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Abstract

The Finite Fourier Transformation matrix (F.F.T.) plays a central

role in the formulation of quantum mechanics in a finite dimensional

space studied by the author over the past couple of decades. An out-

standing problem which still remains open is to find a complete basis

for F.F.T. In this paper we suggest a simple algorithm to find the

eigenvectors of F.F.T.
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I. INTRODUCTION

The finite Fourier transform matrix (F.F.T.) plays a fundamental

role in many contexts and has been studied extensively [1-3]. It is

central in the discussions on finite dimensional quantum mechanics based

on Weyl's commutation relations [4] studied by the author in a series of

publications [5]. The eigenvalues of this matrix were determined by

Schur [I] and a simple argument to recover this result has been given

earlier [6]. The calculation of the eigenvectors is not straight-

forward and many methods have been given in particu]ar, by Mehta [7].

In Section IV, we present a new algorithm to find the eigenvectors.

II. EIGENVALUES OF S

The F.F.T. matrix S, which is unitary, is defined by

1 2_i

S8 = -- -- _ B] ,d_ exp [ n

_, B = 0,1,2,...n-I (2.1)

m

i = /-i

and has many interesting properties

S2) B =I) ( = l'aB 6 + 8, o

(mod n)

Since S2 f = f for a vector f
-a mod n,

called the parity operator

2) (S4)a_ = 6aB

like the usual Fourier transform.

(2.2)

with n components, S 2 Is

(2.3)

3) The matrix S, which is by definition a symmetric matrix will

diagonalize any circulant matrix.
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From Equation (2-3), it is clear that the eigenvalues of S are simply

• i and ±i. There is then a degeneracy of the eigenvalues. The first

problem will be to determine this. Luckily, Equations (2.1)-(2.3) can be

repeatedly used to f_x this [6]. If k I, k 2, k3and k 4 denote the multi-

plicity of the eigenvalues taken in the order (i, -i, i, -i), Equation

(2.1) implies that

i n-i 2_i ]/2
Tr S - Z [ exp_

Tn g=0 n

and hence

= _ -i_ni (i + i) [ I + exp (
2 2

Tr S = (k I - k 2) + i(k 3 - k 4)

= 1 for n = 4k + i,

= 0 for n = 4k + 2,

= i for n = 4k + 3,

= (i + i) for n = 4k,

k = 0,1,2,...

) ], (2.4)

(2.5)

From Equation (2) we infer that

Tr S 2 = (k I + k 2) - (k 3 + k 4)

= i for n odd,

We also have

= 2 for n even.

Tr S 4 = n = k I + k 2 + k 3 + k 4.

Equations (2.5), (2.6) and (2.7) can be used to solve for kl, k2, k 3 and

k 4 and one finds that
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n -- 4k + 1 n = 4k + 2 n = 4k + 3 n = 4k

k I k+ 1 k+ 1 k+ 1 k+ 1

k 2 k k+l k+l k

k 3 k k k+l k

k 4 k k k k - 1

III. EIGENVECTORS OF S

Let us decompose S into its primitive idempotents as

4 ij
S = Z B(j),

j=l

where

I
B(1) = _s + _ (I - I')

i I

B(2) = -_c + _ (I + I'),

i i
B(3) = -_s + _ (I - I'),

i i

B(4) = _c + _ (I, + I'), (3.2)

I 2_
- cos ( -- a6 )

Ca8 /g n

_ I 2_____a8 )
s_8 ¢_n sin ( n '

a,8 = 0,1,2,...n-i (3.3)

It is easily verified that

S B(j) = i j B(j), (3.4)

thus the nonzero columnus of B(j) yield the eigenvectors of S with eigen-

value i j. Also, i_ analogy with the standard case, Mehta [7] ha_ been

able to express these eigenvectors in terms of Hermite functions with
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discrete arguments.

IV. EIGENVECTORS OF S; AN ALTERNATE METHOD

Since the F.F.T. matrix S satisfies Equation (2.1) we construct

the matrix [i0]

T =

where

Sd

We find that

S T

If T is nonsingular,

T+ S T

S.

2 + 3
S 3 + S 2 S d + S S d S d

2

I' (S + S d) + (S + S d) S d ,
(4.1)

diagonal S. (4.2)

2 s3)S (S 3 + S 2 S d + S S d +

(I + S 3 Sd + S 2 2 3)S d + S Sd

2) Sd(S_ + S 3 + S 2 S d + S Sd

T S d . (4.3)

= S d (4.4)

Therefore, the columns of T automatically provide the eigenvectors of

The degenerate eigenvectors of S corresponding to the repeated eigen-

values can be m_de orthonormal by using Gram-Schmidt process. This will

render T unitary. While the process is quite general, we shall illustrate

this for some special cases

case of In = 2

0S vr_ - ,
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and

Since S2 2
= Sd = I,

(4.6)

(4.7)

We get from Equation (4.1)

T = 2 (S + Sd) ,

± -1 - 1 (4.8)

We unitarized matrix of the eigenvectors of S is therefore

U2 =
/2Jr (_ + 1)

- (/2 + 1)

(4.9)

case of n = 3

1
m I E e 2

2
I e E ,

2_i
e ffi exp 3 (4.10)

From Equation (2._) we see that

" I 0 0

Sd =_0 -I 0

0 i (4.11)

one finds from Equation (4.1) that the unitarized matrix of the eigen-

vectors of S is
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//3+1 /f 0 \

U3

case of n = 4

I

/2 /7 (/_ + i)

\

1+/_

i+/3

i¢3+_

-i/3 +

/ (4.12)

In this case we have

I i I i

s --7 -1 1

-i -i

and

(4.13)

Sd

i 0 0 O_/
=/0 I 0 0

\ 0 0 -i 0

0 0 0 i (4.14)

It is easily calculated that

/3 1

i

T =
1

1

i

-i

I

i 0

-I 2i

-I 0

-2i-1 (4.15)

The first two column vectors correspond to the eigenvalue = +I, the third

one to -i and the last to -i.
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By a simple use of Gram-Schmidt orthogonalization procedure one

can find the unitarized matrix corresponding to the eigenvectors of S

as

/3 0 _ 0\

U 4 =

/2_ (/4 + 1) 1 -2/2 -/3 0

1 _ -_ -i_ (4.16)
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