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Abstract

Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling

schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in

interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric

oscillatorlike system, is characterized by real energies as opposed to previously pointed out relativistic

equations corresponding to this interacting context.

1. Relativistic descriptions of free vector mesons

Free vector mesons can be described through many (well known) equations, f.i.

the KEMMER equation [1]

(l_PPp-1)_ = 0

where the (10 x 10) _natrices 13_, generate the Kemmer algebra
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the SAKATA-TAKETANI equation[2]

I P2| ® (°2+i°l)'iSjSiPJPl ® °11_°
i_-q_ = (I ® o2)+--2-

- HST q)

where the (6 x 6) matrices are direct products of D (1) and Pauli matrices. Notice that,

in the two above equations, we take as units the rest mass, the velocity of light and the

Dirac constant. Our choice is also to use the metric tensor

G = {g"'lg °° = .gii = 1 }.

The Kemmer equation reduces to the Sakata-Taketani one when one considers the

(six) physical components, only. Namely, the Hamiltonian form of the equation (1.1)

together with the initial condition write

O_

i_ _ = (L I_o, I_jIPj * 13o)¥ - H,_,

(HKI_o-1)_ = 0.

(1.3a)

(1.3b)

One can then shows that, through the action of the transformation S = 1'.+ I_j 1302Pj, the

above system becomes

(_2o- 1 )¥' = O, (1.4a)

<3 _' = HST _' (1.4b)

(q_) (1.5)_"=S¥= 0 "
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= Relativistic descriptions for vector mesons interacting with
constant magnetic fields

The corresponding equations hold for vector mesons interacting with constant

ma_(]netic fields directed along the x3:.&_._, i.e.

in the KEMMER case [31

(6"_,-l+(1-652)eBS3)¥ = 0 (2.1)

where ,_, = p, - e A,, (2.2)

B B
Ao = 0 A1 = ---x2, A2 = -- Xl , A3 = 0 (2.3)

' 2 2 '

i_ 6,6,6,6 o
65 = 4 ,vpo , £0123 = 1,

83 = i[ 61 ,62];

(2.4)

(2.5)

- in the SAKATA-TAKETANI case [4]

i_-q)= [(I ® G2)+_2! ® (c2+i(_l)-iSjSl_j_l ® ol+eBS3 ® G2!_, (2.6)2 J

t
The eigenvalues E corresponding to the physical components write [3,4] in _ooth cases

1
E 2 = l+eB(n+_)+2eBS, S = 0,+1, n = 0,1,2, ..., (2.7)

if we limit ourselves to the so-called perpendicular part (i.e. in the plane ( xl, x2 )). So,

for the particular values n = 0 and S = - 1, we obtain

E 2 = 1 - e B (2.8)

which could, for sufficiently large magnetic fields, lead to complex energies. This is an old

problem [5] and we propose to solve it by investigating a very recent tool • the so-called

"parasupersymmetric oscillators"
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B Parasupersymmetry and the corresponding new Sakata-

Taketani equation

The nonrelativistic limit corresponding to the interacting Sakata-Taketani or

Kemmer Hamiltonians (2.1) and (2.6) is

HNR = 1_ (_:12*_22) +e BS3-
(3.1)

Taking

= e B, (3.2a)

a = 1 ( _1 + i _2 ) (3.2b)

a t = 1 (_1 - i _2), (3.2c)
_,_eB

we get

and

q

HNR = _-i{a,a t}+_S3= _{a,a t}+o} 1 0 0 )
0 0 0

0 0 -1

1(loo)ENR = o)(n+ )+(o 0 0 0 •

0 0 -1

(3.3)

(3.4)

These are the RUBAKOV-SPIRIDONOV parasupersymmetric Hamiltonian and spectrum

for an oscillatorlike interaction [8]. A specific feature of this parasupersymmetric model is

the existence of negative eigenvalues. This evidently leads to complex relativistic

energies for sufficiently large magnetic fields and confirms the Tsai results Is].

We propose here to eliminate this defect by using another parasupersymmetric

model : the BECKERS-DEBERGH parasupersymmetric oscillator [7] characterized by

positive energies, only. More precisely, the BECKERS-DEBERGH spectrum corresponds

tO
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o10 o)m I 0 •
ENR = re(n+1)+ 2 0 0 - I

(3.5)

Thus, the remaining point is to construct a Sakata-Taketani Hamiltonian whose

nonrelativistic limit would lead to such a spectrum. We take [8]

HST : (I _ 02)+
2

-(g_+_)Z +(n_+n_)x-_(_lnl-_2n2)(s_-s_)® o,

_i (/_1[-[2_/_2r[1){S1 S2} _ ol+eBtl,
2

(3.6)

where _,, 11 are undetermined and

Fla : pa+eAa, a = 1 ,2, (3.7)

In order to solve our problem, we have to impose different conditions like I

{z,(s_-s_) ® _, } : {z,{sl,s2} ® _,_ : 0, (3.8a)

i S } (_ O'3 0-i-t(S_-S_ ) ® _,,,nl+2({S,,S2} ® O,)X-2{Sl, 2 : ,
2

-J_{{sls2}® o,,nl-2(<s_-s_)®o,)_+_-<s_-s_)®o3: o,2

in order to the eliminate terms like ( t=2 + t_2 )2, ...

We then obtain

(3.8b)

(3.8c)
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al

0

_0

al

0 0

0 _ i a3
4

0 -a3 _i
4

0 0 0

_i a3 0 - al 0
4

- a3 i 0 0 - al
4

0 0 0 0 0

0

0

a2

0

0

0

51 - 2 i al 0 54 _3 0

2 i al oh 0 - _3 0_4 0

0 0 O_5 0 0 5 2
i

4 i a3 - 54 0_3 0 - 51 2 i al 0

- 53 4 i a3 - 54 0 - 2 i at - e_l 0

0 0 56 0 0 - 55

together with constraints like

10

al-a_ =- a3_3 a10_1p _ y • . , .

16

Taking now

51

=_i a3- 1
al = O, a2 2' - 4'

_2 = i, _3 = O, _4 = _J +i _5 = _, 58 = ]-

we finally have

I 0 0 ) B.D.
ENR = 0-)(n°+_)+ _(_- 0 -I 0 = ENR

f.. f_.

0 0 I

(3.9a)

with n' =- nl + n2. (39b)
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Of course, in these developments, we have exploited Johnson-Lippmann

considerations [g] relating the motion in a constant magnetic field with oscillatorlike
1 2 2

interactions and implying in particular that the eigenvalues of the operators 2- ( _1 +/t:2 )

1 1

and _-1( i_l2 + I_2 ) are co ( nl + _ ) and co ( n2 + _) , respectively. As a result, a Sakata-

Taketani type Hamiltonian avoiding the complexity of the energies is

HST = (I ® _2)+i(! ® (_3)+i(_-1)S 2 ® _3

i [ ® (_1_i_2)_i S_ ® (01+i_2)
+2 i2

1--(_2+_2)(-iS3 ® o,+iS 2 ® o1*I ® ((T2-i(I1))
+4

1-(Fl12+l_2)(iS3 ® ol+iS 2 ® _1+] ® (o2-ia1))
+4

i
_ i (ELF[1 _/i;2r[2) (S{_S2) _) (51. _ (/l;lr[2+_2H1){Sl ,S2 } ® O12

+ea(-_-[ ® (01+ia2)+1 S23 ® 02).
(3.10)
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