GEOMETRIC PHASES, EVOLUTION LOOPS AND GENERALIZED OSCILLATOR POTENTIALS

David J. Fernández C.
Departamento de Física, CINVESTAV
A.P. 14-740, 07000 México D.F., MEXICO

Abstract

The geometric phases for dynamical processes where the evolution operator becomes the identity (evolution loops) are studied. The case of time-independent Hamiltonian with equally spaced energy levels is considered; special emphasis is made on the potentials having the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and their recently found coherent states.

1 Introduction

Departing from Berry's work [1], a geometric phase β has been associated to the cyclic evolution of a vector state $|\psi(t)\rangle$, i.e., $|\psi(\tau)\rangle=e^{i \phi}|\psi(0)\rangle$, where τ is the period, $\langle\psi(t) \mid \psi(t)\rangle=1$, and $\phi \in \mathbf{R}$. For a non-relativistic system with Hamiltonian $H(t), \beta$ takes the form [2]:

$$
\begin{equation*}
\beta=\phi+i \int_{0}^{\tau}\langle\psi(t)| \frac{d}{d t}|\psi(t)\rangle d t=\phi+\hbar^{-1} \int_{0}^{\tau}\langle\psi(t)| H(t)|\psi(t)\rangle d t . \tag{1}
\end{equation*}
$$

The geometric phase describes some curvature effects arising on the projective space \mathcal{P} associated to the system's Hilbert space $\mathcal{H}: \beta$ turns out to be the holonomy of the horizontal lifting of the closed trajectory $|\psi(t)\rangle\langle\psi(t)| \in \mathcal{P}$ to \mathcal{H}.

Eq.(1) is valid for any cyclic evolution, regardless of whether or not it is induced by a timedependent Hamiltonian. There is a widespread believing, however, that β becomes non-null just when the Hamiltonian inducing the cyclic evolution is time-dependent. This could be understood if one realizes the great influence of Berry's article; so one could think of Eq.(1) as applied to the cyclic evolutions of the eigenstates of a cyclic $H(t)$ changing adiabatically in time [1]. Making use of this idea, $\beta=0$ for the eigenstates of a time-independent Hamiltonian H. In this paper we are going to show that for any H having at least two bounded states there are a lot of cyclic evolutions for which $\beta \neq 0$.

On the other hand, some developments in the analysis of the dynamics of a quantum system led to the concept of evolution loop (EL) [3, 4]. An evolution loop is a specific dynamical process, induced by time-dependent [3,4$]$ or time-independent Hamiltonian [5], whose evolution operator becomes the identity 1 (modulo phase) for a certain time $\tau>0$ (the loop period):

$$
\begin{equation*}
U(\tau)=e^{i \phi} 1, \tag{2}
\end{equation*}
$$

where $U(0)=1$. The EL is interesting because, if perturbed by some additional external fields, it can induce any unitary transformation of \mathcal{H} as the result of the small precessions of the distorted loop [6]. There is, moreover, an obvious interelation between the evolution loops and the geometric phases.

2 Geometric phases and evolution loops

In this work, we restrict the discussion to systems with a time-independent Hamiltonian whose evolution operator performs an evolution loop. The main property of these systems is that any state evolves cyclically from $t=0$ until $t=\tau$:

$$
\begin{equation*}
|\psi(\tau)\rangle=e^{i \phi}|\psi(0)\rangle \tag{3}
\end{equation*}
$$

According to (1), $|\psi(t)\rangle$ will have associated, in general, a non-null geometric phase. Indeed, because $U(t)=e^{-i H t / \hbar}$ commutes with H we have:

$$
\begin{equation*}
\beta=\phi+\hbar^{-1} \int_{0}^{\tau}\langle\psi(0)| U^{\dagger}(t) H U(t)|\psi(0)\rangle d t=\phi+\hbar^{-1} \tau\langle H\rangle \tag{4}
\end{equation*}
$$

where $\langle H\rangle=\langle\psi(0)| H|\psi(0)\rangle$. In terms of the basis $\left\{\left|E_{m}\right\rangle\right\}$ of eigenstates of $H,|\psi(0)\rangle=\sum_{m} c_{m}\left|E_{m}\right\rangle$ with $c_{m}=\left\langle E_{m} \mid \psi(0)\right\rangle$, and Eq.(4) becomes:

$$
\begin{equation*}
\beta=\phi+\hbar^{-1} \tau \sum_{m}\left|c_{m}\right|^{2} E_{m} \tag{5}
\end{equation*}
$$

There are some interesting systems whose time-independent Hamiltonian induces evolution loops (see, e.g., $[7,5,8,9]$). We will illustrate this assertion with the simplest generic case. Suppose that H has an equally spaced spectrum of the form:

$$
\begin{equation*}
E_{n}=E_{0}+n \Delta E \tag{6}
\end{equation*}
$$

where ΔE is the level's spacing, E_{0} is the ground state energy and $n=0,1, \cdots, N$, being N either finite or infinite. The evolution operator reads:

$$
\begin{equation*}
U(t)=\sum_{n=0}^{N} e^{-i E_{n} t / \hbar}\left|E_{n}\right\rangle\left\langle E_{n}\right| \tag{7}
\end{equation*}
$$

As can be seen, an evolution loop is present at $\tau=2 \pi \hbar / \Delta E$:

$$
\begin{equation*}
U(\tau)=\sum_{n=0}^{N} e^{-i 2 \pi\left(E_{0}+n \Delta E\right) / \Delta E}\left|E_{n}\right\rangle\left\langle E_{n}\right|=e^{-i 2 \pi E_{0} / \Delta E_{1}} 1 \tag{8}
\end{equation*}
$$

By comparing with (2), $\phi=-2 \pi E_{0} / \Delta E$, and according with (4-5) the geometric phase for the cyclic state $|\psi(t)\rangle$ is:

$$
\begin{equation*}
\beta=2 \pi \frac{\left(\langle H\rangle-E_{0}\right)}{\Delta E}=2 \pi \sum_{n=1}^{N} n\left|c_{n}\right|^{2} \geq 0 \tag{9}
\end{equation*}
$$

By restricting β (modulo 2π) to the interval $[0,2 \pi$) one can interpret (9) in the following way: β measures the energy excess in dimensionless units of $\langle H\rangle$ with respect to its nearest energy level E_{k} (see Fig.1).

FIG. 1. Schematic representation of the $N+1$ energy levels and the geometric phase for a system with equally spaced spectrum.

Suppose now that, due to some physical reasons, we are faced with a situation involving just two energy levels of H. Restricting considerations to the subspace \mathcal{E}_{2} generated by the two eigenstates $\left|E_{0}\right\rangle$ and $\left|E_{1}\right\rangle$ it can be shown that the evolution operator performs an evolution loop. Formulae (6-9) are valid in this situation with $N=1$ and $\tau=2 \pi \hbar / \Delta E$. In particular, (9) becomes $\beta=2 \pi\left|c_{1}\right|^{2}$, where c_{1} is the component along $\left|E_{1}\right\rangle$. As there are an infinite number of linear combinations $c_{0}\left|E_{0}\right\rangle+c_{1}\left|E_{1}\right\rangle$ such that $\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1, c_{0} \neq 0$ and $c_{1} \neq 1$, we have shown the following: for any H having at least two bounded states there are an infinity of cyclic evolutions for which $\beta \neq 0$ (see also [10]).

Other examples for which formulae (6-9) can be applied are the following: a spin- j system interacting with a constant homogeneous magnetic field \mathbf{B}; the harmonic oscillator potential and all the Hamiltonians having the same spectrum as the harmonic oscillator (generalized oscillators). Next, we will derive the geometric phases for a family of generalized oscillator Hamiltonians.

3 The generalized oscillator potentials

The simplest method to derive a family of generalized oscillator potentials was introduced by Mielnik by means of a modification of the well known factorization method [11]. Consider the
classical factorization of the harmonic oscillator Hamiltonian in dimensionless coordinates $m=$ $\omega=\hbar=1$:

$$
\begin{equation*}
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right), \quad a a^{\dagger}=H+\frac{1}{2}, \quad a^{\dagger} a=H-\frac{1}{2}, \tag{10}
\end{equation*}
$$

where $a=(d / d x+x) / \sqrt{2}$, and $a^{\dagger}=(-d / d x+x) / \sqrt{2}$ are the ordinary ladder operators with $\left[a, a^{\dagger}\right\}=1$. The eigenfunctions and eigenvalues of the harmonic oscillator can be constructed using the relations

$$
\begin{equation*}
H a^{\dagger}=a^{\dagger}(H+1), \quad H a=a(H-1) \tag{11}
\end{equation*}
$$

The ground state $\psi_{0}(x)$ has eigenvalue $E_{0}=1 / 2$ and satisfies $a \psi_{0}(x)=0 \Rightarrow \psi_{0}(x) \propto e^{-x^{2} / 2}$, while the $\psi_{n}(x)$'s associated to $E_{n}=n+1 / 2$ are:

$$
\begin{equation*}
\psi_{n}(x)=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}} \psi_{0}(x) . \tag{12}
\end{equation*}
$$

The generalized factorization method [11] consists in looking for more general operators

$$
\begin{equation*}
b=\frac{1}{\sqrt{2}}\left(\frac{d}{d x}+\beta(x)\right), \quad b^{\dagger}=\frac{1}{\sqrt{2}}\left(-\frac{d}{d x}+\beta(x)\right), \tag{13}
\end{equation*}
$$

satisfying just one of relations (10):

$$
\begin{equation*}
b b^{\dagger}=H+\frac{1}{2} \tag{14}
\end{equation*}
$$

Hence, the unknown function $\beta(x)$ obeys the Riccati equation

$$
\begin{equation*}
\beta^{\prime}+\beta^{2}=1+x^{2} \tag{15}
\end{equation*}
$$

whose general solution is

$$
\begin{equation*}
\beta(x)=x+\frac{e^{-x^{2}}}{\lambda+\int_{0}^{x} e^{-y^{2}} d y}, \quad \lambda \in \mathbf{R} \tag{16}
\end{equation*}
$$

Now, the point is that $b^{\dagger} b$ is not related with the harmonic oscillator Hamiltonian, but it leads to a new operator H_{λ} :

$$
\begin{equation*}
b^{\dagger} b=H_{\lambda}-\frac{1}{2} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\lambda}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+V_{\lambda}(x) \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{\lambda}(x)=\frac{x^{2}}{2}-\frac{d}{d x}\left(\frac{e^{-x^{2}}}{\lambda+\int_{0}^{x} e^{-y^{2}} d y}\right)=\left(x+\frac{e^{-x^{2}}}{\lambda+\int_{0}^{x} e^{-y^{2}} d y}\right)^{2}-\frac{x^{2}}{2}, \quad|\lambda|>\sqrt{\pi} / 2 . \tag{19}
\end{equation*}
$$

The relationships analogous to (11) provide now the way to obtaining the eigenfunctions and eigenvalues of H_{λ} :

$$
\begin{equation*}
H_{\lambda} b^{\dagger}=b^{\dagger}(H+1), \quad H b=b\left(H_{\lambda}-1\right) \tag{20}
\end{equation*}
$$

Hence, the states $\theta_{n}(x)=b^{\dagger} \psi_{n-1}(x) / \sqrt{n}, n=1,2, \cdots$ form an orthonormal set of eigenfunctions of H_{λ} with eigenvalues $E_{n}=n+1 / 2$. However, $\left\{\theta_{n}(x), n=1,2, \cdots\right\}$ is not a basis of $L^{2}(\mathbf{R})$. There is a missing vector $\theta_{0}(x)$, orthogonal to $\theta_{n}(x), n=1,2, \cdots$. It turns out to be an eigenfunction of H_{λ} with eigenvalue $E_{0}=1 / 2$ satisfying $b \theta_{0}(x)=0$, and taking the form:

$$
\begin{equation*}
\theta_{0}(x) \propto \exp \left(-\int_{0}^{x} \beta(y) d y\right) \tag{21}
\end{equation*}
$$

The set $\left\{\theta_{n}(x), n=0,1,2, \cdots\right\}$ forms an orthonormal basis in $L^{2}(\mathbf{R})$; then $\left\{H_{\lambda}:|\lambda|>\sqrt{\pi} / 2\right\}$ is a family of Hamiltonians distinct of the harmonic oscillator one but having exactly the same spectrum as the oscillator. In the limit $|\lambda| \rightarrow \infty$, the harmonic oscillator potential is recovered, $V_{\lambda}(x) \rightarrow x^{2} / 2$.

We return now to our original subject. Due to the kind of spectrum of H_{λ}, relations (6-9) involving the evolution loops and the geometric phases can be applied here with $E_{0}=1 / 2, \Delta E=$ 1, $\tau=2 \pi, \phi=-\pi$ and $N=\infty$. In particular, $\beta=2 \pi\left(\left\langle H_{\lambda}\right\rangle-1 / 2\right)$, and when applied to the cyclic states $\left\{\theta_{n}(x), n=0,1,2 \cdots\right\}$ we recover again $\beta=2 n \pi$. Is there any other set of generic states for which we can evaluate explicitly the geometric phase?

The answer turns out positive if we consider the recently found coherent states of H_{λ} (the generalized coherent states (GCS) [12]. Let's denote them as $|z\rangle$ with $z \in \mathrm{C}$. The annihilation and creation operators of the system can be identified as:

$$
\begin{equation*}
A=b^{\dagger} a b, \quad A^{\dagger}=b^{\dagger} a^{\dagger} b \tag{22}
\end{equation*}
$$

Define now $|z\rangle$ by $A|z\rangle=z|z\rangle$. A direct calculation leads to:

$$
\begin{equation*}
|z\rangle=\frac{1}{\sqrt{{ }_{0} F_{2}\left(1,2 ;|z|^{2}\right)}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!\sqrt{(n+1)!}}\left|\theta_{n+1}\right\rangle, \tag{23}
\end{equation*}
$$

where $\left|\theta_{n}\right\rangle$ represents to $\theta_{n}(x)$ and ${ }_{0} F_{2}(1,2 ; y)$ is a generalized hypergeometric function $|13|$. Each $z \neq 0$ is a non-degenerate eigenvalue. However, $z=0$ is a double degenerate eigenvalue of A with eigenvectors $\left|\theta_{0}\right\rangle$ and $|z=0\rangle=\left|\theta_{1}\right\rangle$. It is possible to find a measure in the complex plane such that $\left\{\left|\theta_{0}\right\rangle,|z\rangle\right\}$ is complete in \mathcal{H}.

To evaluate the geometric phase $\beta_{G C S},\langle z| H_{\lambda}|z\rangle$ is needed. A direct calculation leads to:

$$
\begin{equation*}
\left\langle H_{\lambda}\right\rangle=\langle z| H_{\lambda}|z\rangle=1 / 2+\frac{{ }_{0} F_{2}\left(1,1 ;|z|^{2}\right)}{{ }_{0} F_{2}\left(1,2 ;|z|^{2}\right)} . \tag{24}
\end{equation*}
$$

Finally:

$$
\begin{equation*}
\beta_{G C S}=2 \pi \frac{{ }_{0} F_{2}\left(1,1 ;|z|^{2}\right)}{{ }_{0} F_{2}\left(1,2 ;|z|^{2}\right)} \tag{25}
\end{equation*}
$$

The behaviour of $\beta_{G C S}$, is shown in Fig.2. Notice that $\beta_{G C S}$ is independent of λ. Moreover, its behaviour is quite different compared with the standard coherent state (SCS) of the harmonic oscillator for which $\beta_{S C S}=2 \pi|z|^{2}$ (see Fig.2). The difference rests on the fact that the GCS do not tend to the SCS when $\lambda \rightarrow \infty$ and $A_{\infty} \equiv \lim _{\gamma \rightarrow \infty} A=a^{\dagger} a^{2} \neq a$ even though $V_{\lambda}(x) \rightarrow x^{2} / 2$ in this limit.

FIG. 2. The geometric phases versus z for the standard coherent states of the harmonic oscillator ($\beta_{S C S}$) and the coherent states of the generalized oscillator ($\beta_{G C S}$).

Acknowledgments

The author acknowledges CONACYT (México) for financial support.

References

[1] M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[2] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
[3] B. Mielnik, Rep. Math. Phys. 12, 331 (1977).
[4] B. Mielnik, J. Math. Phys. 27, 2290 (1986).
[5] D.J. Fernández C., Il Nuovo Cimento 107 B, 885 (1992).
[6] D.J. Fernández C. and B. Mielnik, Controlling Quantum Motion, to be published J. Math. Phys. (1994).
[7] M.M. Nieto and V.P. Gutschick, Phys. Rev. D 23, 922 (1981).
[8] A.N. Seleznyova, J. Phys. A 26, 981 (1993).
[9] M.G. Benedict and W. Schleich, Found. Phys. 23, 389 (1993).
$[10]$ D.J. Moore, Phys. Rep. 210, 1 (1991).
[11] B. Mielnik, J. Math. Phys. 25, 3387 (1984).
[12] D.J. Fernández C., V. Hussin and L.M. Nieto, Coherent States for Isospectral Oscillator Hamiltonians, to be published J. Phys. A (1994).
[13] H. Bateman, Higher Transcendental Functions, vol.1, A. Erdélyi ed. (McGraw Hill, New York, 1953).

