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Abstract

We discuss the semimicroscopic algebraic cluster' model introduced recently, in which the

internal structure of the nuclear clusters is described t)y the harmonic oscillator shell model,

while their relative motion is accounted for by the Vibron model. The algebraic formulation

of the model makes extensive use of techniques associated with harmonic oscillators and

their symmetry group, SU(3). The model is applied t,) some ('luster systems and is found to

reproduce importa_nt characteristics of nuclei in tile .sd shell region. An apl)roximate SU(3)

dynamical symmetry is also found to hold for the 12(, + 12C system.

1 Introduction

The harmonic oscillator and the SU(3) group have proven to be invaluabh' tools of nuclear physics.

(See, e.g. Ref. [1].) These concepts can l,eused to describe complex physical systems in a relatively

straightforward way by utilizing the advantages of the group theoretical description. The harmonic

oscillator picture has been found to be a suitable approach to various nuclear excitations, which

sometimes could also be related to each other in terms of it.

Clustering can be considered a special collective excitation of certain nuclei. The structure of

these (mainly light) nuclei can be interpreted in terms of a picture based on the relative motion of

two (or more) lmclear (:lusters. In order to describe these nuclear systems cluster models have to

take into account the relative motion, as well as the internal structure of the clusters. These models

generally differ in their basic model assumptions, mathematical formulation and, consequently,

also in the range ofrtheir applicability. Microscot)ic cluster models apply effective two-nucleon

forces and rigorously take into account the effect of the t'allli l)rinciple I)y using antisymmetrized

wavefunctions. However, fully microscopic calculations may turn out to be prohibitively difficult

for a large number of realistic cluster systems. Phenomenologic cluster models, which are based

on less strict modeltassumptions may have a wider range of applicability, and are generally used

to describe a large amount of experimental data in a systematic way. Semimicroscopic cluster

models utilize the advantageous sides of microscopic and phenomenologic models by combining

the microscopic (antisymmetrized) basis with phenomenologic cluster-cluster interactions. This

allows calculations in a wider range of nuclei without forgetting about the fermionic nature of the

nucleons, i.e. without abandoning the Pauli principle.

From the technical I)oint of view, most of tile ('luster models at)l)ly the geometric description,

i.e. they use (nucleon mwleon or cluster cluster) potentials an(l work in tile geometric space, while
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someothers prefer the algebraicdescriptiotl in terms of creation and annihilation operatorsand
the secondquantizedformalisnl. Harmonicoscillatorsappearin a natural way in both approaches
and offer a convenientway of interrelating them.

Recently wehave intoduced a semimicroscol)icalgebraiccluster model [2,3] which makesex-
tensive use of the harmoui( oscillator picture in describing the relative motion as well as the
internal structure of the ('lusters. In the first apl)lieationsof the model we tested its ability of
reproducingcertain featuresof realistic cluster systetnsand tried to estimate the validity of the
harmonic oscillator picture it is basedon.

2 The Semimicroscopic Algebraic Cluster Model

Our earlier attempts of describing various mlclear cluster systems in terms of a pheonomenologic

cluster model, the Vibron model [4] and its extensions h_ve revealed [5,6] that these models can

not distinguish between Pa.uli--forbidden and allowed states: complete forbidden shells can be

excluded by a simple ride, the Wildermuth comlition, but no such distinction Call be made within

allowed shells. These studies, however, have also l)oiilted out the importance of tile 5,'/i(3) group

as a possible of tool combining the relative motion and the internal structure of the clusters. This

group appears in a special limit of the Vibrou model accounting for the relative motion sector,

and it can also be used to describe the internal excitations of the individual clusters. These

preliminaries have paved the way to the introduction of the semimicroscol)ic algebraic cluster

model [2,3].

In this model the internal structure of a cluster is described in terms of' the ,q'/,_'(3) (harmonic

oscillator) shell model [7], therefore its wavefum'tion is characterized by the I;_,'T(4) ® /;c(3)

symmetry, where C refers to cluster, and /;ST(4) is Wiguer's Sl)in-isosl)iu group [8]. The relative

motion of the clusters is accounted for by the vibron model with /ft_(4) group structure [4]. The

representatiou labels of the group chaitl

(4) o

(l)

provide us with the quantl.ull liunibers for the basis states of a two-cluster sys_ein. From tiffs set we

have to skip those states, which are Pauli forbidden, or which correspond to spurious excitations of

the center of mass. A s'_aul)le recil)e for eliminating these states is applying a matching requirement

between the quantum numbers of the shell model basis of tile whole nucleus and its cluster model

basis [2,3]. This recipe is based on the connection between the harmonic oscillator shell model and

harmonic oscillator cluster model [10]. This procedure corresponds to a special truncation of the

extensive shell model basis in the sense, that only those states survive, which are Pauli-allowed,

and are relevant to the cluster structure under study.

When the internal structure of each cluster is described by a single U_T(4) C:3U(..(3) represen-

tation, then the 1)hysical operators of the system can be obtained in terms of the generators of the

([7_T(4) @ (_fC, l (:_) C'_ lf_Y(4)(_)l/c2(3) (¢_'_/IR(4) group. In such a case the descl'iption is algebraically

closed, i.e. the matrix elements can I)e deduced by means ()f group theoretical techniques. In the
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limiting case when the Hamiltonian is given by the invariant operators of (1), then the eigenvalue

problem has all analytical solution, and a U(3) dynamical symmetry is said to hold.

The problem call be simplified further if one or both of the Clusters are even-even nuclei

(i.e. they consist of even number of protons and neutrons). In this case the clllsters are said to

be STU_ (4) scalars, furthermore, if the clusters are closed shell nuclei, then they are also Uc(3)

scalars. In this case these groups and the quantum numbers associated with them do not appear

explicitly in tile formulas. In Ref. [3] tile formalism is presented in detail for the Ifc(3) ® UR(4)

and l/c, (3) ¢_ I/c= (3) @ U-u(4) models, as well as for tile restricted U_T(4) C;)Uc'(3):_ lfU(4) model.

In this latter case the restriction implies that only spin and isospin free interactions and a single

uST(4) representation are considered. If both of tile clusters are uST(4) and l;c(3) scalars, the

model reduces to that of tile simple vibron model with a basis truncation corresponding to the

Wildermuth condition [5].

Here we give a brief accouter of the Uc(3) ¢;,_UR(4) model, which is able to describe two

cluster systems in which one of the clusters is a closed-shell nucleus (e.g. 4tte, 160, oI" 4°Ca),

while the other one is an even-even nucleus. In this simple case the basis states can be labeled

without explicit reference to the usr(4) group, (unless s()me higher excitations of the non-closed-

shell nucleus are also considered), and the cluster mo,lel basis states are characterized by the

representation labels of tile group chain:

/fc(3) c,_t6_(4) D/_c(3) ,:._UR(3) _ ._'l:c.(3):-: ,ST,_R(3)D ._'_(3) D O(3) D 0(2)

t[,,{_,,,_',,,_'],[x, 0,0,0], [,,_,0,0,], (_:.,t,:), (,,_,0) , (;,,#),,¢L,r , V ).
(2)

Tile irreducible representations (£,It) of ,q'U-(3) are obtained by takiug tile outer product of

()_c,#c) ¢:) (n,,0). N stands for the maximal number of the excitation quanta assigned to the

relative motion, an(t it determines tile size of the model space. The angular momentum content

of a (_,#) representation is given by the usual relations of the Elliott model [7]. For technical rea-

sons, however, it is nlore convenient to use the orthonormal SU(3) basis of Draayer and Akiyama

[11], rather than tile Elliott basis, which is not orthogonal. The parity of the basis states is de-

terlnined by the parity assigned to the relative motion: [5{ = (-1)". (Tile internal states of the

non U(3) scalar cluster carry positive parity [}: = (-l) ''I_+'4_+'_', unless major shell excitations

of the clusters are also considered.)

The coupled wavefunction can be expressed in terms of 5'U(3) D 0(3) Wigner coefficients:

I(&_,#c), N(,_, 0); (A,#)x LM)

xcLcMc LRMR

× I(Ac',_<,)xc Lc Me:}IN (._, O)L.MR). (3)

The physical operators can be constructed from the generators of the groups present in group

chain (2). Ifi particular, the most general form of the ttamiltonian can be obtained in terms of

a series expansion of these generators. In the simplest case, however, when we use the SU(3)

dynamical symmetry approximation, and consider only one Uc(3) representation to describe the

structure of the non-closed shell even-even cluster, the energy eigenvalues (:all be obtained in a

closed form:

E = e+ 7'_, +&_2 +,I(;2(N,#)+,JL(L + 1). (4)
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In this approximation tile energy levels can easily be assigned to rotational bands labeled by the

quantum numbers n_(,_,#)X,. (See Eqs. (3) and (4).) Bands following an approximate rotational

pattern usually appear in the energy spectrum of nuclear cluster systems.

The electromagnetic transition operators are also constructed fi'om the group generators, which

automatically implies selection rules in the dynamical symmetry approximation. The electric

quadrupole transition operator, for example, is written as the sum of the rank-2 generators of the

Uc(3) and the UR(3) groups:

T (E2) = qnQ(_ ) + qcQ_ ). (5)

The matrix elements of the operators with the basis states (3) are calculated using tensor algebraic

techniques [12].

The formulation of the Uc,(3) (_ l/c_(3)® I/R(4) and lgr(4)® Uc(3)® (/_(4) models can

be done via a straightforward generalization of the results presented here. These models can

also be used away from the SU(3) dynamical symmetry limit: in this case the diagonalization

of the Hamiltonian becomes necessary. Although the interactions applied in this approach are

phenomenological ones, they can be related to the effective two-nucleon forces, due to the use of

the microscopic SU(3) cluster model basis. See Ref. [13] for the details.

3 Applications

Tile applications of t,he semimicroscopic algebraic cluster model have been carried out so far

within the SU(3) dynamical symmetry at)proximation. This approximation allows exact analytical

expression of the energy eigenvalues and electromagnetic transition rates in terms of reduced

matrix elements, (_lebsch-('ordan coefficients, etc. obtained from the algebraic description. Its

validity, and also that of the underlying oscillator picture can be estimatedlfl'om the comparison

of the results with the corresponding experimental data.

As an illustrative example we present here tile description of the T = 0 states of the 24Mg

nucleus in terms of a 12(7 + 12C cluster model [14]. The structure of this nucleus has been studied

careflllly via various reactions both in tile ground-state region and in the ragion of molecular

resonances observed in 12(7 + 12C heavy ion collisions. These experiments have resulted a large

amomlt of experimental information on the structure of the 24Mg nucleus. Most of the theoretical

investigations have focused only on one of the two regions mentioned above, and relatively little

effort has been put into their simultaneous investigation.

Our aim was to give a mlified description of these two domains in terms of the Uct(3) c_

Uc2(3) ® UR(4) model. In this description the internal structure of the 12(, clusters is accounted

for by the (At., #c) = (0,4) Uc(3) represent_ttion, which corresponds to _n oblate deformation

in the geometric picture. We have analyzed about 150 experimental levels in the energy range

of 0 to 40 MeV (see Fig. 1.), and nearly 100 electric quadrupole transition probability data in

our study, which is a more complete account of the energy spectrum and E2 transitions of the

24Mg nucleus than any previous model calculation. We have displayed tlie B(E2) values for the

in-band transitions in Table I. Our results for interband E2 transitions are also satisfactory. The

fact that most of the transitions forbidden by the selection rules due to the ,5'U(3) dynamical

symmetry have very weak experimental counterparts seelns to indicate that the £'U(3) dynamical

symmetry approach is a realistic approximation of the actual physical situation here. The model

124



was able to describe tile general features of the molenlar resonance spectrum as well. E2 transition

probabilities calculated for ill band transitions within this region were significantly smaller than

most of the corresponding results of other mo(lels. The example of the 12(7 + 12(7 system

demonstrated that a large number of experimental data, including the ground-state region as well

as the highly excited molecular resonances can be reconciled in terms of relatively straightforward

calculations, which is one of the major adwtntages of the semimicroscopic algebraic cluster model.
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FI(;. I. Positive- a,d negative-parity 7' = 0 energy levels of the 24Mg nucleus

disl)layed separately i_J rotational diagram f()vm [14]• (',ircles (o) stand for states with

uncertain ,1" assignment. Tiw lines denote the t)osition of the calculated model bands.

(Dashed lines indicate ban(Is with \ = 0, which contain only every second possible .1

val ue. )

Similar conclusions have heen drawn from allother application of the model to the 14(, + a

system in terms of the restricted uST(3)¢_> I:(-(3)¢_,_/:t_(4) model, describing the T = 1 states of the

1so nucleus [15]. Being a considerably less complex nuclear system tha.n 12(7 + t2C, this example

also allowed comparison of our results with those of microscol)ic (:ah:ulations. We have f(mnd

strong correlation between these two (lata sets, which seems to indicate, that the semimicroscopic

algebraic cluster model al)proximates certain microscopic features reasonably well.

The model has been applied in other are_ts of mlclear physics as well, where tile cluster picture

may be relevant. In particular, the link 1)etweell SUl)erdeformed and cluster states of c_-like

(N = Z = e.,vcu) nuclei has heen discussed [16]; the allowed and forbidden binary fission modes
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of ground-state-like configurations ill sd-shell nuclei have been studied [17]; and the possibility

of describing exotic cluster radioactivity has been pointed out via the example of 21°Pb + 14C

clusterization of the 224Ra nucleus [18]. In this latter case the model has to be adapted to heavy

nuclei by introducing the pseudo-5;U(3) scheme.

TABLE I. In-band transitions for the 24M 9 nucleus. See Ref. [14] for the sources

of the experimental data. The quantun numbers n_(A,it)_ assigned to the bands are

also displayed.

J[(E_i) J'](Exf) B(E2)E_v B(E2)T/, n,(A, #)X

2+(1.37) 0+(0.0) 21.0 -+- 0.4" 21.0" 12(8,4)0

4+(4.12) 2+(1.37) 37.8 -t-3.0 28.0

6+(8.11) 4+(4.12) 38 4- 13 27.1

8+(13.21) 6+(8.11) 30 -t- 14 23.1

3+(5.241 2+(4.24) 38.0 4- 5.5 37.5 _ 12(8,4)2

4+(6.01) 2+(4.24) 18.7 + 2.4 11.4

5+(7.81) 3+(5.24) 35.0 4- 4.9 17.5

9. o5+(7.81) 4+(6.01) 24 4- 10 1C _-

6+(.t).53) 4+(6.01) 18 + 8 18.0
7+(12.35) 5+(7.81) 21 + 14 19.7

8+(14.15) 6+(9.53) 9.l + 2.4 13.7

2+(8.65) 0+(6.43) 1,1.0 4- 4.3 12.4 12(6,2)0

6+(12.86) 4+(9.30) 11.2 4- 2.1 12.2

5-(10.03) 3-(8.36) 20+_ 3,1.7 13(9,4)0

77(12.44) 5-(10.113) 51 4- 10 32.3

5-(13.06) 3-(10.33) 22 =1:4 28.! 13(8,3)1

4-(9.30) 3-(7.62) 29 -1- 6 35.1 13(8,3)3

5-(11.60) 3-(7.62) 4.6 -1- 1.4 7.3

5-(11.60) 4-(9.30) 37 4- 11 31.8

Used to fit model parameters.

4 Summary and Outlook

We have discussed the new semimicroscopic algebraic cluster model, in which a harlnonic oscillator

picture is used to account for the internal structure and the relative motion of nuclear clusters.

The model combines a microscopic harmonic oscillator basis with phenolnenologic interactions

forlnulated in algebraic terms. Its first applications to realistic nuclear systems have shown, that

it is able to describe a large amount of experimental data in a. coherent way, and also seems to

reproduce certain microscopic effects reasonably well. The 5;U(3) dynamical symmetry limit of

the model was found to be a realistic approximation fin' several sd shell nuclei.
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The model call be developed further along severM lines. First, the treatment of cluster systems

with arbitrary open-shell structure call be considered by introducing spill and isospin degrees

of freedom. Tile formalisnl of the model call also be extended to incorporate several internal

configurations, including major shell excitations. Furthermore, by considering symmetry breaking

terms in the Hamiltonian a more realistic description of nuclei can be given, relaxing, for example

the selection rules imposed by the SI/(3) dynamical symmetry.
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