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Abstract

A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the

transformation q --* q-l, is obtained. Orthogonality of the Askey-Wilson polynomials with

respect to a measure, entering into this representation, is proved. A simple way of evaluating

the Askey-Wilson q-beta integral is also given.

1 Introduction.

The Askey-Wilson polynomials p,_(x; a, b, c, d]q) [1], which have already become classical, represent

a five-parameter system of polynomials. They satisfy the orthogonality relation

1

/p_(x;a,lb, c, dlq)pn(x;a,b,c, dlq)w(x;a,b,c,d]q)dx=6,_,J,_(a,b,c, dlq ) (1.1)
--1

with respect to the absolutely continuous measure dv_(x) = w(x)dx, with the weight function

1 h(cos 20, 1; q)

w(x;a'b'c'dlq) - sinO1-L,=.,b,c.dh(cosO, v;q)' x=cos0,

(1.2)
O0

h(a,b;q) = 17[(1 - 2abq j + b_q2J).
j=0

As special and limiting cases, the Askey-Wilson polynomials contain many known systems of

polynomials (see, for example, [2]). In particular, the choice of the parameters a = -b = x/_,

c = -d = vf_, leads to the continuous q-ultraspherical polynomials Cn(x;/3[q) [3], i.e.,

p,_(x; vffl,-Vf_, V_,-vf-_]q) = (J32;q)2n(q;q)'_C,_(x;fl]q), (1.3)
(¢3,/32; q),
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where we have used the standard notation of the theory of q-special functions

n-1 k

(a;q),_ = H(1- aq_), (al,...,ak;q)n= H(ai;q).. (1.4)
j----0 j=l

In turn, from C,(x;/_lq) one can obtain the continuous q-Hermite polynomials Hn(x[q) =

(q;q)nC,(x;0[q), the Gegenbauer (ultraspherical) polynomials C_(x) = limq._.l C,(x; q_lq), and

also the Chebyshev polynomials of the first and second kinds, T=(x) and U,(x), by taking the

limit _ --* 1 or by putting fl = q in C,(x;_lq),respectively.

The key ingredient of the original proof of the orthogonality (1.1), which led to the discovery

of the Askey-Wilson system of polynomials (see the discussion of this point in [4] ), was the

evaluation of the Askey-Wilson q-beta integral:

lo(a, b, c, dlq) =- 2r(abcd; q)_¢
w(x;a'b'c'dlq)dx= (q, ab, ac, ad, bc, bd, cd;q)o¢'

-1

max.=_,b,_,alvl < 1, Iql < 1.

(1.5)

The integral (1.5) has acquired its name because in a special case, when the parameters a =

q_+1/2, b = _qZ+_/2, and c = -d = ql/2, the q --+ 1- limit of Io(a, b, c, d[q) is the beta function

( or Euler's integral of the first kind )

f(1- x)':'(li+ x)_dx
-1

= 2_+_+lB(c_+ 1 /_+ 1)=2 _+z+_r(a + 1)r(/_ + 1)
' r(_ +/3,+ 2)

(1.6)

A nonstandard form of the orthogonality on the full real line for the continuous q-Hermite

polynomials Ha(sin _xlq), q = exp(-2n2), was considered in [5]. It turned out that if one uses the

modular transformation and the periodicity property of the tg-function appearing in the weight

function for these polynomials, the finite interval of orthogonality can be transformed into an

infinite one. This technique is of interest both from a mathematical point of view and from the

point of view of possible applications in theoretical physics, beginning with a number of problems,

related with q-oscillators (see the review [6] ).

The purpose of this article is to discuss the applicability of this idea to the more general case,

i.e. to the Askey-Wilson q-beta integral (1.5) [7, 8]. To simplify consideration it will be assumed

in Sections 2-4 that Ivl < 1 , v = a, b,c,d, and that the parameter q = exp(-2_ 2) satisfies the

requirement 0 < q < 1. The possibility of extending these results to other values of the parameters

is discussed in Section 5.

2 A Ramanujan-type representation for the q-beta inte-

gral.

From the point of view of symmetry the parametrization x = sin _ is most convenient; it corres-

ponds to the change of variable 0 = _ - _, -_ < _ < _ in formula (1.2). Consequently, the left
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ome of (1.5) is equal to

Io(a,b,c, dlq ) =

,q2

f h(- cos2_, 1; q)
-./2 1-Iv=a,d,c,d h(sin _, v; q)

dqo. (2.1)

Comparison of the numerator

o_

h(-cos2qp, 1;q) = l-I(1 + 2q j cos2q_+q 2j)
j=O

of the integral (2.1) with Jacobi's expression for the theta-function 02(z, q) = 02(zlr), q = exp(riT)

as an infinite product [9]

oo

02(z, q) = 2ql/4(q2; q2)oo cos z 1-I (1 + 2q 2j cos 2z + q4j),
j=l

(2.2)

shows that
2 cos

h(-cos2% 1;q)- q,/S(q;q)o °
_2(qp, q 1/2 ) (2.3)

and therefore

2Io(a,b,e, dlq)- ql/S(q;q)oo

02(_, ql/2) COS qP
d_. (2.4)

l-Iv=a,b,c,d h(sin ¢2, v; q)

With the aid of the modular transformation [9]

-_P_; it¢2
02(ZlT ) _ e iz2) 04(ZT-11--T-1), 7"= --,

71"
(2.5)

and the change of variable T = xx, the integral (2.4) can be written as

r /2,_

Io(a,b,c, dlq)- ql/S(q;q)_ /
-lr/2,_

04(Trix e-r2/_¢2)_ e -x2 COS tCX

l-Iv=_,b,c,d h(sin xx, v; q)
dx. (2.6)

Using the expansion
oo

04(z,q)= _ (--1)kqk2e2ikz (2.7)
k_-oo

and taking into account the uniform convergence of the series (2.7) in any bounded domain of

values of z [9], we substitute (2.7) into (2.6) and integrate this series termwise, i.e.,

oo
lo(a,b,c, dJq)- qa/S(q;q)o ° Y_

k_--O0

_/2,_

(-1) k f

-7r/2_¢

e -(_+_/_k)_ cos xxdx

I-I.=_,b,_,d h(sin xx, v; q)'
(2.8)
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_-k x_ i" _(k ½)<xk<_(k+½)=x_ "x and an accountThe change of variable xk = x + _ , = - _ _

"_"x - x_ 'i'_ allows to sum the right-hand side of (2.8) with respect to k andfor the relation xk_ 1 -

represent (2.8) in the form

2V/-_ - 2v/-r _ e -_ cos xxdx
I°(a' b' c' dlq) - ql/S-_, q)oo I°(a' b' c' dlq) = ql/S(q; q),,o_o ° I'I,,=,_,b,c,d h(Sin xx, v; q)"

(2.9)

Thus, combining formulas (1.5) and (2.9) yields the following representation for the Askey-Wilson

q-beta integral [7]

oo

]o(a,b,c, dlq) =- / p(_cx;a,b,c, dlq)e-=_cosxxdx --
-- (X)

V/-_q_ (abcd; q)oo

(ab, ac, ad, bc, bd, cd; q)_'
(2.10)

where, in accordance with the definition (1.2),

P(x;a,_,c, dlq)= 1"I h-l(sinx, v;q) = l'I eq(ive-i_)%_-iveiX), (2.11)
v=a,b,c,d v=a,b,c,d

and %(z) = (z; q)2 is the q-exponential function [2].

We note that each factor h-a(sin xx, v; q), v = a, b, c, d, in the integrand (2.10) is represented

as

oo _ (-1) _ exp[-i(n - 2k)_x]
h-l(sinxx'v;q)= _-'(iv)n _" i__---k ' (2.12)

n=O k=0

if one uses the generating function for the continuous q-Hermite polynomials H,_(x Iq)

o_ H,(cosOiq) tn
(tei°'te-i°;q)_l = _ (q;q)n

n=O

Itl < 1, (2.13)

and their explicit representation [2]

H,(cos0lq):_2_[k] e i(n-2_)a, (2.14)
k=0 q

["] denotes the q-binomial coefficient [2]. Therefore the integration over x inwhere the symbol k q

(2.10) is reduced to the Fourier transformation formula for the ground state of the linear harmonic

oscillator
oO

1
f exp(-x2/2 + ixy)dx = exp(-y2/2). (2.15)

--OO

An explicit evaluation of the nonstandard form of the Askey-Wilson q-beta integral (2.10) will

be discussed in greater detail in Section 4.

As mentioned above, the weight function (1.2) with the parameters a = -b =/31/2, c = -d =

aq 1/2, corresponds to the continuous q-ultraspherical polynomials C,_(x; _lq). The relations [2]

(a;q)_¢ = (a, aq;q2)¢¢, (a,-a;q)_ = (a2;q2)oo,
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enable the representation (2.10) for this particular case to be simplified to

y exp (-x 2 + itcx)dx
(-/5 exp (2ixz),-/_ exp (-2iax); q)oo

--oo

= x/'-_ql/S(fl,qfl;q)oo (2.16)
(/_2;q)oo

If one compares (2.16) with the Ramanujan integral( q = exp (-2k2), [ql < 1)[10, 11]

j_ X//-_ern2e-=2+2"_* eq(aql/2e2ik=)eq(bql/2e -2ik=) dx - (qab; q)oo
--00

Eq(aqJimk)Eq(bqe-2imk), (2.17)

it is easy to verify that (2.16) agrees with (2.17) if one sets 2m = ik = _a and a = b = _flql/2.

3 Orthogonality of the Askey-Wilson polynomials with

respect to the measure p(_x; a,b,c, dIq).

A direct proof of the orthogonality for the Askey-Wilson polynomials

oo

f pro(sin
--(:X)

_x;a,b,c, dlq)pn(sin_x;a,b,c, dlq)p(_x;a,b,c, dlq) exp(-x2)cos_xdx =

=Smn_(a,b,c, dlq) (3.1)

with respect to the weight function appearing in the nonstandard integral representation (2.10), is

analogous to the proof of eigenfunctions orthogonality for the Sturm-Liouville differential equation

[12]. Indeed, the difference differentiation formula for the Askey-Wilson polynomials [1]

sin n0= p,,(sin tcx; a, b, c, dlq ) = (3.2)

= q-n�2(1 - qn)(1 - abcdq '_-1 ) cos gx p,__, (sin tcx; aq '/2, bq '/2, cql/2, dql/2lq )

provides a lowering operator for these polynomials. To find a raising operator one can use the

relation

202(qP' ql/2) p(c2; a, b, c, dlq), (3.3)
w(sinc2;a,b,c, dlq)- ql/S(q;q)o _

which follows from (1.2), (2.3) and (2.11), and write the difference equation for the Askey-Wilson

polynomials [1] in the form

sin r ,._ _,,) aq '/2 , bq 1/2 , cq 1/2 , dql/2lq)sin tc0_p,_ (sin _x; a, b, c, dlq)/3=
/ COS _;X J

(3.4)

= (1 - q-=)(1 - abcdq n-l) cos _x 02(tcx, ql/2)p(tcx; a, b, c, dlq) p,(sin tcx; a, b, c, dlq).
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Now, using the difference differentiation formula (3.2) in the left-hand side of (3.4) and the perio-

dicity property of the 02-function [9],

vq2(z 4- 7r%q) = q-1 exp(T2iz)_2(z,q), q = exp (z-iv), (3.5)

we arrive at the raising operator

(sin 2_x cos a0_ - cos 2gx sin a0_ )p( ax; aq 1/2, bq _/2, cq 1/2, dql/2[q)

P_-I (sin nx; aq 1/2, bq 1/2, cq I/2, dqi/21q ) = q_-_ cos nx p(nx; a, b, c, dlq)p,_(sin tcx; a, b, c, dlq ). (3.6)

We are now in a position to give a direct proof of the orthogonality relation (3.1). We multiply

both sides of the equality (3.6) by pro(sin tcx; a, b, c, dIq ) exp (-x 2) and integrate in x over the full

real line. As a result we obtain in the right-hand side,

oo

1--_. /q2 pm(sinax;a,b,c, dlq)p,,(sinax;a,b,c,d, lq)p(tcx;a,b,c,d[q)e-_2costcxdx _

, --00

1--n

q2 I,.,,,(a,b,c, dlq).

The left-hand side

(3.7)

OO

/ dxpm(sin tcx; a, b, c, dlq)e -_:2 (sin 2ax cos t¢0_ - cos 2ax sin a0_)

p( _x; aq 1/2, bq 1/2 , cq _/2 , dqa/2[q) P,,-1 (sin _x; aq 1/2 , bq_/2 , cq 1/2 , dq_/2[q),

can be integrated by parts with the aid of (3.2) and the evident relations

(3.8)

OO oo

--OO --(X)

(3.9)

/ dxf(x)sint_O::cp(x)=- : dxcp(x)sin_Oxf(x),
--CO --00

which apply to (3.8) because the function p(az; aq 1/2, bq 1/2, cq 1/2, dql/21q ) has no singularities inside

of the strip -_<y<a, -co<x<co in the complex planez=x+iy. This leads to

q 1-_._(1 - qm)(1 - abcdq m-1)Im_ln_l (aq 1/2, bql/2, cql/2, dql/2[q). (3.10)

Equating the right-hand (3.7) and left-hand (3.10) sides thus yields

q "_" I_n(a, b, c, dlq ) = (1 - qm)( 1 - abcdqm-1)Im__,_l (aq 1/2, bq _/2, cq _/2, dql/21q ) . (3.11)
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We now interchange m and n in (3.11) and take into account that the integral Im,_(a, b, c, dlq )

is symmetric in m and n due to the definition (3.7), i.e.,

q"]"I_,(a,b,c, dlq ) = (1 - q")(1 -abcdqn-1)Im_in_l(aql/2, bql/2, cql/2, dql/2[q). (3.11')

Finally, multiplying both sides of (3.11) by (1- q")(1-abcdq "-1) and of (3.11') by (1- q")(1-

abcdq ""-1) and subtracting the second expression from the first, we get

(q'f" - q_-_)(1 - abcdq "n+'_-l)I_n(a, b, c, dlq ) = 0. (3.12)

From (3.12) it follows that I_,_(a, b, c, dlq ) = 6_,,]n(a,b,c, dlq), confirming the orthogonality (3.1)

of the Askey-Wilson polynomials for m :_ n [8].

We note that as special and limiting cases, (3.1) contains the orthogonality relations for other

known sets of polynomials, such as the continuous q-ultraspherical polynomials Cn(x; fllq), the

continuous q-Hermite polynomials Hn(x; q) = (q; q),_ C,_(x; 0]q) (the corresponding special case of

(3.1), when the all parameters a,b,c,d are equal to zero, is considered in [5] ), the Chebyshev

polynomials of the first and second kinds, Tn(x) and U,_(x), and so on.

4 Evaluation of the integrals b, c, d q).

Iterating the recurrence relation

I,_(a,b,c, dlq ) = (1 - qn)(1 -abcdqn-1)I,__l(aql/2, bql/2, cql/2, dql/21q), (4.1)

which follows from (3.11) or (3.11') when m = n, allows to express the normalization inte-

grals ],_(a,b,c, dlq), n = 1,2,..., through a known value of the Askey-Wilson q-beta integral

Io(a,b,c, dlq), i.e.

(q, ab, ac, ad, bc, bd, cd;q),_ ]o(a,b,c, dlq). (4.2)
in(a, b, c, dlq ) = (1 - abcdq 2"-l )(abcd; q),_-i

It only remains to evaluate the integral I0(a,b,c, dlq ) itself. To this end, having defined the

symmetrical p+(x) and antisymmetrical p_(x) combinations with respect to the inversion x

--X,

p+(x;a,b,c, dlq ) = l[p(x;a,b,c, dlq)+ p(-x;a,b,c,d[q)], (4.3)

it is convenient to rewrite (2.10) as

co

]o(a,b,c,d]q) = / dxexp(-x 2 + itcx)p+(_x;a,b,c,d[q). (4.4)
-- 00

Let us carry out the replacements v ---*vv/_, v = a, b, c, d, and the subsequent shift of the variable

of integration z --, x + ix in (4.4). (We remind that the function p(_z; aq 1/2, bq 1/2, ca 1/2, dql/21q)

does not have singularities in the strip -x < y < x, -o0 < x < cx_ of the complex plane z =

z + iy ). Then, taking into account that in accordance with the definitions (1.2) and (2.11)

p(tc(x + itc);aq'/2, bql/2, cql/2, dql/21q ) = p(tcx;a,b,c, dlq) 1-[ (1 + ivexp(itcx)), (4.5)
v=a,b,c,d
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we obtain

lo(aq '/2, bq '/_, cq'/2, dq,/2[q) = (1 - s2)lo(a, b, c, dlq)+

(4.6)

oo O0

+s4 / dxexp(-x 2 + 3i,_x)p+(xx;a,b,c, dlq)- i8 3 / dxexp(-x 2 + 2ixx)p_(xx;a,b,c,d[q),
--00 --00

where

s2 = ab + ac + ad + bc + bd + cd,

(4.7)

s3 = abc + abd + acd + bcd, S 4 = abcd.

It remains only to express the second and third integrals in the right-hand side of (4.6) in terms

of io(a,b,c, dlq). To that end one can use the n = 1 case of (3.6)

(sin 2xx cos _0_ - cos 2xx sin xa,)p(_x; aq '/2, bq 1/2, cq _/2, dql/2[q) =

(4.8)

= [(1 - s4) sin2nx + (83 -- s, ) cos _x]p( _z; a, b, c, dlq),

taking into account that po( z; a, b, c, d[q) = 1, pl (z; a, b, c, dfq) = 2(1 - s4)z + sz - sl and sl =

a + b + c + d. The symmetrization of (4.8) leads to the relations

(sin 2xx cos n0_ - cos 2_x sin x0_)p+(xx; aq 1/2, bq '/2, c q,/2, d q'/21q ) =

(4.9)

= (1 - s4) sin 2xx p+(nx;a,b,c, dlq ) + (33 -- 31)COS K:Xp_:(xx;a,b,c, dlq).

Multiplying both sides of the equality (4.9) for the antisymmetrical combination p_(xx) by

exp(-x 2) and integrating over the variable x yields

(4.10)

oo

(1 - s4) / dxexp(-x 2 + 2ixx)p-(_x;a,b,c, dlq)=i(s_ - s3)]o(a,b,c, dlq ).
--00

Now we multiply both sides of (4.9) for p+(_x; aql/2, bql/2, cq 1/2, dql/2lq ) by exp(-x2 + ixx)

and integrate over z . Using (4.10), the result can be written as

[1

oo

/ dxexp(-x 2 + 3i,¢z)p+(xz;a,b,c, dIq)=

1 - q ]o(aql/2, bq,/2, cqX/2, dq,/2lq).
1 -- S 4

(4.11)

(-s-3-- sl)Z ] ]o(a,b,c, dlq )
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Substituting (4.10) and (4.11) into (4.6), we find

(1 - abcd)(1 - qabcd) ]o(aq '/2, bql/2, cq1/2, dql/2lq ) =

(4.12)

= (1 - ab)(1 - ac)(1 - ad)(1 - bc)(1 - bd)(1 - cd) io(a, b, c, dlq).

Since 0 < q < 1, by iterating equation (4.12) one can express the Askey-Wilson q-beta integral

(2.10) with arbitrary parameters in terms of its value for vanishing parameters a, b, c, d, i.e.,

(abcd;q)oo /o(0, O, O, Olq). (4.13)
Io(a,b,c,d]q) = (ab, ac, ad, bc, bd, cd;q)oo

The value of ]0(0,0, 0,0lq) is easily found from (2.10) and (3.1) with the aid of the Fourier

transformation formula (2.15) for the quadratically decreasing exponential function, i.e.,

io(0,0,0,0lq) = dxexp(-x 2 + i_x)= v/-_q 1Is.
oo

(4.14)

Combining formulas (4.13) and (4.14) leads to

v/-_ql /S( abcd; q )oo

]°(a'b'c'dlq)= (ab, ac, ad, bc, bd, cd;q)oo'
(4.15)

which is the known value of the Askey-Wilson q-beta integral [1]

Io(a,b,c,d[q)- ql/S(q;q)o°
2rc(abcd; q)oo (4.15')

I°(a'b'c'dlq) = (q, ab, ac, ad, bc, bd, cd; q)_o"

Substituting (4.15) into (4.2), we finally obtain the explicit form for the normalization integral

V/-_ql/S(q; q),_(abcdq"-l; q)oo

_(a, d, c, dl q) = (1 - a bcdq2'_-l)(abq ", acq", adq n, bcq '_, bdq n, cdq'_; q )o_ "
(4.16)

The complications arising in the evaluation of the standard form of the Askey-Wilson q-beta

integral (1.5) can be illustrated by the following short quotation from reference [4]: "This was

surprisingly hard, and it has taken over five years before relatively simple ways of evaluating this

integral were found".

5 The transformation q --+ q-1 .

It is necessary to emphasize that the nonstandard orthogonality relation (3.1) admits the trans-

formation q ---+ q-1 [7, 8]. The standard form of the Askey-Willson integral (1.5) does not in

general have this property. Even in the simplest case of vanishing parameters a, b, c and d, which

corresponds to the continuous q-Hermite polynomials H,_(zlq), the definition of a weight function

for the system of polynomials hn(x; q)= i-"H,_(ixlq -1) requires a special analysis [13, 14].
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Since

(z;q-i)oo= (qz;q)2, (5.1/

the change q _ q-1 (i.e. t; _ it;)in the function p( t;x; a, b, c, d]q) appearing in (2.10) and (3.1),

transforms it into

p(it;x;a,b,c, dlq-')= II (ivqe"=,-ivqe-"=;q) oo= II Eq(ivqe-"=)Eq(-ivqe"_), (5.2)
v=a ,b ,c,d v=a ,b,c,d

where Eq(z) = e;l(-z) = (--z]q)oo [2]. Therefore, under the transformation q ---. q-l, the

orthogonality relation (3.1) for the Askey-Wilson polynomials with the parameter q < 1 converts

into the following orthogonality relation for the Askey-Wilson polynomials with q > 1:

_p_( i sinh t;x; a_ b_c, d[q_) pn( isinh t;_; a, b, c,d_q_) p( it;x; a, b_c, d_q_) e_ _sh t;xdx =

5,.,,,_],_(a,b,c, dlq -1) (5.3)

The explicit form of i,_(a,b,c,d[q -1) is readily obtained from (4.16), upon making use of the

formulas (5.1) and (a;q-'),_ = (a-1;q),_(-a)nq -n('_-l)/2 [21.

On the other hand, with the aid of the explicit representation for the Askey-Wilson polynomials

[1, 2]

-,_, abcdq '_-1 ' iaei_ °, _iae-i_ ]p,_(sin_o;a,b,c,d[q) = (ab, ac, ad;q),_a-n4¢3 [ ab, ac, ad ;q'q
(5.4)

and the inversion formula (with respect to the transformation q _ q-l) for the basic hypergeo-

metric series 4¢3 ( see [2], p.21, exercise 1.4(i) ), it is easy to show that

p,_ (x; a, b, c, dlq -1) = (- 1)n(abcd)n q-},_(,_-1 ) Pn (x; a -1 , b-1 , c -1 , d -11q). (5.5)

Consequently, from (5.3) and (5.5) it follows the orthogonality relation

oo

f p,.r,(i sinh
--OO

t;X; a -1 , b -1 , c -1 , d-' [q)p,_( i sinh t;x; a -1 , b -1 , c -1 , d -1 tq)p(it;a:; a, b, c, dlq-1),

(5.6)

 -  cosht;=d= = (q,1/ab,1/ac, 1/ad,i/bc, i/bd, l]cd;q)n io(a,b,c,dlq_1) n,n
(I - q2n-,/ abcd)(l/ abcd;'q)n_,

for the Askey-Wilson polynomials with the parameters Iv[ > 1,v = a,b,c, d and 0 < q < 1. The

value of the integral Io(a, b, c, die -1) is simple to obtain from (4.15) by means of the formula (5.1).
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6 Concluding remarks.

The orthogonality relations (3.1) and (5.6) are bound to be related by the Fourier transforma-

tion for the Askey-Wilson functions, analogous to the well-known transformation for the har-

monic oscillator wave functions Hn(x)exp(-x2/2) ( or Hermite functions in the terminology

of mathematicians [15, 16] ) connecting the coordinate and momentum realizations in quan-

tum mechanics. It should be interesting to compare this Fourier transformation with the q-

transformations, that reproduce the Askey-Wilson polynomials [17, 18]. For the q-Hermite func-

tions H,,(sin x_z]q) exp (-z 2/2), q = exp (-2x 2) , which are the simplest case of the Askey-Wilson

functions with vanishing parameters a, b, c, and d, such Fourier transformation has the form [5]

x/_r' exp(ixy- x2/2)Hn(sinxxlq)dx = i'_qnU4h,_(sinhxylq)exp(-y_/2) •

The general case needs to be analyzed in greater detail.
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