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Abstract

We start with the total energy E for a system of three scalar relativistic

particles that, because of Einstein's relation, will have square roots of functions

of the momenta. By taking powers of this relation, we finally get a fourth degree

polynomial in E 2, where the square roots have disappeared, and which we can

convert into a type of Schroedinger equation. To be in the center of mass frame

we pass to Jacobi momenta and then replace them by creation and annihilation

operators. We thus get an equation in terms of the generators of a U(2) group,

which, in principle, we can solve in an elementary way. FinMly we rewrite our

equation in a Poincar_ invariant form.

1 Introduction

In the II Harmonic Oscillator Conference I presented a paper dealing with systems

of relativistic particles interacting through Dirac oscillators. The results were later

applied to the mass spectra of baryons and mesons [1,2,3].

As all the results presented had already been published I prefer to deal in this paper

with a new approach, restricted here to scalar particles, that seems to me a systematic

way to attack many body problems with oscillator interactions.
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I will start by considering a non relativistic problem of n free particles and indicate

the steps by which later it can be reduced to a system with oscillator interactions,

which will serve as a model for the relativistic problem we wish to analyze.

2 The non-relativistic problem

Let us first start with a system of n free non-relativistic particles of the same mass m,

and take units

h = m = c = 1, (2.1),

where the velocity of light will appear only in the next section, but we want to start

from the beginning with units in which everything is dimensionless.

The classical total energy is then

n

E = (1/2) _--_po .p, (2.2)

where P8 are the three dimensional classical momentum vectors of particle s.

From the beginning we would like to work in the center of mass frame, because

our interest will be the internal energy of the system and not the contribution from its

center of mass motion. The best way to achieve this is to pass to Jacobi coordinates [4]

defined by the orthogonal transformation

p'o= [_(_+ 111-_ p,- _p,+_ ,_ = 1,2,...n- 1, (2.3_)
"t----1

1 s

p- = n-i_p,, (2.3b)
t=l

Clearly p" is proportional to the total momentum and in the center of mass system

it will vanish, so Eq. (2.2) reduces to

n-1

E = } E P:" P; (2.4)

The Schroedinger equations corresponding to (2.4) is obtained when we replace p',

by the operator
10

P: - i 0_,' (2.5)
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' being the corresponding Jacobi coordinate vector. As the P_s are hermitianwith x s

operators we can also write Schroedinger equation as

--' ( :)!
_ \p_t.p _b = E4' (2.6)

2
s----1

We can easily transform this into an hermitian oscillator operator equation if we

make the replacement

• ' (2.7a)P's ---* P's -- zwx,,

• , (2.7b)P7 --' P's + z_x.,

I

where the second equation follows from the first as both p'_, x_ are hermitian operators.

Thus we now get a Schroedinger equation of the form

,_-1[ w2x: 2 (3/2)w(n 1)]4' E4', (2.8)1Z_ p'_+ _ _ =
s-----I

whose eigenvalue for the energy E will be

E =wN, (2.9)

with N being the total number of quanta i.e.

n--1

N = Z us. (2.10)

The previous analysis is standard except for the fact that we start from a system

of n free particles. Furthermore our notation in terms of three vectors and Jacobi

coordinates, avoids the worry about the Galilean invariance of the whole procedure.

We will now consider a similar set of steps for a relativistic problem.

3 The system of three relativistic particles

Rather than discuss the system of n relativistic particles, we shall restrict ourselves to

n = 3, as we will see that the case is general enough, with only the algebraic steps

becoming more complicated as n increases.

In our units the total energy for a system of three free relativistic particles can be

written as

E =-{-lIi 4- II2 4- lI3, (3.1)
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where l-Is, s = 1,2, 3 is defined as

IIs = (p] + 1)_. (3.2)

It is very important to note that, in our units, Einstein relation is E 2 - p2 + 1, and

when reduced to the E itself gives both the square root in (3.2) and the -t- signs in

(3.1).

Obviously we can not get a Schroedinger equation from the relation (3.1), but we

can take ±II3 to the right hand side and square both sides. Then we can square again

and again appropriately, and we easily arrive at the fact that (3.1) becomes an eight

degree equation in E (actually of fourth degree in E 2) of the form

(I)(E :, Ill) --

E s - 4AE 6 + (4A 2 + 2B)E 4 - (4C _ + 4AB)E 2 + B 2 = 0

where A, B, C are fimctions of II_, s = 1,2, 3 given by

(3.3)

A = H_ + H_ + II_,

- 2H,II:- 2n_II_- 2II_II_,

2 2 2
C 2 - 16H1H2[I3.

(3.4a)

(3.4b)

(3.4c)

Now we can write an equation that does not have E as an eigenvalue, but in which

it appears as a parameter, if we replace Ps by -iO/Oxs as in (2.5), so that II_ become

the operators

l_I_ --(-V_ -t- 1), (3.5)

and we get

(I)(E2, 1]_)_ = 0 (3.6)

Thus far we have obtained nothing useful because Pl, P2, P3 considered as operators

of the form (2.5), commute with the operator (I) and so are integrals of motion, so that

_b can be written as

_b = exp[i(pi "Xl + P2-x2 + P3' x3)], (3.7)

where now Pl, P2, Pz are ordinary numbers and we are returned to equation (3.3) whose

eight roots for the energy E are obviously given by (3.1) with all the possible combi-

nation of the signs +.
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Before proceeding further, along the lines of the previous section, we again remark

that we would like to work in the center of mass frame, as our interest is restricted to

the internal energy of the system. Thus we go, as in section 2, to the Jacobi momenta

p'_, s = 1,2, 3 which from (2.3) are given now by the matrix relation

p; = , 1 (3.s)
p_ 1 1_ _ P3

As the matrix is orthogonal, transposing it we get p, in terms of P's, and as we want

to be in the center of mass frame p_ = 0, so we get finally

1 t 1 , , 1 I 1 , ./-2- I

P, = -_Pl + _P_,P2 = _Pl- _ p2'pa=-V3p2' (3.9)

IIs, s = 1,2, 3, we can write the latter usingAs Eq. (3.6) contains only powers of ^e

the hermitian property of p'_, now considered as operators of the type (2.6), as

1 . it !

(3.10a)

(3.lOb)

(3.10c)

The interesting point is to introduce the oscillator interaction, exactly as in the

replacement we made in (2.7) in the non-relativistic problem. For notational purposes

we introduce the creation and annihilation operators

1 1 1

rL -= t._(w_x'_- iw-Sp'_),s = 1,2, (3.11a)
v'Z

1 1 1
(w_x: + iw-gp:) s = 1,2,IL-v (3.11b)

so that the relations (2.7) can be written as

1

p', --,
1

(3.12a)

(3.12b)

Under this replacement the 1_I] operators become then

1 C 1
fI12 = c.g[Cll -4-5 22 + _(C12 -JrCe,)] + 1
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- 1C 1
II_=w[Cn+5 22-_(C,2+C2,)1+I

4

= + 1,

where the operator Cst, s, t -- 1, 2 are defined by

(3.13b)

(3.13c)

C,t=_s'_,t (3.14)

From the fact that

[_it,)lj,] = 6ijS, t ; i,j = 1,2,3; s = 1,2, (3.15)

we have the commutation relations

[C_t, C_,t,] = C,t,$,,t - C,,t_t,, (3.16)

and thus they are generators [5] of a U(2) group. Therefore the operators fi2 fi2 fi2

appearing in the equation (3.6), are linear functions of the generators of this group.

To obtain from Eq.(3.6) the eigenvalues of the energy for this relativistic oscillator

problem we can proceed as follows: First we note that the first order Casimir operator

of U(2) group is

/V = C,I + C22, (3.17)

and that it has an SU(2) subgroup whose generators are

k._ ----- C12 , (3.18a)

/5o _= (½)(C,,- C2_), (3.18b)

15_ = C21, (3.18c)

with a corresponding Casimir operator of the form

_,2 _= fi,_fi,+ + _o(_ + 1). (3.19)

The .re, _2 by definition commute with all Cat and among themselves, so from (3.13),

they will be integrals of motion of the operator (I)(E 2, H_). Thus the eigenstates of the

Eq. (3.6) can be characterized by the eigenvalues of N, _2 which we denote respectively

by

N, f(f + 1) (3.20)
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with f taking the values (N/2, (5//2) - 1, down to 1/2 or 0 depending on whether N

is odd or even.

Another operator that commutes with/_', p2 is obviously/_o and we shall designate

its eigenvalue by

v = f,f- 1,...,-f, (3.21)

so the eigenstates associated with tiC,/_2, _o could be represented by the ket

[Nfu >, (3.22)

and the solution _/, of Eq. (3.6) is necessarily a linear combination of these kets i.e.

]

¢ = _ a,_lNfu >, (3.23)
/J_--f

as JQ,/¢,2 are integrals of motion.

To obtain the eigenvalues of the internal energy E as function of N, f we need first

to consider the matrix elements of the operator • of (3.6) in the basis (3.22) i.e.

< Nft/l_(E2, h_)[Nfu >, (3.24)

which from (3.13), (3.17), (3.18) is a straightforward, but laborious, calculation of the

type familiar in angular momentum theory, as the group there is also SU(2).

To get the internal energy

E(N,f, cr), (3.25)

with a indicating the rest of the indices, we need to evaluate the determinant of the

(2f + 1) x (2f + 1) matrix whose elements are (3.24) and equate it to zero. This gives

us a numerical equation of degree 4(2f + l) in the variable E 2 and its solution provides

us with values indicated symbolically in (3.25).

As our purpose is to provide the method of solution for the internal energy of rel-

ativistic three body oscillator problem, we will only car_ry the calculation of (3.24) for

the single case when

N = f = u = 0 (3.26)

which implies that

< 000Ileal000>= 1, s = 1,2, 3

and so A, B, C 2 in (3.4) become respectively

(3.27)

A = 3, B = -3, C 2 = 16, (3.28)
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and the equation for the energy is given by

E s - 12E 6 + 30E 4 - 28E 2 + 9 = 0, (3.29)

whose four roots for E 2 are E _ = 1, repeated three times, and E 2 = 9, with E = -t-3

and +1 as we expect from (3.1).

So far we have discussed, and given a method for solving, the equation related with

a three body relativistic problem with an oscillator interaction. In the next section we

proceed to show that we can formulate it in a Poincard invariant form.

4 Poincar6 invariance of the three body relativis-

tic equation with oscillator interactions

To express Eq. (3.6) in a Poincar_ invariant form we start with definition of the total

four momentum for the three particle problem i.e.

Pu =Pul +Pu2+Pu3, (4.1)

where tz = O, 1,2, 3 with port, s = 1,2, 3, being the time like component while Pin, i =

l, 2, 3, are the space like components of the vector Pn of the previous section.

We shall require also a unit time like four vector u, which we shall define as

1

= (4.2)

where repeated indices a, r are summed over 0,1,2,3 and our metric tensor is taken as

g_" = 0 if a -¢ r, gll = g2_ = g33 = --goo = 1 (4.3)

Clearly in the center of mass frame where P, = 0, i = 1, 2, 3, u u takes the value

(u,) = (1,0,0,0) (4.4)

The operators qn,t[_,s = 1,2, defined in (3.11) are space like three component

vectors which could be denoted by rhe,_in, i = 1,2, 3. A time like component could be

added through the definition (3.11) just by putting ' ' 'Port, Xon instead of Pin, xis and thus

we would get r/on, (on which, together with r/is, (in, form the four vectors

r/un,(un; /_ = 0, 1,2,3; s = 1,2. (4.5)
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We do not want.to use these operators directly in the definition of the Cst of (3.14),

but rather utilize their transversal parts defined by

± + + a'r U "_U71.. rl._ (9 rlos r) ,,

_._ -- (.: + tg _,, r) ,.

(4.6a)

(4.6b)

These transverse operators have the property that in the center of mass frame where

(u,) = (1000) we have, because of the matrix (4.3), that

7/0_ = 0, (o_ = 0, rh_ = _,_, (i_ = _'_" (4.7)

Thus now the generator C,t,s,'t = 1,2, appearing in the definitions (3.13) of

I_I_, l_I_, 1]2 can be expressed in a Lorentz invariant way by

C,, ,r I .± (4.8)= 9 r/osgrt,

as in the center of mass frame it takes the form (3.14) i.e. Cst = _ • [_t.

As for the energy E 2 appearing in Eq. (3.6) it can be substituted by the operator

E -, (_g.Tp.p.), (4.9)

because in the center of mass frame Pi = 0, i = 1,2, 3, and from the metric tensor (4.3),

we see that the parenthesis in (4.9) reduces to Po2, which is the time like component

of the four momentum vector squared and thus corresponds to the square of the total

energy of the system.

With the definitions (4.8) of C,t and (4.9) of E 2 substituted in Eq.(3.6) we get a
I

Poincar_ invariant equation for our problem, as C,t, given in terms of Jacobi cqordinates

and momenta, is also invariant under translation in space time, and thus commutes with

e..

We have then arrived at a procedure for deriving a Poincar6 invariant equation for a

three particle system with oscillator interactions which, in the center of mass reference

frame, can be solved by a simple group theoretical procedure, which leads eventually

to algebraic equations of degree 4(2f + 1) for E _, that can be solved numerically to

give the spectrum of the problem.
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