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Abstract

In this talk it is shown that in one version of q-algebras there exists states -a subset of the

coherent states- that have negligible dispersion in energy, position and momentum.

1 General remarks

This talk is devoted to the construction of localized states in deformed quantum mechanics. These

states will be exhibited explicitly. A localized state is defined as one whose dispersion vanishes

or that is at least near zero. To start with I will say that the version of q-algebras [1, 2, 3, 4, 5]

that will be used in the sequel is AAt - qAtA = I where q : 0 _ 1. The operators A and At are

realized as operators on a space of analytic functions of a complex variable z as follows

f(z)-f(qz)

Af(z) = (1-q)z = Df(z) (1)

Atf(z)=zf(z) (2)

The space of functions -denoted Hq- has an inner product (f,g) defined by [10, 1, 4] see also

[6, 9, 7, 8]

f _, jo"-,,-(f,g) = D:zf*(z)m(I z J2)g(z) = _ Jo D(I z ) dCf*(z)m(I z 12)g(z) (3)

where the kernel m(I z 12) is fixed by the requirement that A has to be the hermitian conjugate

of At. The explicit form of the kernel rn(I z 12) is

1

m(I z 12) = expq(qlz 12) (4)

where the deformed exponential expq(z) is defined as the solution to the equation Df(z) = f(z)

and has the explicit expression
oo Z n

 xp (z) = (5)
nmO
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The box symbol [n] is defined as [n I = 11-7-___;the special value with n = c¢ is given by [c¢ l =

and the deformed factorial is defined as [n]! = [1] ... [n I and [1]! = 1. At this point it is convenient

to remark that the form of the box symbol is intimately related to the particular version of the

q-algebra that is being used[while the realization 1 and 2 is not. See [11].
I z n I

Under the inner product 3 the set of functions u,(z) = [-7' n = 0,..., _ are orthonormal.

It is clear that u,(z) is an eigenfunction of the operator z_ with eigenvalue n; in fact z_ is the

number operator. To each function _L,(z) there corresponds a ket [ n > which is an eigenket of the

number operator. As a further remark, it is clear from the deflnition of the deformed exponential

function that its series expansion converges in a finite region of the complex z-plane; this region
is defined by[z l< [c_].

2 Coherent states

Coherent states are defined as eigenfunctions of the anihilation operator. Each function will be

labelled with a complex number/3 so that the function fa(z) represents the coherent state I/3 >

in the ket notation. The explicit expression for the coherent state f_(z) is

= c(/3)expq(/3z)= c(/3),,=o In]!½

where the normalization constant C(/3) is given by

1

C(/3)2 - expq(I /3 12)

(6)

(7)

The set of all coherent states is overcomplete as seen by the fact that the functions fa(z) are

not orthogonal to one another and that a resolution of the identity can be constructed with them.

This construction requires that the identity be resolved both in terms of the orthonormal set of

functions u,,(z) defined above and in terms of coherent states. This leads to the equation

oo

i= E u:(z),,.(z)=f D2/3M([/312)r(z)f(z) (8)

where the kernel M(I /3 12) is obtained by requiring that the above equation be satisfied. Its

explicit expression is [5]

expq(I /3 12)

M(I/3 12) = expq(ql_ 12) (9)

At this point it is convenient to reconsider the convergence question. The coherent states are

constructed so as to be normalized. This implies that the region in the/3 -complex plane allowed

for the label of the coherent states is I/3 [2< [c_]. The same upper bound is found for [ z 12 to

have a convergent power series.As a result it is found that the functions that belong to the Hilbert

space Hq are analytic in a finite region of the complex z-plane. This region extends to the whole

complex z-plane when q goes to 1 and reduces to the unit circle when q goes to zero.
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3 Localization

To study localization two hermitian operators Q and P will be introduced in such a way that their

relation to the creation and anihilation operators A and At resembles closely the relation valid

for q=l. Then Q and P are written in the form [12]

Q = sA + s'At, P = rA + r'A t (10)

From the commutation relations for A and At it is found that Q and P satisfy

[Q,P] = (rs" - r's)[1 + (q- 1)A tA] (11)

which reduces to the usual commutation relation for the position and momentum operators when

q=l alter a particular selection of the constants r and s that appear in equation (10). This

justifies calling Q the deformed position operator and P the deformed momentum operator.

From the commutation relation equation(11) for Q and P it follows the uncertainty relation

(AQ)_(Ap)2 I > I< [Q,P] >_,1_ (12)
- 4

In equation (12) (AQ)_ =< Q2 >l _ < Q >3 and < Q >1= (f, Qf); f is any function in Hq.

Now the expectation values and dispersions will be computed using the coherent state basis (that

means that f(z) is taken as f_(z)). The results are

(AQ),_ =1_12[1+ (q- 1) 1/3121

(Ap)_ =1, 12[1+ (q- 1) 1/312]

< PQ >8 - < QP >_= (rs* - r's)[1 + (q- 1) 1/312]

(13)

(14)

(15)

From these results it follows that, unlike the non-deformed (q= 1) case, the uncertainties depend

on the label/3 of the particular coherent state used to compute them. Notice that if q=l then

all uncertainties are constant. The fact that the uncertainties depend on/3 is the crucial result to

exhibit localization; in fact, if l3 ]2 has a value near _ which is an annulus near the boundary

of the convergence region then all uncertainties in equations(13), ('14) and (15) are negligible.

So those coherent states whose labels are near the boundary show localization according to the

definition stated above. Moreover, near the boundary the operators Q and P are commuting, at

least in the weak sense that < PQ >8 - < QP >8 tends to 0. Those coherent states that are

localized behave as classical states in a much closer way than the usual (q=l) coherent states

which exhibit minimum non-vanishing uncertainty. The deformed coherent states are in this sense

a better answer to the original Schroedinger question of finding those states that resemble classical

states than the ordinary coherent states.

Now I will show that the deformed coherent states are minimum uncertainty states and that

they can be generated by the action of a shifting operator acting on the vacuum. To start with,

the right-hand side of 12 (T denotes the right-hand side of 11) is found to be

I<T>_12=lrl21sl2[2-cxp2i(¢r-¢s)-exp2i(¢,-¢,)][l+(q-1)l/312] (16)
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which tends to zero when I fl [2 tends to y_q; in the above equation Cr and ¢, denote the phases of

the complex numbers r and s, respectively. If exp2i(br - ¢_) = -1 then the equality sign is valid

in equation (12) so that for any fixed value of fl the corresponding coherent state has minimum

uncertainty; on the other hand, if the boundary of the convergence region is approached both

sides of 12 tend to zero.

4 Shifting operator

Next, turn to the shifting operator. Notice that the function f_(z) representing the coherent state

labelled by/3 can be written

fz(z) = C(fl)expq(/3Al)fo(z) (17)

where fo(z) = 1 represents the vacuum state. Then

f_ = C(/3)Dq(A, At;/3)fo (18)

where
1

Dq(A, At;/3) = expq(/3At) expq-(/3*A) (19)

Dq(A, AJ;/3) is the shifting operator. It follows that n_ -_ # Dqt so that nq is non-unitary. The

action of Dq(A, At;/3) on fo(z) generates unnormalized coherent states; that is why the factor

C(/3) appears in an explicit way. Finally, it is easy to verify that Dq(A, At;/3) satisfies

Dq(A, At;/3)ADq'(A, At;/3)= expq(/3At)
expq(q/3At) [A- /31]

(20)

which gives the usual result when q = 1. For labels c_ ,/3 and 7

Dq(A, At;_)Dq(A, AI;/3) # Dq(A, At;7 ) (21)

5 Hamiltonian

The last point concerns the hamiltonian of the system. This is constructed from the commutation

relation for Q and P and has the form

hq = AAt + At A_

whose uncertainty is

Q2 p2

2Is [2 + sir ]l_____ (22)

(Ahq)g=1/3 Is [1+ (q- 1) 1/31=1 (23)

which tends to zero when [ /3 12 approaches _--_. This is another indication that the system

described by the coherent states near the boundary of the convergence region resembles a classical

system.

To summarize: when 1/3 12 is near _ then (AQ)_, (AP)_), (Ahq)_ and < PQ >_ - < QP >_

all tend to zero. This corresponds closely to the behavior of a classical system.
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