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Abstract
A Ramanujan-type representation for the Askey-Wilson g¢-beta integral, admitting the
transformation ¢ — ¢!, is obtained. Orthogonality of the Askey-Wilson polynomials with
respect to a measure, entering into this representation, is proved. A simple way of evaluating
the Askey-Wilson g-beta integral is also given.

1 Introduction.

The Askey-Wilson polynomials p,(z;a, b, ¢, d|q) [1], which have already become classical, represent
a five-parameter system of polynomials. They satisfy the orthogonality relation

1
/pm(x; a,lb, ¢, d|q) pn(z;a, b, c,d|q) w(z;a,b,c,d|q)dr = bmnln(a, b, c,d|q) (1.1)

|
with respect to the absolutely continuous measure da(z) = w(z)dz, with the weight function

1 h(cos20,1; q)

; ) b‘) ’ d = . ? = 0,
w(x ¢ ¢ |q) sin 6 Hv:a,b,c,d h(COS 07 o q) v o
(1.2)
h(a, b q) = [J(1 — 2abg’ + 6%¢™).
3=0
As special and limiting cases, the Askey-Wilson polynomials contain many known systems of
polynomials (see, for example, [2]). In particular, the choice of the parameters a = —b = /B,

¢ = —d = 1/qpB, leads to the continuous g-ultraspherical polynomials C,(z; Blg) [3], i.e.,

i VB,V B~ Jably) = L0k, o ) (1)

1Permanent Address: Institute of Physics, Academy of Sciences of Azerbaijan, Baku 370143, Azerbaijan. Visi-
ting Scientist at IIMAS-UNAM/Cuernavaca with Citedra Patrimonial CONACYT, México.
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where we have used the standard notation of the theory of g-special functions

n—1 k
(a;¢)n = l:[(l —ag’), (a1, Gk @)n = .Ul(“j;q)“' (1.4)

In turn, from C,(z; 3|q) one can obtain the continuous ¢g-Hermite polynomials H,(z|q) =
(¢; 9)=Cx(z;0]q), the Gegenbauer (ultraspherical) polynomials CMz) = limy_; Cn(z;¢"|q), and
also the Chebyshev polynomials of the first and second kinds, T,,(z) and U,(z), by taking the
limit # — 1 or by putting 8 = ¢ in C,(z; f|q), respectively.

The key ingredient of the original proof of the orthogonality (1.1), which led to the discovery
of the Askey-Wilson system of polynomials (see the discussion of this point in [4] ), was the
evaluation of the Askey-Wilson g¢-beta integral:

27(abed; q) oo
(¢, ab, ac,ad, bc,bd, cd; q)oo’

1
Io(a,b,c,d|g) = / w(z; a,b, ¢, dlg)dz =
-1

(1.5)
MaTy=apealv| <1, |g| < 1.

The integral (1.5) has acquired its name because in a special case, when the parameters a =
g°*t/2 b= —¢P*1/2 and c = —d = ¢"/%, the ¢ — 1~ limit of Io(a,b,c,d|g) is the beta function
( or Euler’s integral of the first kind )

Fla+1)I(B+1)
Fa+8+2)

1
/(1 — 2)*(1i4 z)Pdz = 2% B(a + 1, 8 + 1) = 208+ (1.6)
-1

A nonstandard form of the orthogonality on the full real line for the continuous ¢g-Hermite
polynomials H,(sin kz|q), ¢ = exp(—2«?) , was considered in [5]. It turned out that if one uses the
modular transformation and the periodicity property of the J-function appearing in the weight
function for these polynomials, the finite interval of orthogonality can be transformed into an
infinite one. This technique is of interest both from a mathematical point of view and from the
point of view of possible applications in theoretical physics, beginning with a number of problems,
related with g-oscillators (see the review [6] ).

The purpose of this article is to discuss the applicability of this idea to the more general case,
i.e. to the Askey-Wilson g-beta integral (1.5) [7, 8]. To simplify consideration it will be assumed
in Sections 2-4 that |v| < 1, v = a,b,c,d, and that the parameter ¢ = exp(—2«?) satisfies the
requirement 0 < ¢ < 1. The possibility of extending these results to other values of the parameters
is discussed in Section 5.

2 A Ramanujan-type representation for the g-beta inte-
gral.

From the point of view of symmetry the parametrization z = sin¢ is most convenient; it corres-
ponds to the change of variable § = 7 —¢, =3 < < 7 in formula (1.2). Consequently, the left
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sde of (1.5) is equal to

m/2
h(— cos2¢p,1; q)
Io(a,b,c,d|q) = / kil L
0( I ) —x/2 Hv:a,d,c,d h(SlIl ¥, U3 q) 4
Comparison of the numerator
h(— cos2p,1;¢) = JJ(1 + 2¢° cos 2p + ¢%)
J=0

of the integral (2.1) with Jacobi’s expression for the theta-function ¥,(z,¢) =
as an infinite product [9]

92(2,9) = 24'*(¢% ¢%)o0 cos z [ (1 + 2¢” cos 2z + ¢¥),

i=1
shows that 5
cos o7
h(—cos2p,1;q) = ——7——
( q7"/8(¢; ¢)oo 9 a)
and therefore
s q'/?) cos ¢ ‘
Io(a,b,c,d f d
ola, bre, dlq) = 1/8 CHIS /2 Hv—abcdh sin ¢, v; q) v
With the aid of the modular transformation [9]
_iz? . 2
ha(elr) = SR g o), p 2T

(—iT)2

and the change of variable ¢ = xz, the integral (2.4) can be written as

/[2x .
Io(a, b, ¢, d|q) 27 } Ja(Zz, e /) e " coska
ola,u,c q) = R
’ ql/8(q1 q)oo —n/2x Hv:a,b,c,d h(SIH KZ, v} Q)
Using the expansion
194(2,(1) — Z (_l)qu2e2ikz
k=—oc0

92(2|7), ¢ = exp(wir)

(2.2)

(2.3)

(2.4)

(2.5)

dz. (2.6)

(2.7)

and taking into account the uniform convergence of the series (2.7) in any bounded domain of
values of z [9], we substitute (2.7) into (2.6) and integrate this series termwise, i.e.,

w/2x

Io(a, b’ ¢, d'Q) =

q"/%(q;9) o0 1< o
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The change of variable z, = z + Xk, " = Z(k — 1) <z < Z(k 4+ ;) = 2"** and an account
for the relation z[*%f = zP'™ allows to sum the right-hand side of (2.8) with respect to k and
represent (2.8) in the form

o0

—a?
27 fo(a,b,c, dg) = 2/ e™* cos kzdzx (2.9)

Ip(a,b,c,dlq) = 55— - .
ol )= G 9 0"/%(¢; @)oo J_ Tlizap,ca h(sinkz,v;q)

Thus, combining formulas (1.5) and (2.9) yields the following representation for the Askey-Wilson
g-beta integral [7]

[>o} 1
= # (abed; q)
= ‘a. b d -z dr = ﬁqs(a 19 ) oo )
Iy(a,b,c,d|q) —Zo p(kz;a,b,c,d|g)e”™ cos kzdr (ab.ac, ad, be, bd, od; )’ (2.10)

where, in accordance with the definition (1.2),

p(z;a,b ¢ dlq) = II r'Ginz,v;e)= ]] e (tve ™) e (—ive'), (2.11)

v=a,b,c,d v=a,b,c,d

and e,(z) = (z; )7} is the g-exponential function [2].
We note that each factor A~!(sin kz,v;q), v = a,b,¢,d, in the integrand (2.10) is represented

as
1y 2 oS (=DFexpl—i(n — 2k)kz)
h~l(sinkz,v;q) = Y (iv)" ( 2.12)
nz;?) kX=;] (45 9)e(4; 9)n—x (
if one uses the generating function for the continuous ¢-Hermite polynomials H,(z|q)
. . © H (cosf
(e, et )zt = 30 HnleosOla) oy g (2.13)
n=0 (q; q)n
and their explicit representation [2]
Hn(cos 0|q) = Z [n] ei("‘zk)o, (214)
k=0 k q

where the symbol [:] denotes the g-binomial coefficient [2]. Therefore the integration over z in
q

(2.10) is reduced to the Fourier transformation formula for the ground state of the linear harmonic
oscillator

1 o0
—\/5—_7}-_!0 exp(—z2/2 + izy)dz = exp(—y?/2). (2.15)
An explicit evaluation of the nonstandard form of the Askey-Wilson g-beta integral (2.10) will

be discussed in greater detail in Section 4.

As mentioned above, the weight function (1.2) with the parameters a = —b= /2, c = —d =
aq'/?, corresponds to the continuous g-ultraspherical polynomials C,(z; 8|q). The relations [2]

(@590 = (8,06; 60, (3,85 9)00 = (6% ¢%)o0s
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enable the representation (2.10) for this particular case to be simplified to

oo

/ exp (=2 + ikz)dz _ VTa'¥(B,4Bi )
J (—Pexp(2ixz), —Bexp(-2ikT);q)oo CETI .

(2.16)

If one compares (2.16) with the Ramanujan integral ( ¢ = exp (—2k?), |q| < 1) [10, 11]

/ e—-x2+2mzeq(aq1/2e2ikz)eq(bq1/2e—2ikx)dm _ (\/ie ) Eq(aqeﬂmk)Eq(bqe—%mk)’ (217)
I gab; )

it is easy to verify that (2.16) agrees with (2.17) if one sets 2m =1tk =ik and a = b = —Bq*/2.

3 Orthogonality of the Askey-Wilson polynomials with
respect to the measure p(kz;a,b,c,d|q).

A direct proof of the orthogonality for the Askey-Wilson polynomials

/ pm(sin kz; a, b, ¢, d|q)pa(sin kz; a, b, c,d|q)p(kz; a, b,c, dlq) exp (—z?) cos kzdz =

= 5mn1~n(a,b, c,d|q) (3.1)

with respect to the weight function appearing in the nonstandard integral representation (2.10), is
analogous to the proof of eigenfunctions orthogonality for the Sturm-Liouville differential equation
[12] . Indeed, the difference differentiation formula for the Askey-Wilson polynomials (1]

sin k9, p,(sin kz; e, b,c,d|q) = (3.2)
= ¢72(1 — ¢")(1 — abedq™™") cos Kz pa_i(sin kz; aq'/?, bg"/?, cg'/?, dg'/?|q)
provides a lowering operator for these polynomials. To find a raising operator one can use the

relation ol 1/2)

2 2\, q

2228 7) o(pia,b,¢,d]g), 3.3
9*/%(q; @)oo (¢ 9) (33)

which follows from (1.2), (2.3) and (2.11), and write the difference equation for the Askey-Wilson
polynomials [1] in the form

w(sin ¢; a,b,c,d|q) =

192('“”7 q1/2)

p(rz; aq'/?, bg"?, cq'?, dq'/*|q) sin kB.pa(sin kx5 a, b, ¢, d|q)| =
COS KT

sin kKO,

(3.4)
=(1-q¢™)(1 - abedq™™') cos kz 92 (K, ¢’ p(kz;a,b,c,d|q) pa(sin kz; a, b, ¢, d|g).
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Now, using the difference differentiation formula (3.2) in the left-hand side of (3.4) and the perio-
dicity property of the J;-function [9],

d2(z £ 77,q) = ¢  exp (F2i2)V9(2, q), q = exp (mir), (3.5)
we arrive at the raising operator
(sin 2k cos k8, — cos 2k sin k8, )p(kz; ag'/?, bg'/?, cq'/?, dg'/?|q)

pn—1(sin kz; aq'’?,bq"/?, cq'/?, dg'/?|q) = q * cos kz p(kz;a,b,c ,d|q)pn(sin kz;a, b, c,d|g). (3.6)

We are now in a position to give a direct proof of the orthogonality relation (3.1). We multiply
both sides of the equality (3.6) by pn.(sin xz;a,b, c,d|q) exp(—z?) and integrate in z over the full
real line. As a result we obtain in the right-hand side ,

oo
1-n

gz / Pm(sinkz;a,b, c,d|q) po(sin kz; a, b, ¢, d, |q) p(kz;a,b,c, d|q) e~ cos kz dz

'+ —00

ql—T"Imn(a, b,c,d|q). (3.7)
The left-hand side

/ dzpn,(sin kz;a,b, c, dlq)e_zz(sin 2Kk cos K0, — cos 2k sin K0;)

(3.8)
p(rz; ag'/? bg'l%, cq'1*, dg'/?|q) pu_y (sin kz; ag'/?, bg'/?, cq'/?, dg'?]q),
can be integrated by parts with the aid of (3.2) and the evident relations
/dxf ) cos k0, p(z /d:ccp cos k0. f(z),
(3.9)

/dxf (z)sin k0, (= /dmcp(z)smfca f(=),

which apply to (3.8) because the function p(kz; ag'/?, bg'/?, cq'/?, dg'/*|q) has no singularities inside
of the strip —x <y <k, —o00 <z < oo inthecomplex plane z ==z + iy . This leads to

g7 (1= ¢™)(1 — abedg™ V) In_1n-1(ag"’?, bg'’?, cg*/?, dg*/?|q). ~(3.10)

Equating the right-hand (3.7) and left-hand (3.10) sides thus yields

¢"T Imn(a,b,¢,d|q) = (1 — ¢™)(1 — abedq™ ) I n—1n-1(agq"/? bg*/? cq'/?, dq"/?|q). (3.11)
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We now inlterchange m and n in (3.11) and take into account that the integral Ir.n(a,b,c,d|q)
is symmetric in m and n due to the definition (3.7), i.e.,

n—m

47 Inn(a,b,¢,d|q) = (1 — ¢")(1 — abedq" ") In_1n-1(aq"/?, bg"/% cg'/?, dg'?|q).  (3.11')

Finally, multiplying both sides of (3.11) by (1 —¢")(1 —abedg"™!) and of (3.11') by (1 —¢™)(1 -
abcdg™ ') and subtracting the second expression from the first, we get

(g%
From (3.12) it follows that I,,.(a,b, ¢, d|g) = 6m,jn(a, b,c,d|q), confirming the orthogonality (3.1)
of the Askey-Wilson polynomials for m # n [8].

We note that as special and limiting cases, (3.1) contains the orthogonality relations for other
known sets of polynomials, such as the continuous g-ultraspherical polynomials Cy(z; 3|g), the
continuous g-Hermite polynomials H,(z;q) = (g; ¢)» Cn(z;0|q) (the corresponding special case of
(3.1), when the all parameters a,b,c,d are equal to zero, is considered in [5] ), the Chebyshev
polynomials of the first and second kinds, T,(z) and U,(z) , and so on.

— ¢ 7)1 — abedg™ ™ ) Iun(a, b, ¢, d|g) = 0. (3.12)

4 Evaluation of the integrals I,(a,b,c,d|q).

Iterating the recurrence relation
Io(a,b,¢,dlq) = (1 — ¢")(1 — abedg™ ") ]._1(aq"/? b "%, cg'/?, dg'*|g), (4.1)

which follows from (3.11) or (3.11') when m = n, allows to express the normalization inte-
grals I.(a,b,c, dlg), n = 1,2,..., through a known value of the Askey-Wilson g-beta integral
Io(a,b,c,dlg), ie.

< (q,ab,ac,ad, bc,bd, cd; q)n
n r ,d = LR Bt | N *
I.(a,b,c,d|q) (1 — abedg?~1)(abcd, Ot Io(a, b, c,d|q) (4.2)

It only remains to evaluate the integral jo(a,b,c, d|q) itself. To this end, having defined the
symmetrical py(z) and antisymmetrical p_(z) combinations with respect to the inversion z —
Pi(ff, a, b) C, d‘Q) = %[p(m) a, b, ¢, dlq) + P(—x, a, b, & de)]’ (43)

it is convenient to rewrite (2.10) as

Io(a,b,c,d|q) = / dzexp (—z° + ikx)pi (k75 a, b, c,d|g). (4.4)

Let us carry out the replacements v — v,/q, v = @,b,¢c,d, and the subsequent shift of the variable
of integration £ — z + ix in (4.4). (We remind that the function p(kz;aq!/? bg"/?, cq'/?, dg'/?|q)
does not have singularities in the strip —x <y <&, —oo <z <oo of the complex plane z =
z + iy ). Then, taking into account that in accordance with the definitions (1.2) and (2.11)

p(k(z + ik); g%, bg"/?, cg'?,dg'*lq) = p(kz;a,b,c,dlg) ] (1+ivexp(irz)),  (4.5)

v=a,b,c,d
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we obtain 3 3
Io(aq'?,bg' %, cq'?,dg'*|q) = (1 — s2)Io(a, b, ¢,d|q)+

(4.6)
+34 / drexp (—z® + 3ikz)py(rz;a,b,c,d|q) — iss / dz exp (—z* + 2isz)p_(kz;a,b, c,d|q),

where
sy =ab+ ac+ ad + bec+ bd + cd,

(4.7
83 = abc + abd + acd + bed, s4 = abed.

It remains only to express the second and third integrals in the right-hand side of (4.6) in terms
of Ip(a,b,c,d|g). To that end one can use the n = 1 case of (3.6)

(sin 2k cos kO, — cos 2k sin k0, ) p(kz; ag'’?, bg'/?, cq'/?, dq'/?|q) =
(4.8)

= [(1 — s4) 8in 26z + (83 — s1) cos kz]p(kz;a, b, c, d|q),

taking into account that po(z;a,b,c,d|qg) = 1, pi(z;a,b,¢,d|q) = 2(1 — sq4)z + 53 — 51 and 51 =
a + b+ ¢+ d. The symmetrization of (4.8) leads to the relations

(sin 2k cos k8, — cos 2kz sin kD, )p+ (kz; ag'/?, bg'? ¢ ¢/, d ¢/?|q) =

(4.9)
= (1 — s4)sin2kz py(kz;a,b,c,d|q) + (s3 — s1) cos kz pz(kz; a, b, c,d|q).

Multiplying both sides of the equality (4.9) for the antisymmetrical combination p_(xz) by
exp(—z?) and integrating over the variable z yields

(1 — s4) / dzexp (—z% 4 2ikz)p_(kz;a,b,c,d|q) = i(s; — s3)]o(a, b, c,d|q). (4.10)

Now we multiply both sides of (4.9) for p,(kz;aq'/? bg'/?, cq'/?,dq'?|q) by exp(—z? + ikz)
and integrate over z . Using (4.10), the result can be written as

/ dz exp(—z® + 3ikz)ps (kz;a,b,¢,d|q) =

(4.11)

s3—81)%] - l—gq =
) [1 ) ((1—_7)—} fo(a,b,edla) = 7 To(aq'" bg*"%, cq'/%, dg ).
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Substituting (4.10) and (4.11) into (4.6), we find
(1 — abed)(1 — qabed) Io(ag"/?,bg"/?, cq'/?, dg'/?|q) =
(4.12)
= (1 — ab)(1 — ac)(1 — ad)(1 — be)(1 — bd)(1 — cd) Io(a, b, c, d|q).

Since 0 < ¢ < 1, by iterating equation (4.12) one can express the Askey-Wilson g-beta integral
(2.10) with arbitrary parameters in terms of its value for vanishing parameters a, b,c,d, te.,

= _ (abed; 4) oo .
10(a7 b7 ¢, d]q) - (ab, ac,ad, bC, bd, Cd; Q)oo IO(OaO’OaOIq) (413)

The value of I(0,0,0,0|q) is easily found from (2.10) and (3.1) with the aid of the Fourier
transformation formula (2.15) for the quadratically decreasing exponential function, t.e.,

16(0,0,0,0]q) = /oo dzrexp (—z° + ikz) = Jrg'/®, (4.14)
Combining formulas (4.13) and (4.14) leads to

. V7q'®(abed; q) oo

b,c,d|q) = 4.1
lo(a,b,c,dlg) (ab,ac,ad, be,bd, cd; q)oo | (4.15)
which is the known value of the Askey-Wilson ¢-beta integral [1]
2 ~ 27 (abed; ¢) oo
o(a by, dlg) = 2" y(a,byc,dlq) = 220 4) (415

9'/%(¢; @)oo (¢, ab, ac,ad, be, bd, cd; g)oo’

Substituting (4.15) into (4.2), we finally obtain the explicit form for the normalization integral

To(a,d,c,dlq) = VT4 /(q; q)n(abedg™ " ) (w.16)
nl@, a, C, (1 - abcdq2n—1)(abqn, acq™, adg™, beqn, bdg™, cdq™; q)oo. .

The complications arising in the evaluation of the standard form of the Askey-Wilson g-beta
integral (1.5) can be illustrated by the following short quotation from reference [4]: ”This was
surprisingly hard, and it has taken over five years before relatively simple ways of evaluating this
integral were found”.

5 The transformation ¢ — q7! .

It is necessary to emphasize that the nonstandard orthogonality relation (3.1) admits the trans-
formation ¢ — ¢~! [7, 8]. The standard form of the Askey-Willson integral (1.5) does not in
general have this property. Even in the simplest case of vanishing parameters a,b, ¢ and d, which
corresponds to the continuous g-Hermite polynomials H,(z|g) , the definition of a weight function
for the system of polynomials h,(z;q) = i " H,(iz|qg™!) requires a special analysis {13, 14].
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Since
(24 Yoo = (g7 9)2, (5.1)
the change ¢ — ¢~! (i.e. Kk — ix) in the function p(xz;a,b,c, d|q) appearing in (2.10) and (3.1),
transforms it into

p(irz;a,b,c,dlg™) = [J] (ivge™, —ivge™q)e = [ E,(ivge™)E,(—tvge™), (5.2)

v=a,b,c,d v=a,b,c,d

where E,(z) = e;'(—z) = (—2;q)o [2]. Therefore, under the transformation ¢ — ¢!, the
orthogonality relation (3.1) for the Askey-Wilson polynomials with the parameter ¢ < 1 converts
into the following orthogonality relation for the Askey-Wilson polynomials with ¢ > 1:

—_z2

/oo pm(isinh kz;a, b, c,d|g”?) po(isinh kz; a, b, c,d|g™") p(ikz; a,b,c,d|lg™") e cosh kzdz =

bmndn(a,b,c,d|qg™?) (5.3)
The explicit form of I,(a,b,c,d|g™!) is readily obtained from (4.16), upon making use of the
formulas (5.1) and (a;¢™")n = (a™'; q)n(—a) g~ "~ 1/2 [2].
On the other hand, with the aid of the explicit representation for the Askey-Wilson polynomials
[1, 2]

g™, abcdg™ !, tae'¥, —iae™t¥

pn(sing;a,b,c,dlq) = (ab,ac,ad;q)na™ 4¢3 14,4 (5.4)

ab, ac, ad

and the inversion formula (with respect to the transformation ¢ — ¢~!) for the basic hypergeo-
metric series 4¢3 ( see [2], p.21, exercise 1.4(i) ), it is easy to show that

pn(z;a,b, ¢, d|q_1) = (—1)"(abed)" q'%"("'l) pn(m;a'l, bt et d'llq). (5.5)

Consequently, from (5.3) and (5.5) it follows the orthogonality relation

/ pm(isinh kz;a™t, 67 ¢ d7¢)pa(isinh kz;a™t, 071 7, d7 g) p(ik; a, b, ¢, d|g 1) *
(5.6)
(é, 1/ab,1/ac,1/ad,1/bc,1/bd,1/cd;q)x
(1 — ¢>»=1/abed)(1/abed;q)n-1

for the Askey-Wilson polynomials with the parameters |v| > 1,v = @,b,c,d and 0 < ¢ < 1. The
value of the integral Ip(a, b, c,d|qg!) is simple to obtain from (4.15) by means of the formula (5.1).

—m2
e ® cosh kxdz =

iO(a', b) ¢, dlq_l) 5m'n
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6 Concluding remarks.

The orthogonality relations (3.1) and (5.6) are bound to be related by the Fourier transforma-
tion for the Askey-Wilson functions, analogous to the well-known transformation for the har-
monic oscillator wave functions H,(z)exp(—z?/2) ( or Hermite functions in the terminology
of mathematicians [15, 16] ) connecting the coordinate and momentum realizations in quan-
tum mechanics. It should be interesting to compare this Fourier transformation with the ¢-
transformations, that reproduce the Askey-Wilson polynomials [17, 18]. For the g-Hermite func-
tions H,(sin kz|q) exp (—z?/2), ¢ = exp (—2«?) , which are the simplest case of the Askey-Wilson
functions with vanishing parameters a, b, ¢, and d, such Fourier transformation has the form [5]

1. 00

— / exp (izy — 22 /2)H,(sin kz|q)dz = i"q™ *ha(sinh xy|q) exp (—y*/2).
v2r J

The general case needs to be analyzed in greater detail.
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