19915116568

N95-22985

AN ALGORITHM FOR THE BASIS
OF THE FINITE FOURIER TRANSFORM
T. S. Santhanam

Parks College of Saint Louis University Cahokia, Illinois, 62206, U.S.A.

Abstract

The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.F.T.

Talk presented in the Second International Workshop on Harmonic Oscillators held in Cocoyoc, Mexico during 23-25 March, 1994 , to appear in the Proceedings.

I. INTRODUCTION

The finite Fourier transform matrix (F.F.T.) plays a fundamental role in many contexts and has been studied extensively [1-3]. It is central in the discussions on finite dimensional quantum mechanics based on Weyl's commutation relations [4] studied by the author in a series of publications [5]. The eigenvalues of this matrix were determined by Schur [1] and a simple argument to recover this result has been given earlier [6]. The calculation of the eigenvectors is not straightforward and many methods have been given in particular, by Mehta [7]. In Section IV, we present a new algorithm to find the eigenvectors.
II. EIGENVALUES OF S

The F.F.T. matrix S, which is unitary, is defined by

$$
S_{\alpha \beta}=\frac{1}{\sqrt{n}} \exp \left[\frac{2 \pi i}{n} \alpha \beta\right]
$$

$$
\begin{equation*}
\alpha, \beta=0,1,2, \ldots n-1 \tag{2.1}
\end{equation*}
$$

$$
\mathbf{i}=\sqrt{-1}
$$

and has many interesting properties

1) $\quad\left(s^{2}\right)_{\alpha \beta} \equiv I_{\alpha \beta}^{\prime}=\delta_{\alpha+\beta, o}$
$(\bmod n)$
Since $S^{2} f_{\alpha}=f_{-\alpha \bmod n}$, for a vector f_{α} with n components, S^{2} is called the parity operator
2) $\quad\left(s^{4}\right)_{\alpha \beta}=\delta_{\alpha \beta}$
like the usual Fourier transform.
3) The matrix S, which is by definition a symmetric matrix will diagonalize any circulant matrix.

From Equation (?-3), it is clear that the eigenvalues of S are simply ± 1 and $\pm i$. There is chen a degeneracy of the eigenvalues. The first problem will be to determine this. Luckily, Equations (2.1)-(2.3) can be repeatedly used to fix this [6]. If k_{1}, k_{2}, k_{3} and k_{4} denote the multiplicity of the eigenvalues taken in the order ($1,-1, i,-i$), Equation
(2.1) implies that

$$
\begin{align*}
\operatorname{Tr} s & =\frac{1}{\sqrt{n}} \sum_{\ell=0}^{n-1}\left[\exp \frac{2 \pi i}{n}\right]^{\ell^{2}} \\
& =\frac{1}{2}(1+i)\left[1+\exp \left(\frac{-i \pi n}{2}\right)\right] \tag{2.4}
\end{align*}
$$

and hence

$$
\begin{align*}
\operatorname{Tr} S & =\left(k_{1}-k_{2}\right)+i\left(k_{3}-k_{4}\right) \\
& =1 \text { for } n=4 k+1 \\
& =0 \text { for } n=4 k+2 \\
& =i \text { for } n=4 k+3 \\
& =(1+i) \text { for } n=4 k \\
k & =0,1,2, \ldots \tag{2.5}
\end{align*}
$$

From Equation (2) we infer that

$$
\begin{aligned}
\operatorname{Tr} s^{2} & =\left(k_{1}+k_{2}\right)-\left(k_{3}+k_{4}\right) \\
& =1 \text { for } n \text { odd } \\
& =2 \text { for } n \text { even. }
\end{aligned}
$$

We also have

$$
\operatorname{Tr} S^{4}=n=k_{1}+k_{2}+k_{3}+k_{4}
$$

Equations (2.5), (2.6) and (2.7) can be used to solve for k_{1}, k_{2}, k_{3} and k_{4} and one finds that

	$n=4 k+1$	$n=4 k+2$	$n=4 k+3$	$n=4 k$
k_{1}	$k+1$	$k+1$	$k+1$	$k+1$
k_{2}	k	$k+1$	$k+1$	k
k_{3}	k	k	$k+1$	k
k_{4}	k	k	k	$k-1$

III. EIGENVECTORS OF S

Let us decompose S into its primitive idempotents as

$$
S=\sum_{j=1}^{4} \quad i^{j} B(j)
$$

where

$$
\begin{align*}
& B(1)=\frac{1}{2} s+\frac{1}{4}\left(I-I^{\prime}\right) \\
& B(2)=-\frac{1}{2} c+\frac{1}{4}\left(I+I^{\prime}\right), \\
& B(3)=-\frac{1}{2} s+\frac{1}{4}\left(I-I^{\prime}\right), \\
& B(4)=\frac{1}{2} c+\frac{1}{4}\left(I+I^{\prime}\right), \tag{3.2}\\
& C_{\alpha \beta}=\frac{1}{\sqrt{n}} \cos \left(\frac{2 \pi}{n} \alpha \beta\right) \\
& s_{\alpha \beta}=\frac{1}{\sqrt{n}} \sin \left(\frac{2 \pi}{n} \alpha \beta\right), \\
& \alpha, \beta=0,1,2, \ldots n-1 \tag{3.3}
\end{align*}
$$

It is easily verified that

$$
\begin{equation*}
S B(j)=i^{j} B(j), \tag{3.4}
\end{equation*}
$$

thus the nonzero columnus of $B(j)$ yield the eigenvectors of S with eigenvalue i^{j}. Also, in analogy with the standard case, Mehta [7] has been able to express these eigenvectors in terms of Hermite functions with
discrete arguments.
IV. EIGENVECTORS OF S; AN ALTERNATE METHOD

Since the F.F.T. matrix S satisfies Equation (2.1) we construct the matrix [10]

$$
\begin{align*}
T & =S^{3}+s^{2} S_{d}+S S_{d}^{2}+S_{d}^{3} \\
& =I^{\prime}\left(S+S_{d}\right)+\left(S+S_{d}\right) s_{d}^{2} \tag{4.1}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{S}_{\mathrm{d}}=\text { diagonal } \mathrm{S} \tag{4.2}
\end{equation*}
$$

We find that

$$
\begin{align*}
S T & =S\left(s^{3}+s^{2} S_{d}+S s_{d}^{2}+s_{d}^{3}\right) \\
& =\left(I+s^{3} S_{d}+s^{2} s_{d}^{2}+S S_{d}^{3}\right) \\
& =\left(S_{d}^{3}+s^{3}+s^{2} S_{d}+S s_{d}^{2}\right) S_{d} \\
& =T S_{d} \tag{4.3}
\end{align*}
$$

If T is nonsingular,

$$
\begin{equation*}
\mathrm{T}^{+} \mathrm{ST}=\mathrm{S}_{\mathrm{d}} \tag{4.4}
\end{equation*}
$$

Therefore, the columns of T automatically provide the eigenvectors of S. The degenerate eigenvectors of S corresponding to the repeated eigenvalues can be made orthonormal by using Gram-Schmidt process. This will render T unitary. While the process is quite general, we shall;illustrate this for some special cases

$$
\begin{align*}
& \text { case of } l_{n}=2 \\
& \mathrm{~s}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & 1
\end{array}\right), \tag{4.5}
\end{align*}
$$

and

$$
s_{d}=\left(\begin{array}{rr}
1 & 0 \tag{4.6}\\
0 & -1
\end{array}\right)
$$

Since $S^{2}=S_{d}^{2}=I$,

We get from Equation (4.1)

$$
\begin{align*}
T & =2\left(S+S_{d}\right) \\
& =2\left(\begin{array}{rl}
1+\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -1-\frac{1}{\sqrt{2}}
\end{array}\right) \tag{4.8}
\end{align*}
$$

We unitarized matrix of the eigenvectors of S is therefore

$$
\mathrm{U}_{2}=\frac{1}{\sqrt{2 \sqrt{2}(\sqrt{2}+1)}}\left(\begin{array}{ccc}
\sqrt{2}+1 & 1 \tag{4.9}\\
1 & -(\sqrt{2}+1)
\end{array}\right)
$$

case of $n=3$

$$
S=\frac{1}{\sqrt{3}}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & \varepsilon & \varepsilon \\
1 & \varepsilon^{2} & \varepsilon \tag{4.10}
\end{array}\right)
$$

From Equation (2.8) we see that

one finds from Equation (4.1) that the unitarized matrix of the eigenvectors of S is

$$
U_{3}=\frac{1}{\sqrt{2 \sqrt{3}(\sqrt{3}+1)}}\left(\begin{array}{ccc}
\sqrt{3}+1 & \sqrt{2} & 0 \tag{4.12}\\
1 & \frac{1+\sqrt{3}}{\sqrt{2}} & i^{\sqrt{3}+\sqrt{3}} \\
1 & \frac{1+\sqrt{3}}{\sqrt{2}} & -i \sqrt{\sqrt{3+\sqrt{3}}}
\end{array}\right)
$$

case of $n=4$
In this case we have

$$
S=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \tag{4.13}\\
1 & i & -1 & -i \\
1 & -1 & 1 & -i \\
1 & -i & -1 & i
\end{array}\right)
$$

and

$$
s_{d}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4.14}\\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

It is easily calcylated that

$$
T=\left(\begin{array}{rrrr}
3 & 1 & 1 & 0 \tag{4.15}\\
1 & 1 & -1 & 2 i \\
1 & -1 & -1 & 0 \\
1 & 1 & -1 & -2 i
\end{array}\right)
$$

The first two column vectors correspond to the eigenvalue $=+1$, the third one to -1 and the last to -i .

By a simple use of Gram-Schmidt orthogonalization procedure one can find the unitarized matrix corresponding to the eigenvectors of S as

$$
U_{4}=\frac{1}{\sqrt{2 \sqrt{4}(\sqrt{4}+1)}},\left(\begin{array}{cccc}
3 & 0 & \sqrt{3} & 0 \tag{4.16}\\
1 & \sqrt{2} & -\sqrt{3} & i \sqrt{6} \\
1 & -2 \sqrt{2} & -\sqrt{3} & 0 \\
1 & \sqrt{2} & -\sqrt{3} & -i \sqrt{6}
\end{array}\right)
$$

ACKNOWLEDGMENTS

It is my pleasure to thank Professor Bernardo Wolf for inviting me to the harmonic oscillator conference and the organizers of the conference for their hospitality.

REFERENCES

[1] I. Schur, Nachr K. Gese11, Wiss. Gobbingen, Math. Phys. K1, 1921, 147; E. Landau, Elementary Number Theory (Chelsea, New York, 1966), p. 207-212.
[2] B. C. Berndt and R. J. Evans, Bul1. Am. Math. Soc. 5, 1981, 107; see also, Bull. Am. Math. Soc. 7, 1982, 441.
[3] I. J. Good, Am. Math. Month. 69, 1962, 259; L. Anslander and R. Tolimieri, Bull. Am. Math. Soc. 1, 1979, 847; P. Morton, J. Num. Th., 12, 1980, 122; R. Tolimieri, Adv. App1. Math. 5, 1984, 56; Allad. Ramakrishnon, 1972, L. Matrix Theory and the Grammar of Dirac Matrices (Tata McGraw Hill Publishing Co.).
[4] H. Weyl, Theory of Groups and Quantum Mechanics, (Dover, New York) 1931, p. 272-280.
[5] T. S. Santhanam and A. R. Tekumal1a, Found. Phys. 6, 1976; T. S. Santhanam, Uncertainty Principle and Foundations of Qunatum Mechanics, Eds. W. C. Price and S. S. Chissick; (John Wiley and Sons) 1982, p. 227-243, Physica 114A, 445; R. Jagannalthan, T. S. Santhanam and R. Vasudevan, Int. J. Theor. Phys. 20, 1981, p. 755.
[6] T. S. Santhanam and S. Madivanane, preprint LC/82/12, ICTP, Trieste, Italy (unpublished).
[7] M. L. Mehta, J. Math Phys. 7, 1987, p. 781.
[8] J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA), Sec. 13.7. See also, K. B. Wolf, 1972, Integral Transforms in Science and Engineering, (Plenum Press, NY).
[9] See, for instance, F. R. Gantmacher, Matrix Theory (Chelsea, New York, 1959), Vol. I, p. 239.
[10] This can be easily generalized to $A^{n-1}+A^{n-2} A_{d}+A^{n-3} A_{d}^{2}+\ldots$ $+A A_{d}^{n-2}+A_{d}^{n-1}$ for the case of a general involution matrix satisfying the relation $A^{n}=I$. 248

