1995116564

124-77

N95-22981

GEOMETRIC PHASES, EVOLUTION LOOPS AND GENERALIZED OSCILLATOR POTENTIALS

David J. Fernández C. Departamento de Física, CINVESTAV A.P. 14-740, 07000 México D.F., MEXICO

Abstract

The geometric phases for dynamical processes where the evolution operator becomes the identity (evolution loops) are studied. The case of time-independent Hamiltonians with equally spaced energy levels is considered; special emphasis is made on the potentials having the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and their recently found coherent states.

1 Introduction

Departing from Berry's work [1], a geometric phase β has been associated to the cyclic evolution of a vector state $|\psi(t)\rangle$, i.e., $|\psi(\tau)\rangle = e^{i\phi}|\psi(0)\rangle$, where τ is the period, $\langle \psi(t)|\psi(t)\rangle = 1$, and $\phi \in \mathbf{R}$. For a non-relativistic system with Hamiltonian H(t), β takes the form [2]:

$$\beta = \phi + i \int_0^\tau \langle \psi(t) | \frac{d}{dt} | \psi(t) \rangle dt = \phi + \hbar^{-1} \int_0^\tau \langle \psi(t) | H(t) | \psi(t) \rangle dt.$$
(1)

The geometric phase describes some curvature effects arising on the projective space \mathcal{P} associated to the system's Hilbert space \mathcal{H} : β turns out to be the holonomy of the horizontal lifting of the closed trajectory $|\psi(t)\rangle\langle\psi(t)| \in \mathcal{P}$ to \mathcal{H} .

Eq.(1) is valid for any cyclic evolution, regardless of whether or not it is induced by a timedependent Hamiltonian. There is a widespread believing, however, that β becomes non-null just when the Hamiltonian inducing the cyclic evolution is time-dependent. This could be understood if one realizes the great influence of Berry's article; so one could think of Eq.(1) as applied to the cyclic evolutions of the eigenstates of a cyclic H(t) changing adiabatically in time [1]. Making use of this idea, $\beta = 0$ for the eigenstates of a time-independent Hamiltonian H. In this paper we are going to show that for any H having at least two bounded states there are a lot of cyclic evolutions for which $\beta \neq 0$.

On the other hand, some developments in the analysis of the dynamics of a quantum system led to the concept of *evolution loop* (EL) [3, 4]. An evolution loop is a specific dynamical process, induced by time-dependent [3, 4] or time-independent Hamiltonians [5], whose evolution operator becomes the identity 1 (modulo phase) for a certain time $\tau > 0$ (the loop period):

$$U(\tau) = e^{i\phi}\mathbf{1},\tag{2}$$

where U(0) = 1. The EL is interesting because, if perturbed by some additional external fields, it can induce any unitary transformation of \mathcal{H} as the result of the small precessions of the distorted loop [6]. There is, moreover, an obvious interelation between the evolution loops and the geometric phases.

2 Geometric phases and evolution loops

In this work, we restrict the discussion to systems with a time-independent Hamiltonian whose evolution operator performs an evolution loop. The main property of these systems is that any state evolves cyclically from t = 0 until $t = \tau$:

$$|\psi(\tau)\rangle = e^{i\phi}|\psi(0)\rangle. \tag{3}$$

According to (1), $|\psi(t)\rangle$ will have associated, in general, a non-null geometric phase. Indeed, because $U(t) = e^{-iHt/\hbar}$ commutes with H we have:

$$\beta = \phi + \hbar^{-1} \int_0^\tau \langle \psi(0) | U^{\dagger}(t) H U(t) | \psi(0) \rangle dt = \phi + \hbar^{-1} \tau \langle H \rangle, \tag{4}$$

where $\langle H \rangle = \langle \psi(0) | H | \psi(0) \rangle$. In terms of the basis $\{ | E_m \rangle \}$ of eigenstates of H, $| \psi(0) \rangle = \sum_m c_m | E_m \rangle$ with $c_m = \langle E_m | \psi(0) \rangle$, and Eq.(4) becomes:

$$\beta = \phi + \hbar^{-1} \tau \sum_{\boldsymbol{m}} |c_{\boldsymbol{m}}|^2 E_{\boldsymbol{m}}.$$
(5)

There are some interesting systems whose time-independent Hamiltonian induces evolution loops (see, e.g., [7, 5, 8, 9]). We will illustrate this assertion with the simplest generic case. Suppose that H has an equally spaced spectrum of the form:

$$E_n = E_0 + n\Delta E, \tag{6}$$

where ΔE is the level's spacing, E_0 is the ground state energy and $n = 0, 1, \dots, N$, being N either finite or infinite. The evolution operator reads:

$$U(t) = \sum_{n=0}^{N} e^{-iE_n t/\hbar} |E_n\rangle \langle E_n|.$$
(7)

As can be seen, an evolution loop is present at $\tau = 2\pi\hbar/\Delta E$:

$$U(\tau) = \sum_{n=0}^{N} e^{-i2\pi (E_0 + n\Delta E)/\Delta E} |E_n\rangle \langle E_n| = e^{-i2\pi E_0/\Delta E} \mathbf{1}.$$
(8)

By comparing with (2), $\phi = -2\pi E_0/\Delta E$, and according with (4-5) the geometric phase for the cyclic state $|\psi(t)\rangle$ is:

$$\beta = 2\pi \frac{\left(\langle H \rangle - E_0\right)}{\Delta E} = 2\pi \sum_{n=1}^N n |c_n|^2 \ge 0.$$
(9)

By restricting β (modulo 2π) to the interval $[0, 2\pi)$ one can interpret (9) in the following way: β measures the energy excess in dimensionless units of $\langle H \rangle$ with respect to its nearest energy level E_k (see Fig.1).

FIG. 1. Schematic representation of the N + 1 energy levels and the geometric phase for a system with equally spaced spectrum.

Suppose now that, due to some physical reasons, we are faced with a situation involving just two energy levels of H. Restricting considerations to the subspace \mathcal{E}_2 generated by the two eigenstates $|E_0\rangle$ and $|E_1\rangle$ it can be shown that the evolution operator performs an evolution loop. Formulae (6-9) are valid in this situation with N = 1 and $\tau = 2\pi\hbar/\Delta E$. In particular, (9) becomes $\beta = 2\pi |c_1|^2$, where c_1 is the component along $|E_1\rangle$. As there are an infinite number of linear combinations $c_0|E_0\rangle + c_1|E_1\rangle$ such that $|c_0|^2 + |c_1|^2 = 1$, $c_0 \neq 0$ and $c_1 \neq 1$, we have shown the following: for any H having at least two bounded states there are an infinity of cyclic evolutions for which $\beta \neq 0$ (see also [10]).

Other examples for which formulae (6-9) can be applied are the following: a spin-j system interacting with a constant homogeneous magnetic field **B**; the harmonic oscillator potential and all the Hamiltonians having the same spectrum as the harmonic oscillator (generalized oscillators). Next, we will derive the geometric phases for a family of generalized oscillator Hamiltonians.

3 The generalized oscillator potentials

The simplest method to derive a family of generalized oscillator potentials was introduced by Mielnik by means of a modification of the well known factorization method [11]. Consider the

classical factorization of the harmonic oscillator Hamiltonian in dimensionless coordinates $m = \omega = \hbar = 1$:

$$H = \frac{1}{2} \left(-\frac{d^2}{dx^2} + x^2 \right), \quad aa^{\dagger} = H + \frac{1}{2}, \quad a^{\dagger}a = H - \frac{1}{2}, \quad (10)$$

where $a = (d/dx + x)/\sqrt{2}$, and $a^{\dagger} = (-d/dx + x)/\sqrt{2}$ are the ordinary ladder operators with $[a, a^{\dagger}] = 1$. The eigenfunctions and eigenvalues of the harmonic oscillator can be constructed using the relations

$$Ha^{\dagger} = a^{\dagger}(H+1), \quad Ha = a(H-1).$$
 (11)

The ground state $\psi_0(x)$ has eigenvalue $E_0 = 1/2$ and satisfies $a\psi_0(x) = 0 \Rightarrow \psi_0(x) \propto e^{-x^2/2}$, while the $\psi_n(x)$'s associated to $E_n = n + 1/2$ are:

$$\psi_n(x) = \frac{(a^{\dagger})^n}{\sqrt{n!}} \psi_0(x).$$
 (12)

The generalized factorization method [11] consists in looking for more general operators

$$b = \frac{1}{\sqrt{2}} \left(\frac{d}{dx} + \beta(x) \right), \quad b^{\dagger} = \frac{1}{\sqrt{2}} \left(-\frac{d}{dx} + \beta(x) \right), \tag{13}$$

satisfying just one of relations (10):

$$bb^{\dagger} = H + \frac{1}{2}.\tag{14}$$

Hence, the unknown function $\beta(x)$ obeys the Riccati equation

$$\beta' + \beta^2 = 1 + x^2, \tag{15}$$

whose general solution is

$$\beta(x) = x + \frac{e^{-x^2}}{\lambda + \int_0^x e^{-y^2} dy}, \quad \lambda \in \mathbf{R}.$$
 (16)

Now, the point is that $b^{\dagger}b$ is not related with the harmonic oscillator Hamiltonian, but it leads to a new operator H_{λ} :

$${}_{\pm} b^{\dagger}b = H_{\lambda} - \frac{1}{2}, \qquad (17)$$

where

$$H_{\lambda} = -\frac{1}{2}\frac{d^2}{dx^2} + V_{\lambda}(x), \qquad (18)$$

with

$$V_{\lambda}(x) = \frac{x^2}{2} - \frac{d}{dx} \left(\frac{e^{-x^2}}{\lambda + \int_0^x e^{-y^2} dy} \right) = \left(x + \frac{e^{-x^2}}{\lambda + \int_0^x e^{-y^2} dy} \right)^2 - \frac{x^2}{2}, \quad |\lambda| > \sqrt{\pi}/2.$$
(19)

The relationships analogous to (11) provide now the way to obtaining the eigenfunctions and eigenvalues of H_{λ} :

$$H_{\lambda}b^{\dagger} = b^{\dagger}(H+1), \quad Hb = b(H_{\lambda}-1).$$
⁽²⁰⁾

Hence, the states $\theta_n(x) = b^{\dagger} \psi_{n-1}(x) / \sqrt{n}$, $n = 1, 2, \cdots$ form an orthonormal set of eigenfunctions of H_{λ} with eigenvalues $E_n = n + 1/2$. However, $\{\theta_n(x), n = 1, 2, \cdots\}$ is not a basis of $L^2(\mathbf{R})$. There is a missing vector $\theta_0(x)$, orthogonal to $\theta_n(x), n = 1, 2, \cdots$. It turns out to be an eigenfunction of H_{λ} with eigenvalue $E_0 = 1/2$ satisfying $b\theta_0(x) = 0$, and taking the form:

$$\theta_0(x) \propto \exp\left(-\int_0^x \beta(y)dy\right).$$
(21)

The set $\{\theta_n(x), n = 0, 1, 2, \dots\}$ forms an orthonormal basis in $L^2(\mathbf{R})$; then $\{H_{\lambda} : |\lambda| > \sqrt{\pi}/2\}$ is a family of Hamiltonians distinct of the harmonic oscillator one but having exactly the same spectrum as the oscillator. In the limit $|\lambda| \to \infty$, the harmonic oscillator potential is recovered, $V_{\lambda}(x) \to x^2/2$.

We return now to our original subject. Due to the kind of spectrum of H_{λ} , relations (6-9) involving the evolution loops and the geometric phases can be applied here with $E_0 = 1/2$, $\Delta E = 1$, $\tau = 2\pi$, $\phi = -\pi$ and $N = \infty$. In particular, $\beta = 2\pi(\langle H_{\lambda} \rangle - 1/2)$, and when applied to the cyclic states $\{\theta_n(x), n = 0, 1, 2\cdots\}$ we recover again $\beta = 2n\pi$. Is there any other set of generic states for which we can evaluate explicitly the geometric phase?

The answer turns out positive if we consider the recently found coherent states of H_{λ} (the generalized coherent states GCS) [12]. Let's denote them as $|z\rangle$ with $z \in \mathbb{C}$. The annihilation and creation operators of the system can be identified as:

$$A = b^{\dagger}ab, \quad A^{\dagger} = b^{\dagger}a^{\dagger}b. \tag{22}$$

Define now $|z\rangle$ by $A|z\rangle = z|z\rangle$. A direct calculation leads to:

$$|z\rangle = \frac{1}{\sqrt{{}_{0}F_{2}(1,2;|z|^{2})}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!\sqrt{(n+1)!}} |\theta_{n+1}\rangle,$$
(23)

where $|\theta_n\rangle$ represents to $\theta_n(x)$ and ${}_0F_2(1,2;y)$ is a generalized hypergeometric function [13]. Each $z \neq 0$ is a non-degenerate eigenvalue. However, z = 0 is a double degenerate eigenvalue of A with eigenvectors $|\theta_0\rangle$ and $|z = 0\rangle = |\theta_1\rangle$. It is possible to find a measure in the complex plane such that $\{|\theta_0\rangle, |z\rangle\}$ is complete in \mathcal{H} .

To evaluate the geometric phase β_{GCS} , $\langle z|H_{\lambda}|z\rangle$ is needed. A direct calculation leads to:

$$\langle H_{\lambda} \rangle = \langle z | H_{\lambda} | z \rangle = 1/2 + \frac{{}_{0}F_{2}(1,1;|z|^{2})}{{}_{0}F_{2}(1,2;|z|^{2})}.$$
(24)

Finally:

$$\beta_{GCS} = 2\pi \frac{{}_{0}F_{2}(1,1;|z|^{2})}{{}_{0}F_{2}(1,2;|z|^{2})}.$$
(25)

The behaviour of β_{GCS} , is shown in Fig.2. Notice that β_{GCS} is independent of λ . Moreover, its behaviour is quite different compared with the standard coherent state (SCS) of the harmonic oscillator for which $\beta_{SCS} = 2\pi |z|^2$ (see Fig.2). The difference rests on the fact that the GCS do not tend to the SCS when $\lambda \to \infty$ and $A_{\infty} \equiv \lim_{\gamma \to \infty} A = a^{\dagger}a^2 \neq a$ even though $V_{\lambda}(x) \to x^2/2$ in this limit.

FIG. 2. The geometric phases versus z for the standard coherent states of the harmonic oscillator (β_{SCS}) and the coherent states of the generalized oscillator (β_{GCS}).

Acknowledgments

The author acknowledges CONACYT (México) for financial support.

References

- [1] M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
- [2] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
- [3] B. Mielnik, Rep. Math. Phys. 12, 331 (1977).
- [4] B. Mielnik, J. Math. Phys. 27, 2290 (1986).
- [5] D.J. Fernández C., Il Nuovo Cimento 107 B, 885 (1992).
- [6] D.J. Fernández C. and B. Mielnik, *Controlling Quantum Motion*, to be published J. Math. Phys. (1994).

- [7] M.M. Nieto and V.P. Gutschick, Phys. Rev. D 23, 922 (1981).
- [8] A.N. Seleznyova, J. Phys. A 26, 981 (1993).
- [9] M.G. Benedict and W. Schleich, Found. Phys. 23, 389 (1993).
- [10] D.J. Moore, Phys. Rep. 210, 1 (1991).
- [11] B. Mielnik, J. Math. Phys. 25, 3387 (1984).
- [12] D.J. Fernández C., V. Hussin and L.M. Nieto, Coherent States for Isospectral Oscillator Hamiltonians, to be published J. Phys. A (1994).
- [13] H. Bateman, Higher Transcendental Functions, vol.1, A. Erdélyi ed. (McGraw Hill, New York, 1953).