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Abstract

The general form and associativity conditions of deformed oscillator algebras are reviewed.
It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation

when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami

condition. As an example, an SUq(n) × SUq(m)-covariant q-bosonic algebra is discussed in

some details.

1 Introduction

Since the advent of quantum groups and q-algebras (see e.g. [1] and references quoted therein),

much attention has been paid to deformations of the algebras of bosonic and fermionic creation

and annihilation operators [2]-[6]. Different deformations of the latter arise depending on which

property of the undeformed operators is preserved.

In the simple case of the su(2) Lie algebra, two pairs of bosonic creation and annihilation

operators a!, a_, i = 1, 2, give rise to the Jordan-Schwinger realization

l(g]- N2), (1)J+ = a_a 2, J_ = a_al, Jo =

where N_ -- a_ai, i -- 1, 2, are number operators. In addition, the creation operators a_, a_ (as well

as the modified annihilation operators h 1 = %, h2 = -al) are the components +1/2 and -1/2 of

an su(2) spinor, respectively. When extending these two properties to the corresponding q-algebra

suq(2) (where q is real and positive), one gets two different sets of q-bosonic operators.
On the one hand, those first considered by Biedenharn [2], Macfarlane [3], Sun and Fu [4], give

rise to a Jordan-Schwinger realization _of suq(2) of the same type as (1), where a_, a_, i = 1, 2,

now satisfy the relations
a,a_ -- q:t:, a_a, -= q_:N, , (2)

while operators with different indices do still commute, and a_a, = [N,]q --- (qN, _q-N,)/(q_q-1).

However, the operators a_, a_ do not transform any more under a definite representation of the

algebra.
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On the other hand, the operators A_, Ai, i = 1, 2, introduced by Pusz and Woronowicz [5],
satisfy different relations

t t -1--tAt AiAj qAjA i O,A i Aj - q _j,_ = - =

AiA_-qA_Ai = O, i # j,

i-1

aia_-q2A_ai = I +(q2-1)_] a_Aj,
j=l

i <j,

(3)

where the two modes are not independent any more. As a result of this coupling, the operators

a[, At (as well as -4a = ql/2A2, fi2 = -q-1/2Al) are the components -4-1/2 and -1/2 of an 8Uq(2)

spinor respectively, but yield an suq(2) realization that is substantially more complicated than (1).

The algebra (3) has also important covariance properties under the quantum group SUq(2), dual
to suq(2).

The present communication is concerned with the construction of covariant deformed oscillator

algebras that generalize the Pusz-Woronowicz algebra for other quantum groups than SUq(2) (or

more generally SUq(n)). The method used will be based on an R-matrix approach similar to that

applied in noncommutative differential geometry [7,8]. In Sec. 2, after reviewing the general form

and associativity conditions of deformed oscillator algebras, we will show how to fulfil the latter

in terms of a solution of the Yang-Baxter equation with three distinct eigenvalues. The example

of an SUq(n) × SUq(m)-covariant q-bosonic algebra _4q(n, m) will be treated in some details in

Sec. 3. Finally, in Sec. 4, an alternative derivation of the same algebra, based upon the q-algebra

uq(n)+ uq(r ) willbe presented.

2 Deformed Oscillator Algebras

Let us consider the complex algebras generated by I, A_ A; = (A!) t, i = 1, ..., N, subject to the

relations [9,10]

t t t t
A iAj = Xij,ktAkAt,

AiA j = X_i,tkAkAt,

t
AiA _ = 61j + Zjl,ikAkA_,

(4)

where X and Z are some complex N 2 × N 2 matrices, and there are summations over dummy

indices. As a consequence of the Hermiticity properties of the generators, X* is the complex
conjugate of X, and Z is a Hermitian matrix.

For these algebras to be associative, it is sufficient to require the braid transposition schemes

for triples of generators. The braid scheme for ,_t,_tat yields the condition
_xi_Ljzt k

Xij,_bXbk,cz X_c,=_ = X jk,_bXi_,=_X_b,_ , (5)

i.e., in compact tensor notation, the Yang-Baxter equation for X (in the "braid" version)

X12X23X12 = X23X12X23. (6)

182



t t
Similarly, for AiAjAk, one gets the two conditions

,Sji6kx - Xj_,,,: + Zjk,,x - X_k,_bZ_b,ix = O, (7)

and

Zkz,acZja,ibXbc,xy : X jk,abZbz,cyZac,ix,

which may be written in compact form as

(112 -- X12)(112 + ZI2) -- O,

(s)

(9)

and

Z23Z12X:3 = X,2Z23Z,2. (10)

From the Hermiticity properties of the generators, it follows that the remaining two triple products

AiAjA k and AiAjA _ will be associative if A_A_A_ and AiA_A _ are so. Hence, eqs. (6), (9), and

(10) are the only associativity conditions of algebra (4).

Let now R be any N 2 x N 2 solution of the Yang-Baxter equation

R12R,3R23 = R23R13R12. (11)

Then the corresponding braid matrix /_ = rR, where r is the twist operator (i.e., ria,kt = ¢5i16jk),

satisfies an equation similar to (6).

If /_ has three distinct eigenvalues As, o_ = 1, 2, 3, and satisfies a Birman-Wenzl-Murakami

(BWM) condition 2

(R- All)(/}- A2I)(/_- A3I) = O, (12)

then with each eigenspace of/_, one can associate two solutions of the set of associativity condi-

tions (6), (9), and (10). In terms of the projector

(/_- A°I) (13)

onto the elgenspace corresponding to the eigenvalue X,, these two solutions can be written as

I - X __ T'_ and Z -- -A;1/_ or Z -- -A_/_-'. (14)

Considering for instance Z = -A_1/_ leads to the following deformed oscillator algebra (written

in compact tensor form)

t t t t q* g,m_ 1,2- A-_'Rt'm_A,, (15)A2A, = SA, A2, A, A2 = _ A2A,, =

where S = TX is found hiom (13) and (14), and t, means transposition with respect to the first

space in the tensor product.
Several examples of such deformed oscillator algebras have been worked out !o far [9]-[11]. In

all cases, the solution of the Yang-Baxter equation that has been considered is the fundamental R-

matrix of some classical quantum group. In such circumstances, the deformed oscillator algebras

2The SUq(n)-covariant algebra constructed by Pusz and Woronowicz [5] corresponds to the simpler case where

/_ has only two distinct eigenvalues, and satisfies a Hecke condition (see Sec. 3).
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are left invariant under the transformations induced by the quantum group. The construction

presented here is not restricted however to such a choice, and any solution of (11) and (12) might

actually be used. In a similar way, deformed oscillator algebras differing from that of Pusz-

Woronowicz have been built by considering non-standard solutions of the Yang-Baxter equation

and the Hecke condition [12].

The algebras constructed in refs. [9]-[11] include both standard and non-standard ones. The

former [9,10] are either of q-bosonic or q-fermionic type, meaning that whenever q _ 1, they go

over smoothly into ordinary bosonic or fermionic algebras, respectively. The latter [11], on the

contrary, do not have such a smooth behaviour, but share instead some features with the quon

algebra [13]. In the next section, we shall consider in more details a covariant q-bosonic algebra

generalizing that of Pusz-Woronowicz.

3 An SUq(n)× SUq(m)-Covariant q-Bosonic Algebra

The SUq(n) quantum group [1] is a complex associative algebra generated by I and the noncom-

mutative elements Tij, i, j = 1, ..., n of an n x n matrix T, subject to the relations

RT1T2 =_T2T1R, detq T = 1, (16)

and the *-involution condition

T*=(T-1) t, (17)

with q real. In (16), detq denotes the quantum determinant, and R is the fundamental R-matrix

associated with the An-1 series of Lie algebras,

n n

R=qZeii®eii+ E eii®ejj +(q--q-l) Z eo ®eji,
i=1 i,j=l i,j=l

iCj i<j

(18)

where (eo)kt = 6ik$jl. The coproduct, counit and antipode are defined by

A(T) = TI_T2, e(T) = 1, S(T) = T -_, (19)

where A(Tij) = T_k ® Tkj.

The braid matrix /), cqrresponding to (18), is a real symmetric matrix with two distinct

eigenvalues, q and -q-_. T_eir respective multiplicities are ½n(n + 1) and ½n(n.- 1), i.e., the

dimensions of the symmetric and antisymmetric irreps [26], and [120],_ of SUq(n). IThe/)-matrix

satisfies the Hecke condition

(R - qI)(R + q-_I) = 0. (20)

Similar relations are valid for SUq(m). Its generators and fundamental R-matrix will be

denoted by T,t, s, t = 1, ..., m, and R., respectively, to distinguish them from the corresponding

quantities for SUq(n). Note that T 0 and T,t are assumed to commute with one another.

For the product SU_(n) x SUq(m), one can introduce a "large" R-matrix, R = q-_R'R, of

dimension (nm) 2 x (nm) 2 [10]. Its matrix elements are defined by

iZl(is)(jt),(ku)(lv) = q-l Rij,klT_,st,uv" (21)
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From the properties of the two "small" braid matrices /_ and 7_, it follows that /_ = q-1/_7_

has three distinct eigenvalues q, _q-i and q-a, with respective multiplicities corresponding to

the dimensions of the representations [261.[261m, [26],[126]m + [12(1],_[26]_, and [1261.[1=61 of

suq(n) x SUq(rn), and satisfies the BWM condition (12).

By applying the results of the previous section to the antisymmetric (reducible) eigenspace of

associated with the eigenvalue _q-1 one gets a deformed oscillator algebra of type (15), which

will be denoted by Aq(n,m), and whose defining relations are [10]

A_AI * t A2AI 121 qRq AIA2, (22)= SAxA2, A2Ax = A1A2S, = +

where

S=r(I--(q+q-')'PA), "pA= (Fl-qI)(Fl-q-3l) (23)
(q + q-1)(q-, + q-3)'

and the creation and annihilation openators A_s, A, now have two indices, i = 1, 2, ..., n, and

s = 1, 2, ..., m. Whenever q --+ 1, R and S go over into I, so that (22) becomes an ordinary

bosonic algebra.

The defining relations (22) of the q-bosonic algebra .Aq(n, rn) may be rewritten in terms of the

two "small" R-matrices as

RAtt A2' : A_AIR, RA2A, = axa2R, A2AI : 121._"21 "3l- Rt'Rt'AIA2, (24)

or, in a more explicit form, as

AksAttRij,kt t t

Rij.klAttAks

Ai_A_t

t t
= Aj_A,,R_,,,,_t,

= Aiu AjoTE,,_.,t,
t

= _ijtSst + Rki,flT"_us,tvAkuAlv.

(25)

Let us consider the map cp: Aq(n,m) _ Aq(n,m) Q (SUq(n) x SUq(,n)), defined by

A'it. _p(A [_) t= = AjtTjiTt,,

}A'i, = _(Ais) = AjtT_Tt*_ = Ti-_iL-(aA.ct, (26)

where the elements Tij and _t of SUq(n) x SUq(m) are assumed to commute with A!_ and Ai_. As

a consequence of (16) and its counterpart for SUq(rn), this map leaves the defining relations (25)

of Aq(n,m)invariant. Hence, the latter is an SUq(n) x SUq(m)-covariant algebra.

In the next section, an important part will be played by the modified annihilation operators

A. : Aj,Cj,e,o, c_ = (-1)'_--/q-("-2./+')/26./,i,, Cts = (-1)m-tq-('_-2t+a)126t,, ,, (27)

where i' = n + 1 - i, s' = m + 1 - s. Eq. (24) can be rewritten in terms of At, _i._, as

RAIA = A_AITg, RA,A 2 = A2AITg, A2AI '--- C12C12 71-q2Alf12R-17_-', (28)

where/) is defined by

n B n

= Y_ ei, ® ei,i, + q _ eii® ej3 + (q - q-') Y_ (-q)i-J+%ij ® ei,./,,
i=1 i,j=l ij=l

iCj' i<j

(29)
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and a similar definition holds for 7_. Under map _2 of eq. (26), A,s is transformed into

A'is = _(Ais)= Ajt_'ji_ts ' _' = C-I(T-I)tc, _t" -C-'(T-')tc. (30)

Finally, combining eqs. (18) and (25) yields the detailed form of the .Aq(n, m) defining relations

t t q-lA[tA_ O, < t,AisAit - = s

t t _-IAt _t
Ai,Ajs - q _j,.'-_i, = O, i < j,

t t A_ta_, O, i>j, s<t,AisAjt -- = ,

t t t t _At At
Ai.Ajt - AjtAis = -(q - q- j._j.._.,

and

i < j, s < t,

(31)

Ai,AJt-A}tAi, = O, i#j, s¢t,
s--1

Ai, AJ, _ qA},Ai s = (q _ q-X) _ A}tAit ' i _ j,

Ai_A!t - qA!,A,,

AisA_s 2 t- q Ai, Ai,

t=l

i-1

(q_ q-l)y_ A}tAjs ' s ¢ t,
j=l

i--1 s--1

,+lq ,-- AjsAjs + E A_tAit

-- t=l

)_(q-2_ 1) y_A_tA, t ,
j=l t=l

(32)

together with the Hermitian'conjugates of (31). Whenever m = 1, substituting A!, [4i for A_I , Ail

in (31) and (32) yields the Pusz-Woronowicz relations (3) for arbitrary n values. Hence, the

covariant q-bosonic algebra .Aq(n, m) is a generalization of that of Pusz-Woronowicz for values of

m greater than 1.

4 Alternative Derivation in Terms of Uq(?/2)

An alternative approach to the construction of covariant deforpaed oscillator algebras, based upon

q-algebras, has been developed elsewhere [14,15]. In the case of the algebra Aq(n, m) introduced in

the previous section, one considers the q-algebra Uq(n)-F uq(m). The Cartan-Chevalley generators

of uq(n) are denoted by Eii= (Eli) t, i = 1, 2, ..., n, Ei,i+l, Ei+,,; = (Ei,i+,) t, i = 1, 2, ..., n - 1,

and satisfy the commutation relations

[Eii,Ejj] = O, [Eii,Ej,j+,]=(_ij-6id+l)Ej,j+,,

[Eii,Ej+I,j] = (_i,j+l - 6ij)Ej+Lj, [Ei,i+l,Ej+,,j] = _ij[Hi]q, (33)

together with the quadratic and cubic q-Serre relations. In (33), Hi -Eii - Ei+l,i+l. The algebra

is endowed with a Hopf algebra structure with coproduct A, counit e, and antipode S, defined by

A(Eii) = Eii ® I + I ® E,, A(Ei,i+l) : Ei,i+l ® qHi/2 + q-Hi/2 ® Ei,i+l '
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A(Ei+l,i) = E_+,,_ (_ qH,/2 -t- q-H,/2 _ Ei+,,i, (34)

e(E,) = e(Ei,i+,) = e(E{+l,{) = O, (35)

S(E,) = _E,, S(E_,i+I) = -qEi,_+a, S(Ei+l,i) = -q-'Ei+,,_. (36)

The Cartan-Chevalley generators of uq(m) are denoted by Es,, s = 1, 2, ..., m, Es,,+l, E,+I,_,

s = 1, 2, ..., m- 1, and satisfy relations similar to (33)-(36), while commuting with the generators

of uq(n).

In the approach based upon uq(n)+uq(m), the q-bosonic creation operators A!s, i = l, 2,..., n,

s = 1, 2, ..., m, belonging to .Aq(n, m), are defined as the components of a double irreducible

tensor T [161"[161" with respect to this q-algebra. This means that they fulfil the relations

EjiAi+l,s,Ejj(A_s) _hjia_ _ Ej,j+I(A_s ) A t t t= , = 'hi,i-1 i-1,,, Ej+I,j(A_,) = (37)

£,t(A_,) _h,,a,_ Ett+I(A_,) t == , , = _ht,s_lAi,s_,, _.t+l,t(A_s) _tsA[,s+,, (38)

where, for any uq(n)+ uq(m) generator X, X(A_s) denotes the quantum adjoint action X(At) =

t 2_2rXIA,,S(Xr), with A(X) = _2rX: ® X2. The modified annihilation operators fi-,_, i = 1, 2,

..., n, s = 1, 2, . .., m, of eq. (27), are s!milarly defined as the components of a double irreducible

tensor T [6-1]" [6-1]m with respect to uq(n ) + uq(m), and satisfy the relations

Ejj(Ais) : -_ji,_is, Ej,j+l(Ais ) : ¢_ji, Ai_l,s , Ej+l,j(Ais ) : _j,it_lAi+l,s,_ (39)

£tt(Ais) : _hts, Ais, £t,t+l(Ais ) : _ts, Ai,s_l ' £t+a,t(Ais) : Et,s, lAi,s+X . (40)

The operators At and ._ii, can be explicitly written down in terms of m independent copies

of the Pusz-Woronowicz operators [14]. By using such expressions and exploiting the tensorial

character of the operators, it is straightforward to prove that their q-commutation relations are

given in coupled form by

[A t, At] [26]"['_61m= [At, At] [1_61"t_6]"= [A,A] t6-mt_(-'l_lm = [A, A] [6(-1)']n[l_-2]m = 0,

[/i, At] t'6-1]"t16-']m = [.,i.,At]_ -']'[6]m = [A, A]q.t[6]n[16-1]_ :0, (41)

[A, at116]"[5]"_ = _/[n]q[rn]qJqn+rn

where, for simplicity's sake, the row labels of the coupled uq(n) + u_(m) irreps have been dropped.

In (41), the coupled q-commutator of two double irreducible tensors T [:_d'[x_]" and U [_;]'[:e_]_ is

defined by [14]

[Zta,]nta_]., ata;l.t_;]._] t^']"t^_]"
(M1)n(M2)mqC*

= [Tt:''I't:_:]" × Ut;q]"[_]_] [Ad"tA2l"(M1)ntM2)m-- (- 1)'q'_[Ut:'ll"tx_]" × Zt:"lnt_l']ta'l"t^+'J(M1)ntM2)m"(42)

Here

e = ¢([/_11,_) + ¢([/_;],_) -- ¢([A1]n) + ¢([)_2]m) h" ¢([ 2]m) -- ¢([A2lm),
7l m

¢([._1],_) - 1 _--_(n + 1 - 2i)_,i, ¢([A2]m) = i _-_(m + 1 - 2.sl)_2s, (4312
i=1 s=l
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and

[Zt_ll,t_],,, × Ut:qJ,,t_],, ] t^_],tA_],-(M_).(M2)=

= Y_ ([_1_"(la_)"_[_V'_"(_')"_[A_]_(M_)")q([)_2_È_(p2)m_[_;]_(_;)'_[A2]_(M2)m)q
I t(m). (u2)-,(ul). u_),-

T[Xfl"[a2]" rr[_]"[_]" (44)x _(,_).(,2).. v(u_).(u_)m,

where (, I)q denotes a uq(n) or uq(m) Wigner coefficient.

By using the values of the latter, eq. (41) can be written in an explicit form [14]. The resulting

relations coincide with eqs. (31) and (32), thereby proving the equivalence of the two constructions

of .Aq(n,m) based upon SUq(n) x SUq(m) and uq(n) + uq(m), respectively.
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