

5 The description of "true" many body scattering in a

hyperspherical HOR

We restrict ourselw's by the case of the so called "true" many body scattering (TMBS) when 1he

wave function of an A body system is in the asymptotic region of the form

- " ' '_P"" ' . (39)V'K(p,_) = _,_,_,0_0_ _'_,0_0(f_) - _ ,s_,"^r,_,0_0cr_,,_,t_) , p --, oc

p2 A= S_=l(r_ - R) 2 is a global radius in 3(A - 1) dimensional space, the angles _ are hyperspher

ical coordinates in thiis space. R is the center-of-mass of l.he system, Y/,--,(f_) is a hypersperical
I

harmonic with a global momentum K, 2' substitutes all the rest (tuantum numbers labelling this

harmonic. The approximation taking into account only the contribution of TMBS is valid if there

is a "democracy" in the A body system i.e. there is no pair of particles with dominating inl.erac-

tion between them in comparison with the rest of the interactions. The TMBS - approxinlation is

applicable to a lot of processes of three, four body' decay of light nuclei and hypernuch'i [17] (for

example disintegration 12(7 --+ 3oe etc.).

For the description of TMBS we shall use the expansion of the A-body wave function 0(r-'l ...7_a)

in terms of A-1 body oscillator wave function (the center of mass variable R is excluded)

depending on hyperspherical coordinates p, f_:

¢, = _ < nK'710 > InK'r > (41)
nK"¢

Further consideration is totally parallel to sections 1-4 and we represent athe result in very short

form. Instead of Eq. (3) we have for the many body case

- (3A-4)/2 £
I_NK(P) = P On (P) , ('t.2)
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2n! £+le_p2/2L£n+1/2(p2 ) (43)¢_(P) = (-1)" r(. + 27+ _)"

£ = K + (3A - 6)/2, p is taken in units of ro. The Eq. (4) takes on the form

y_ < RKT[H - E[R'K'7' >< n'K'7'l_b >= 0. (44)
n,K_.¢,

The kinetic term T in the Hamiltonian H = T + V is diagonal in the quantum numbers K and 7.

As for the main quantum number, n, the matrix is three diagonal with respect to n and its matrix

elements coincide with Eq. (5) except for substitution of l by 27. We also truncate the matrix of

potential energy V = _/a<j V/j to n < N, K _< Km_x. Then for n >_ N the expansion coefficients

< nKTl_b >= C_t obey the three-term recurrent relation similar to Eq. (12b)

n(n+£+_) <n-lKT[¢>- 2n4-£+3-q2 <nKT[ _>+

{ ;-)(n+l)(n+£+ <n4-1KTI¢>-=0, q=_.

This difference equation has two fundamental solutions

C_g i 2n! qZ+,e_q_/2L_+i/2(q2)_z = r(n+£+3-)1 2

and

(45)

(46)

.-_reg[ t_f_reg[ tx

"_,_zr_iTreg- ,'eg2q v.p. fo °° t_0z __tq__)t_"_z__tq ) dq' (47)
7rCoz (q) q2 _ q,2

(48)

or the equivalent pair of solutions

_0 °° I'wreg{ t_ywreg( t" h
C,_ = 2q _oz _qJ_____,_Lq J- ,

_g _ -- q,2 -4-iO aq ._co_ (q)

The problem of TMBS is similar to the multichannel problem described in section 4. Thus the

wave function (39) with ingoing wave in some channel K070 and outgoing waves in each channels

K'7' under consideration takes on the form at n > N (in principle the truncation boundary N

may be different in the various channels KT):

_- - SK._,K,.y,C,_,(q) •< nK71V >= 5K-_,Ko,_oCn.e(q) _ +
K,.),J

(49)

In analogy with Eq. (36) we can obtain

S = A-'B (50)

where

_K,v,K"y'CN£(q) ,(a )K'._',g.y + += PK,.r,,K.yCN+I£(q) --

(B)K,_,,K, = PK,-,,,K._CN+1Z(q)-- 'SK'y,K'-r'CNz(q), (51)
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< NKTIA >< AINK'7' >
TNKJ,N+II_" •

PIV,,K'-/ = _, E - EA

E,\ and < NK'TIA > are eigenvalues and eigenvector components of the truncated Hamoltbnian

matrix < nK'71HIn'K'7' > (n,n' _< N). The poles of the S-matrix (i.e. bound states and (]amov

resonance states) can be found from the equation

det A = O . (52)

Thus we have all expressions that are necessary for the construction of the wave function for few

body states belonging to continuum or discrete spectrum in the frame of TMBS approximation.

6 Soft dipole mode in llLi and three body continuum

In order to demonstrate the effectiveness of the HOR in an analysis of concrete nuclear processes

the calculations of the properties of the low energy El excitations in the till nucleus were done.

The remarkable feature of this nucleus is a presence of a large neutron halo formed by !wo neutrons

weakly' bound with lh, i' _Li core. In 1his coll_wction the following model was used for lhe descripl.iol,
of this muqeus.

6.1 The model

It was assumed llmt tlw lll_i _round and continuum stat.('s can 1)(' inl(,rpreted in the framework

of the three-I)o_ly cluster structure :_Li+n + n.

1) The cluster 9Li is supposed to be structureless and the excilations of its internal degrees of

freedom are not considered.

2) We don't account for nonI('entral coral)orients of th(" hfl, eraction between two valence nell
irons and Imtween valence neutron and lhe cluster 9Li. Tlwrcl'orc, the wave function can I,_'

characterized by the three-1)ody orbital angular iiiolnelltllln L, spin ,q = 3/2, total angular mo

mentum d and its projection M.

3) The states with the total spin of the valence neutron pair ,q = 0 are only considered, and

tile ground state three-body orbital angular momentum is supposed to be equal to zero: L = 0.

4) n-gLi interaction is described by the shallow potential of Johansen et al [13]. NN-interaction

is described by the Gaussian potential [13].

5) Only democratic decay channels are allowed for.

The wave function of tile system °Li+n + n, t/'JM (x, y), is expanded in three-body hyperspher-

ical functions, q_z,._._ M(O) (including the internal wave function of "l,i with a spin ,s' = 3/2)

'/',IM(X,Y) = E "/'(J) &GleaM( ,
K l_ l v

where K is hypermomentum, 1_ and l_ are the angular momenta correst)onding to the Jacobi

coordinates

_g8 rnw + r2
x= _/_(r, - r2), Y= VII h (r, 2 r3), (54)
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respectively,m is the neutron mass,ri are coordinatesof the valenceneutrons (i = 1,2) and the
cluster9Li (i = 3), p= (x 2 + y2)1/2 is a three-body hyperradius.

In the c. m. frame the Hamiltonian is of the form:

H = 'T + 1/12 + Via + V23 , (55)

where T is the three-body relative motion kinetic energy operator, and V0 are the two-body

potentials. For the radial wave functions "/'(d)w/_'l,l_(P) we have the usual set of the K-harmonic

method coupled equations (see, e.g., [12]). The equations are solved by expanding the radial wave
function.

oo

• (56)_KIx
7_0

in the six-dimensional harmonic oscillator eigenfimctions. To calculate the bound state energy,

i.e. to locate the corres_ponding S-matrix pole, one should solve the nonlinea_ equation [11]

det A (+) = 0 , (57)

where the matrix A is given by the Eq. (51).

For the continuum spectrum states we calculate ,q-matrix for any positive energy E using (50)
The interactions of the valence neutrons with each other and with the cluster ULi are described

by the potentials V12(r_2) and V_a(r13) = V23(r23), respectively. _> use the following parametriza-

tion of the potentials [13]:

(1) 2 V(2) (1) 2= ') exp[-(,'/b,j )] + exp[-(,'/bij ) ],

I,'_!_) : -31 MeV, Vj(_2)= O, bll2) : 1.8 fro;

[q_)= -7 MeV, Vl(a2)= -1 MeV, bll)= 2.4 fro, bl2a) : 3.0 fro.

In the external asymptotic region n _> N we consequently allow for channels I" characterized

by K = Km,_, K,,,_ + 2,... (K,,_i,, is the minimal possible value of K for a given J) until the

convergence for all physical properties under consideration is achieved. The convergence is found

to be very good, and the allowance for the decay channels with K > K_i,_ + 2 do not yield any

visual variation of the results. So, we consider in the external asymptotic region n > N the

channels with K <_ Kmi,_ + 2 only. Note, that components with all possible values of K _< N are

accounted for in the calculation of the wave function in the inner region n _< N.

The parameter ha is set to be equal to 7.1 MeV in our calculations. This value corresponds

approximately to the minimum of ground state energy E0.

6.2 The ground state

The results for the llLi ground state for different values of the truncation parameter N are pre-

sented in the table 1. The variational ground state energies, E0(a), obtained by the pure diagonal-

ization of the truncated Hamiltonian matrix are listed in the second column, while the J-matrix

results, E0, which are the solutions of the eq. (57), are listed in the third column. It is seen,

that by locating the S-matrix pole using eq. (57) that is equivalent to the allowance for the
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Table 1: alLi ground state properties (seetext for details).

Truncation

boundary N

12

16

20

24

Ground state energy,

MeV

1/2 (d)
< 'r2 >11

Neutron halo

mean square radius

< v2 - 1/2 fm
_11 ,

< r2 ,>1/2
11E0(d) Eo

-0.012 -0.150

-0.116 -0.199

-0.171 -0.225

-0.202 -0.240

2.83

2.91

2.98

3.04

Experiment -0.247-1-0.080 3.164-0.11

3.31

3.29

3.31

3.,32

long asymptotic tail of the wave function, we improve essentially the convergence for lhe binding

energy.
The results presented in the table 1 have been obtained using l,anczos smoothing of the l.hree-

body potential energy matrix [5, 14].

The 1iLl r.m.s, radius, < r 2 1/2>u , can be calculated by the following equalion:

9 /.2 J_z < f > , (SS)< r2 >11= -i-i- < >9+llmw

where < r 2 - l/'e is the 9Li r.m.s, radius and the mean square value of the hvperradius, < p2 >,

can be easily calculated using the ground state wave function. The values of < r 2 >1/2 (a) an_l

< r2 >1/2 obtained by the pure diagonalization of the truncated Hamiltonian matrix al,l with lhe

allowance for the asymptotic tail of tile wave function, respectively, are presented in the ,l-th and

the 5-th columns of the table 1.

It is seen that in calculation of tile ground state, the allowance for the wave I'_,l,clion asymp-

totics is very important for a weakly-bound system like 11Li. The terms ofexpal,siolJ (56) with

the number of total oscillator quanta N _- 100 that cannot be obtained in the usual oscillator

basis variational calculations, play an essential role in the description of the transw'rse nlonwntmn

distribution, r.m.s, radius, etc. The convergence of < r 2 >1/2 transverse nlonlenl.unl distributioz,

and other properties of the wave function in the full J-matrix calculation is rather good. Nev-

ertheless, it is seen that the r.m.s, radius converges to a value that is somewhat, larger than the

experimental one, and the calculated transverse momentum distribution appeares narrower than

the experimental one. These shortcomings can be overcome by the adjustment of n '_Li potential.

We have not aimed to fit the potential to the 1ILl properties, we have just take ils parameters

from ref. [13].

6.3 The soft dipole mode

The dipole transition operator in our model is of tile form

N,,Z

M(EI.) = (59)
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wheree is the proton charge,A = 11, Z = 3 and the number of valence neutrons, N. = 2. The

operator (59) corresponds to the excitation of the three-body cluster modes only. The excitation

energy of the first excited state of 9Li is relatively high (,-_4 MeV). So, low-energy El-transitions

correspond to the excitation of the cluster degrees of freedom only and should be described by the

operator (59).

1.6-

B(E1;i + f), e 2 fin 2 / MeV

Figure 1" Conlparison of our rosults for B(EI;g.s.---+ contir_uum) in llLi with results of other

authors. 1 this work {,/-matrix reel.hod), 2 ref. [15]., 3--- ref. [16], 4 experimental data

parametrization of ref. [17].

The cluster reduced probability of the El-transition, /3(El; EI - Eo), associated with the

operator (59), is displayed on the figure 1.

This figure shows the comparison of the results of our calculations of cluster B(E1; Ef - E0)

with the parametrization of experimental data of ref. [17]. The agreement is reasonable. The

form of the /3(El; E l - E0) peak is well reproduced, the discrepancy in the position of the

/3(El; E] - E0) maximum is supposed to be eliminated by the adjustment of the potentials. The

results of the B(E1; Ey - E0) calculations of refs. [15, 16] are also depicted. All these colculations

give a low energy peak which can be associated with the soft dipole mode.

The soft dipole mode exhausts about 90% of the cluster sum rule (EWSR) associated with the

operator (59). The contribution from the soft dipole mode to the total EWSR is relatively small.

In the vicinity of the sharp B(E1; E s- E0) maximum at the excitation energy E _1-2 MeV only

_-,8% fraction of the total EWSR is exhausted. Nevertheless, the account for the soft dipole mode

results in an essential increase of the electromagnetic dissociation cross section of 0.8 GeV/nucleon

llLi beams on Pb and Cu targets. Using the sums of the 11Li and target nucleus charge radii as

impact parameter we obtain for the electromagnetic dissociation cross sections the values of 0.966

barn for the Pb target and 0.132 barn for the Cu target; the corresponding experimental values
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are 0.890-t- 0.110 barn and 0.21-t-0.04 barn, respectively [18]. E0- and E2-transitions give only

1.2% contribution in the cross sections. I

Thuse, it is shown, that cluster model 9Li+n+n yields a good description of the ground state

properties and El-transitions in the llLi nucleus. The HOR may be used successfully in the

studies of weakly-bound systems with long-tailed wave functions, e.g., in the study of neutron

halo properties. For both bound and continuum states the correct account of the wave function

asymptotics in the framework of the oscillator representation of scattering theory is very important

in such studies. Low-energy El-transitions in 11Li are of the cluster nature. The widths and the

position of resonant states cMculated in the democratic decay approximation are in a reasonabh'

agreement with experiment.

Appendix. Isolated States. The scattering problem with nonlocal set)arabh" potential 1 '_\_

can display' some peculiarities which we explain here using a simple example when th(, IlaTnilloniall

H is approximated by the matrix of a size 2 x2 (i.e. N = l). In specific situation when 7;)] = -l{)],

i.e. the nondiagonal matrix elements of the kinetic and potential energies cancellatc each other

//01 = 0, we obtain that the ][armonic oscillator waw' function R00(r) is an (,igent'ull,tion of lhis

Hamiltonian corresponding to the eigenvahle E0 = Too + I/{m. If biT0> 0 we fizid an cxmnple of the

bound state embedded in continuunl [19]. It is clear that the eigent'ltllclion h'0_)(r) is mJt conncclcd

with the rest basis states R,_o(r). Thus it is isolated fi'om continuum states and can be called an

isolated states. The phase shift 60(k) displays a narrow resonance near ,,nergy 1_0 at small value

of hm. It transforms into the resonance of zero width when llm -+ O.
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