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Abstract

It is shown that the system of two coupled harmonic oscillators shares the basic sym-

metry properties with the covariant harmonic oscillator formalism which provides a concise

description of the basic features of relativistic hadronic features observed in high-energy lab-
oratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in

classical mechanics, w_ile the present formulation of quantum mechanics can accommodate
only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,rl symmetry

in quantum mechanics is discussed.

1 Introduction

The covariant harmonic oscillator formalism developed by the present authors has been shown

to be effective in explaining the basic phenomenological features of relativistic extended hadrons

observed in high-energy laboratories. In particular, the formalism shows that the quark model and

Feynman's parton picture are two different manifestations of one relativistic entity. In addition,

the formalism constitutes a representation of Wigner's little group for a massive particle with

internal space-time structure [1].
Since the classical mechanics of two coupled harmonic oscillators is discussed in Goldstein's

text book [2], there is a tendency to believe that this oscillator problem is completely understood

and that nothing new can be learned from it. We disagree. In this paper, we show that this

coupled oscillator system can serve as an analog computer for the above-mentioned covariant

oscillator formalism.

From the mathematical point of view, the standard approach is to construct a suitable repre-

sentation of the symmetry group after writing down its generators. The first symmetry group in

the present case is Sp(4, r) with ten generators [3, 4, 5]. The second symmetry group is SL(4, r)

which contains a number of Sp(4)-like subgroups. In constructing these groups, we shall note that

each oscillator has its own Sp(2) symmetry, and that the coupling of the two oscillator also has a
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Sp(2)-like symmetry. It was pointed out that these three Sp(2) groups can be combined into one

Sp(4) group.

Since Sp(4) is locally isomorphic to the deSitter group O(3,2), it can explain the Lorentz

transformation properties, particularly that of the covariant harmonic oscillator formalism. In

this paper, we concentrate on the issue of a lack of information on one oscillator affecting the
uncertainty and the entropy of the other oscillator.

2 Covariant Harmonic Oscillators

The covariant harmonic oscillator formalism has been discussed exhaustively in the literature, and

it is not necessary to give another full-fledged treatment in the present paper. Instead, we shall

concentrate on the issue of entropy in this paper. The entropy is a measure of our ignorance and

is computed from the density matrix [6, 7]. The density matrix is needed when the experimental

procedure does not analyze all relevant variables to the maximum extent consistent with quantum

mechanics. The purpose of the present note is to discuss a concrete example of the entropy arising
from our ignorance in relativistic quantum mechanics.

Let us consider a bound state of two particles. For convenience, we shall call the bound state

the hadron, and call its constituents quarks. Then there is a Bohr-like radius measuring the space-

like separation between the_ quarks. There is also a time-like separation between _he quarks, and
this variable becomes mixed with the longitudinal spatial separation as the hadron moves with a

relativistic speed.

However, there are at present no quantum measurement theories to deal with the above-

mentioned time-like separation. We shall study in the present paper how this ignorance is trans-

lated into the entropy. Within the framework of the covariant harmonic oscillator formalism [1],

it will be shown that the entropy increases as the hadron gains its speed. The entropy defined in

this way is a more fundamental quantity than the hadronic temperature [4]. It is independent of

the question of whether the temperature can be defined [8].

Let us consider a hadron consisting of two quarks. If the space-time positions of two quarks

are specified by x_ and xb respectively, the system can be described by the variables [9]

X = (x_ + xb)/2, x = (x_ - xb)/2v_. (1)

The four-vector X specifies where the hadron is located in space and time, while the variable x

measures the space-time separation between the quarks. In the convention of Feynman et al [9],

the internal motion of the quarks bound by a harmonic oscillator potential of unit strength can

be described by the Lorentz-invariant equation

1 2

-_ xu Ox u_L-_¢(x)= t¢(x). (2)

We use here the space-favored metric: x" = (x, y, z, t).

It is possible to construct a representation of the Poincar_ group from the solutions of the

above differential equation [1]. If the hadron is at rest, the solution should take the form

_(x,y,z,t) = ¢(x,y,z) exp (-t2/2) , (3)
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where _b(x, y, z) is the wave function for the three-dimensional oscillator with appropriate angular

momentum quantum numbers. There are no excitations along the t direction. Indeed, the above

wave function constitutes a representation of Wigner's O(3)-like little group for a massive particle

[1].
Since the three-dimensional oscillator differential equation is separable in both spherical and

Cartesian coordinate systems, _b(x, y, z) consists of Hermite polynomials of x, y, and z. If the

Lorentz boost is made along the z direction, the x and y coordinates are not affected, and can be

dropped from the wave function. The wave function of interest can be written as

_2"(z,t) = ( _ )1/4 exp (-t2/2 ) V,(z), (4)

with

( 1 _ 1/2
_bn(z) = \___g.2_] H,_(z)exp(-z2/2), (5)

where _bn(z) is for the n-th ' excited oscillator state. The full wave function _bn(z, _) is

1

The subscript 0 means that the wave function is for the hadron at rest. The above expression is

not Lorentz-invariant, and its localization undergoes a Lorentz squeeze as the hadron moves along

the z direction [1].

It is convenient to use the light-cone variables to describe Lorentz boosts. The light-cone

coordinate variables are

u = (z + t)/v_, v = (z - t)/_. (7)

In terms of these variables, the Lorentz boost along the z direction,

Z

(_:) =(coshr/ sinhr/)(t) (8)sinhr I coshr I

takes the simple form
! V Iu = enu, = e-'v, (9)

where r/is the boost parameter and is tanh-l(v/c). The wave function of Eq.(6) can be written

as

(1)1/2 { 1 _ }e3(z,t) = _ H, ((u+ v)/v_)exp -7(u + v 2) • (10)

If the system is boosted, the wave function becomes

" 1 .1/2

_bn(z," t)= (_) ",, ((e-'Tu + env)/vl2)exp {--_ (e-'nu 2 + e2nv2) } . (Ii)

As was discussed in the literature for several different purposes, this wave function can be expanded

as [I]

¢_'(z,t) = (1/cosh 17)'_+1 E ((n + k)!_ 1/,
k _, nTkT" J (tanhrl)k_+k(z)_bn(t)" (12)
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In both Eqs. (10) and (11), the localization property of the wave function in the uv plane

is determined by the Gaussian factor, and it is sufficient to study the ground state only for the

essential feature of the boundary condition. Eq.(10) and Eq.(ll) then respectively become

(13)

If the system is boosted, the wave function becomes

_,7(z,t)=(1) 1Dexp{-_l(e-2ou2+e2nv2)} " [ (14)

We note here that the transition from Eq.(13) to Eq.(14) is a squeeze trasnformation. The wave

function of Eq.(13) is distributed within a circular region in the uv plane, and thus in the zt plane.

On the other hand, the wave function of Eq.(14) is distributed in an elliptic region. This ellipse

is a "squeezed" circle with the same area as the circle. This Lorentz-squeezed wave function can

be expaned as

1 __,(tanhrl)k_bk(z)¢k(t). (15)
¢,(z, t) - cosh r/ k

From this wave function, we can construct the pure-state density matrix

pn(z,t; z',t') = _,(z,t)¢,(z',t'), (16)

which satisfies the condition p2 = p:

[
z I ,p,_(z,t;z',t') = jp,7(z,t;z",t")p,(z",t"; t')dz"dt". (17)

However, there are at present no measurement theories which accommodate the time-separation

Variable t. Thus, we can take the trace of the p matrix with respect to the t variable. Then the

resulting density matrix is

= f¢,_(z,t) {_bn(z',t)}*dt (18)p,7( z, z')

= _--_(tanh q)2kCk(z)¢_(z').

The trace of this density matrix is one, but the trace of p2 is less than one, as

Tr(,') : / (19)

= (cos-_)4_-'_(tanhr/) 'k,
k

which is less than one. This is due to the fact that we do not know how to deal with the time-like

separation in the present formulation of quantum mechanics. Our knowledge is less than complete.

The standard way to measure this ignorance is to calculate the entropy defined as [6, 7]

S = -Tr (pin(p)).
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If we pretend to know the distribution along the time-like direction and use the pure-state density

matrix given in Eq.(16), then the entropy is zero. However, if we do not know how to deal with

the distribution along t, then we should use the density matrix of Eq.(18) to calculate the entropy,

and the result is

S _ 2 {(cosh r/)2 ln(cosh r/)- (sinh r/)2 ln(sinh q)} •

In terms of the velocity v of the hadron,

(vlc)2ln(vlc) 2
S=-ln[1-(v/c)2] - l_(v/c)2

(20)

(21)

We can also calculate the density matrix using the Gaussian form of the wave function given

in Eq.(17), and the result is

( 1 )1/2 {_ }p(z,z')= rcosh2ri exp -[(z+z')2/cosh2rl+(z-z')2cosh2rl] , (22)

This expression also leads to the entropy given in Eq.(20)

The diagonal elements of the above density matrix is

= exp (-2/cosh 2r/) . (23)
r cosh 2r/

The width of the distribution becomes (cosh r/) 1/2, and becomes wide-spread as the hadronic speed

increases. Likewise, the momentum distribution becomes wide-spread. This simultaneous increase

in the momentum and position distribution widths is called the parton phenomenon in high-energy

physics. The position-momentum uncertainty becomes cosh r/. This increase in uncertainty is due

to our ignorance about the physical but unmeasurable time-separation variable.
The use of an unmeasurable variable as a "shadow" coordinate is not new in physics and is of

current interest [10, 11, 12, 13]. Feynman's book on statistical mechanics contains the following

paragraph [14].

When we solve a quantum-mechanical problem, what we really do is divide the universe into

two parts - the system in which we are interested and the rest of the universe. We then usually

act as if the system in which we are interested comprised the entire universe. To motivate the use

of density matrices, let us see what happens when we include the part of the universe outside the

system.

In the present paper, we have identified Feynman's rest of the universe as the time-separation

coordinate in a relativistic two-body problem. Our ignorance about this coordinate leads to a

density matrix for a non-pure state, and consequently to an increase of entropy. It is interesting

to note that the density matrix of Eq.(22) becomes that of the harmonic oscillator in a thermal

equilibrium state if (tanh r/) 2 is identified as the Boltzmann factor [15].

We have thus far studied the properties of covariant harmonic oscillators where the longitudinal

and time-like coordinates undergo squeeze transformations. The word "squeeze" is relatively new

in physics. However, squeeze transformations are almost everywhere in physics. In the rest of this

paper, we shall discuss the role of squeeze transformations in the system of two coupled harmonic
oscillators. We shall see that the problem of covariant harmonic oscillators with two variables is

the same as that of two coupled harmonic oscillators.
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Linear Canomcal and Non-Canonical Transformations

in Classical Mechanics

For a dynamical system consisting of two pairs of canonical variables xl,Pl and x2,p2, we can

introduce the four-dimensional coordinate system:

(_1,_2,_3,_4) =(Xl,X2,pl,p2). (24)

Then the transformation of the variables from r/i to _i is canonical if

MJ2_I = J, (25)

where

and

(°°1i/j= 0 0 0
-1 0 0 "

0 -1 0

For linear canonical transformations, we can work with the group of four-by-four real matrices

satisfying the condition of Eq.(25). This group is called the four-dimensional symplectic group

or Sp(4). While there are many physical applications of this group, we are interested here in

constructing the representations relevant to the study of two coupled harmonic oscillators.

It is more convenient to discuss this group in terms of its generators G, defined as

M = exp (-ie_G), (26)

where G represents a set of purely imaginary four-by-four matrice_ The symplectic condition of

Eq.(25) dictates that G be symmetric and anticommute with J or be antisymmetric and commute
with J.

In terms of the Pauli spin matrices and the two-by-two identity matrix, we can construct the

following four antisymmetric matrices which commute with J of Eq.(25).

i ( 0 aa) 1 (a20)Jl : _ --(71 0 ' J2---- _ 0 0"2 '

,(o ,(oJ3='2 -a3 0 ' J°=-2

The following six symmetric generators anticommute with J.

K_ =-_ _3 o ' _ 0 , K3=--_

(27)

and

( ) ,(0 ,) ,(o, 0)Qa=2i -a30 a30 , Q2=_ 0 ' Q3=_ 0 -aa " (28)
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These generators satisfy the commutation relations:

[Ji, J_] = ie_jk&, [Ji,Kj] = i_jkKk, [K_,Kj] = [Q_,Qj] = -ie_jk&,

[J,, J0] = 0, [K,, Qj] = iS, jJo,

[J,,Qj] =i(,jkQk, [K,,Jo]=iQ_, [Q,,Jo] = -iK_. (29)

The group of homogeneous linear transformations with this closed set of generators is called the

symplectic group Sp(4). The J matrices are known to generate rotations while the K and Q

matrices generate squeezes [4].
It is often more convenient to study the physics of four-dimensional phase space using the

coordinate system

(_1,_2,_3,_4) -- (xl,Pi,x2,p2). (30)

The transformation fron_ (/]1, /]2, /]3, /]4) is

0o /_¢2 0 0 1 0 /]2

_3, = 0 1 0 0 /]3 '

_¢4 0 0 0 1 /]4

(31)

and the J matrix becomes

(010!)-1 0 0

J= 0 0 0 "

0 0 -1

In this new coordinate system, the rotation generators take the form

(32)

-1(0 02 )J1=-2 - 02 i 0 I ),
-1

g =y(

The squeeze generators become

_ (°_0 -°_0 )K1 = = ,

0 -a: ' 0 a2 "

i (;3 O) g3: i (0 a,)I(2----2 0"3 ' --2 a 1 0 '

( ) i (; 1 0 )Q3 / ( 0 O'3) (34)i -a3 0 Q2=_ al 2 a3 0 "Q1 = _ 0 aa '

In addition to the ten generators given in Eq.(33) and also in Eq.(34), we can consider the scale

transformation in" which both the position and momentum of the first coordinate are expanded

and those of the second coordinate contracted. The Hamiltonian given in Eq.(46) suggests such a

transformation, and the transformation can be generated by

i

S°:2( I0 --0I)" (35)
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This matrix generatesscaletransformationsin phasespace.The transformation leadsto a radial
expansionof the phasespaceof the first coordinate [16] and contracts the phase spaceof the
secondcoordinate. What is the physical significanceof this operation? As we discussedin Sec.
7, the expansionof phasespaceleadsto an increasein uncertainty and entropy. Mathematically
speaking, the contraction of the secondcoordinate should causea decreasein uncertainty and
entropy. Can this happen? The answer is clearly No, becauseit will violate the uncertainty
principle. This question_will be addressedin future publications.

In the meantime, let us study what happenswhenthe matrix So is introduced into the set of

matrices given in Eq.(33) and Eq.(34). It commutes with J0, J3,//1, K2, Q1, and' Q2. However, its

commutators with the rest of the matrices produce four more generators:

,)[S0, J,]=_ 0.2 0 ' 2 I 0 '

1 ( 0 0.1) 1 (0 00"3) (36)[So,1¢3]=_ -a, 0 ' [S0, Qa]=_ 0.3 "

If we take into account the above five generators in addition to the ten generators of Sp(4),

there are fifteen generators. They form the closed set of commutation relations for the the group

SL(4, r). This SL(4,r) symmetry of the coupled oscillator system may have interesting physical

implications.

4 SL(4,r) Formulation of Two Coupled Oscillators

Let us consider a system of two coupled harmonic oscillators. The Hamiltonian for this system is

1{ 1 _ 1 2 }H= -_ m Pi+mP2+A'x_+B'x_+C'xlx2 . (37)

where

A' > O, B' > O, 4A'B'- C a > 0. (38)

By making scale changes of xl and x2 to (ml/m2)I/4x_ and (m2/ml)_/4x2 respectively, it is possible

to make a canonical transformation of the above Hamiltonian to the form [17, 18]

H= 2--ml{p_+p_}+l__{Zx_+Bxg+Cxlx2}, (39)

with m = (mlm2) 1/2. We can decouple this Hamiltonian by making the coordinate transformation:

(yy;)=(cos(a/2) -sin(a/2)_( ) (40)sin(a/2) cos(a/2)/\ xlx2 "

Under this rotation, the kinetic energy portion of the Hamiltonian in Eq.(39) remains invariant.

Thus we can achieve the decoupling by diagonalizing the potential energy. Indeed, the system

becomes diagonal if the angle a becomes

C

tana - B- A" (41)
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This diagonalization procedureis well known
We now introduce the new parametersK and 7/defined as

K = CAB - CV4,

in addition f<, the rotation angle ._.

form

A =

A+B _/(A-B) 2+C _

exp (-2r/) = v/4A B _ C_ ,
(42)

In terI:xs of this ntw set of variat,l,': .... .t, F¢ _,,_,t "' take the

( °)K e _'cos 2_-+e sia27_=,,, ,

B = K e2"sin 2_-+e -2ncos 2 2/,

A = K (e -2';- e2') sin_. (,13)

the Hamiltonian can be written as

H: 2rn l q, + q,; } + --_ "le .q, +

where Yt and y2 are defined in Eq,(40), and

q2 = \sin(a/'2) cos(_,/2) P2 "

This form will be our starting point. The above rotation together with that of Eq.(40) is ;4enerated

by J0.
If we measure the coordinate variable in units of (raN) 1/4, and use (rn h.' )-i/_ for !he momentum

variables, the Hamiltonian takes the form

(.U -r_

where w = v/-K/m. If rt = 0, the system becomes decoupled, and the Hamiltonian becomes

a3

In Sec. 8, we will be dealing with the problem of what happens when no observations are made

on the second coordinate. If the system is decoupled, as the above Ha.miltonian indicates, the

physics in the first coordinate is solely dictated by the tlamiltonian

03

B, : _ (,,_+_). (48)

It is important to note that the Hamiltonian of Eq.(47) cannot be obtained from Eq.(46) by

canonical transformation. For this reason, the Hamiltonian of the form

., + +=_

may play a useful role in our discussion. This ttamiltonian can be transformed into the decoupled

form of Eq.(47) through a canonical transformation.
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5 Quantum Mechanics of Coupled Oscillators

It is remarkable that both the Hamiltonian H of Eq.(46) and H' of Eq.(49) lead to the same

SchrSdinger wave function. If Yl and Y2 are measured in units of (inK) 1/4, the ground-state wave

function for this oscillator system is

1 { 1 }_b0(x,,x2) = _exp -_(e'y_ + e-'y_) . (50)

The wave function is separable in the yl and y2 variables. However, for the variables xl and x2,

the story is quite different. If we write this wave function in terms of xl and x2, then

1 1 e'(xlcos -x2sin )2
=  exp -7

+e-n(xlsin_-+x2cos )2 . (51)

If 7/= O, this wave function becomes

1 x_)}. (52) 0(x,
For other values of 7/, the wave function of Eq.(51) can be obtained from the above expression by

a unitary transformation.

A._, m_(., r/)_bm, (x,)¢,_2 (x2), (53)
rnlm2

where _bm(x) is the m th excited state wave function. The coefficients Am,m2 (q) satisfy the unitarity

condition

]A_,m_(a, V)J2 = 1. (54)
m| _Tt2

It is possible to carry out a similar expansion in the case of excited states [1].

As for unitary transformations applicable to wave functions, let us go back the generators of

canonical transformations in classical mechanics. As was stated before, they are also applicable

to the Wigner phase-space distribution function. The canonical transformation of the Wigner

function is translated into a unitary transformation of the SchrSdinger wave function. There are

therefore ten generators of unitary transformations applicable to SchrSdinger wave functions [4, 3].

The Wigner phase-space picture is often more convenient for studying the problems of coupled

harmonic oscillators. Unitary transformations in the SchrSdinger picture can be achieved through

canonical transformations in phase space. It has been known that canonical transformations are

uncertainty-preserving transformations. They are also entropy-preserving transformations [5]. Are

there then non-canonical transformations in quantum mechanics?

In the present case of coupled harmonic oscillators, we assume that we are not able to measure

the x2 coordinate. It is often more convenient to use the Wigner phase-space distribution function

to study the density matrix, especially when we want to study the uncertainty products in detail

[18,14].
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For two coordinate variables, the Wigner function is defined as [18]

W(Zl,X2;p,,p2) = exp {-2i(p, yl + p2y2)}

x _l,*(x, + y,,x2 + y2),h(x, - y,,x2 - y2)dy,dy2. (55)

The Wigner function corresponding to the oscillator wave function of Eq.(51) is

W(x,,x2;p,,p2)= exp-en(zxcos-_-x2sin )2

a 2 _ e-,7(pl cos -_-e-'(xl sin _ + x2 cos - p2 sin

o ;}-e,(p, sin + p cos )5 . (56)

If we do not make observations in the x2P2 coordinates, the Wigner function becomes

w(x,,p,) = / W(xl,x2; pl,p2)dx2dp2. (57)

The evaluation of the integral]cads to

I/V(xl'Pl) = 71"2(1 -t- sinh 2 _sin 2 a)

xexp - cosh ,/ - sin r/ cos a cosh T/+ sin ,Tcos a "

This Wigner function gives an elliptic distribution in the phase space of xl and pl- This distribution

gives the uncertainty product of

1

(Ax)2(/\p) 2 = 7(1 + sinh 2 r/sin 2 a). (59)

This expression becomes 1/4 if the oscillator system becomes uncoupled with a = 0. Because xl

is coupled with x2, our ignorance about the x_ coordinate, which in this case acts as Feynman's

rest of the universe, increases the uncertainty in the xl world which, in Feynman's words, is the

system in which we are interested.

In the Wigner phase-space picture, the uncertainty is measured in terms of the area in phase

space where the Wigner function is sufficiently different from zero. According to the Wigner

function for a thermally excited oscillator state, the temperature and entropy are also determined

by the degree of the spread of the Wigner function phase space.
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