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ABSTRACT

It is demonstrated that an angular Fourier transformation is obtained

by making a rotation around the non-compact axis of So(2,1), the Lorentz

group in three dimensions.

Talk presented by the second author in the Interworkshop on 'Harmonic

oscillators' held in Cocoyoc, Mexica during 23-25 March, 1994. To appear

in the Proceedings.
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I. INTRODUCTION

The conventional fourier transformation has been at the root of quantum

^ ^

mechanics. If q, p represent the position and momentum self adjo{nt opera-

tors of quantum mechancis, they. satisfy the commutation relation *[I]

I

[q, ] = q p - p q = i (I)

It is also well known that this relation implies that

I (2)
(Ap) 2 (Aq) 2 > _ ,

where

(Ax)2 = <x2> - <x> 2 (3)

Equation (i) is known to imply that

oo

ip > = i
2_ f exp(ipq) lq>dq

-o0

i.e. the basis lq> in which the operator q is diagonal is related to the

basis in which the operator p is diagonal through the Fourier Transform

^

operator S

h
*We use the unit where units --

2_
= i, where he is the plank constant
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It is also known [2] that the classical fourier transform operator S can be

represented as,

^ ^2 _ !
s = exp{iH{(p 2 + q )/4 4 }} ' (5)

^

where S is defined as

OO

<qls >: i ,
2¢_ [ exp(iqq')<q [_>dq , (6)

--o0

where _ is the wave function which satisfies the Schroedinger wave euqation

[i] .

In this paper we show that the conventional fourier transform operator

^

S when rotated by an angle 8 through the non compact generator F4 of the

Lorentz group SO(2,1) yields the Angular Fourier Transformation (AFT). We

also analyze the properties of the AFT from this perspective and relate it to

the recent work of L. B. Almeida [23] who has derived the AFT from a differ-

ent point of view.

In Section 2 we summarize the properties of the group SO(2,1). In

section 3, we study some properties of the AFT from this perspective and

relate this to the work of Almeida. In the last section we offer some conclu-

sions on the discretization of the transform.

If. THE LORENTZ GROUP SO(2,1)

We define the three operators by F4, F0, T as

F 0 = (1/4) x {p2 + q2} ,

^2
r4 = (-1/4) x {p2 _ q } ,

T = (-1/4) x p + p -- (-1/2) x {p q + i (7)
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It is easily verified that r4, rO, T satisfy the following commutation rela-

tions.

[Fo, F4] = iT ,

[T , r 0] = iF 4 ,

[T , r4] ffi ir0 ,

(8)

(9)

(i0)

and the Lie algebra so obtained is that of the Lorentz group SO(2,1) in (2+1)

dimensions [4]. It is recognized that the classical Fourier Transform oper-

ator in Equation (5) can be rewritten as

^ i

S = exp{iN(F 0 - _)} (Ii)

The generator F 4 is called the non compact generator of the Lorentz group

$0(2,1), reflecting the fact that it is not bounded in support. From the

commutation relations we can verify using Equations (8, 9, I0) that

^q e(p, )

^ ^

Ke(PJ q)

^

: exp(ieF4).(S).exp(ieF4 ) , (12)

^2 ^2 ^ ^

ffi exp(-i_).exp(_sinh 0).exp(i_{{ coshO-{p q}sinhe}).

(13)

It may also be verified that

^ 7 q2 ,2<qlKe¥> = NO exp(i{{ + q }sinhO-{qq'}cosh0})<q'l¥>dq',(14)
__ 2

Where N 8 is a normalization constant that is dependent on 8.

If we now set sinh8 fficots and cosh8 fficosees then we obtain the kernel

of L. B. Almelda where the variables are (t,u) instead of (q,q'). Thus the

kernel of the AFT gets a meaning as a rotation in the (t,w) plane. The

variables (q,q') are the canonical variables and can be substituted with any

pair of variables that satisfy equation (I).
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III. PROPERTIES OF THE ANGULAR FOURIER TRANSFORM

It becomes clear after substituting sinh9 = cota and cosh9

that

= coseca

e = £n(cot(_)) , (15)

which implies that as 9 +_, a÷2nH and 0÷-_, _÷(2n + I)R. With the above

identifications our kernel in Equation (13) is identical to that of Almeida

who has shown that the kernel exhibits the following properties

(I) K_(t,u) = K_(u,t) , (16)

(2) fK_(t,u)K*_(t,u')dt = _(u-u') , (17)

(3) Ko(t,_) = ---I exp{-it_} (18)
72_

For further properties use reference [3]. As envisaged in reference [3] the

AFT can be applied to the study of frequency swept filters.

IV. CONCLUSIONS

In this paper we have used the properties of the group SO(2,1) to define

the AFT as a rotation of the fourier transform operator S by an angle ¢

through the non compact generator F4 of the group, which will reduce to the

conventional Fourier Transform as O ÷_.

The study of a discrete version of this transform and fast algorithms

for it's computation is of great interest and has been carried out [5].
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