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Abstract

In this paper we discuss the Dirac Oscillator wave equation in terms of a pseudoclas-

sical language, using Grassmann variables to describe the internal degrees of freedom of

the oscillator. Regarding the original wave equation as a classical constraint, we use the

theory of constrained systems, to develop a reparametrization invariant lagrangian, which

is the pseudoclassical equivalent of the quantum case. The consistency of the Hamiltonian

formalism and the quantization procedure are also analized.

1. Introduction

As is well known, in the second decade of this century Dirac developed the square

root method, to analyze the internal spin degrees of freedom in quantum mechanics. Dirac

accomplished his task by means of a Clifford algebra for these degrees. Altought at that

time the Grassmazm algebras were already known, there existed no classical counterpart

available for his approach. In present day point of view, however, we know that this

old problem can be formulated using anticommuting, fermionic variables, to reproduce

the behavior of the spin degrees of freedom at the classical level. Since the Grassmam_

variables have no direct physical meaning, the theories formulated with them are usually

327



called pseudoclassical.

One important point of the approach formulated above is that, associated with the

anticommuting variables and involving also the rest of the non-Grassmann dynamical vari-

ables of the theory, (called bosonic variables), there exist a supersymmetric gauge invari-

ance in the formulation. One of the reasons for this supersymmetry is the fact that any

quantum wave equation present in the theory is translated at the classical level as a first

class constraint. According to Dirac conjecture, all first class constraints generate gauge

transformations, but since in this case the Grassmann and the bosonic variables are mixed

up by the gauge transformation they become, in fact, supersymmetric.

This way of reasoning has been analyzed by several authors [1,2,3,4] as a pevious step

to quantization. The idea is in some sense based in Dirac's point of view that we sho_dd

first try to fully understand a problem at a classical level, and only then try to quantize it

[5]. One consequence of tlfis procedure is that we can apply it to systems which we don't

fully understand, for instance in the case of two body, or more, relativistic wave equations

[1]. The interesting point here is that the time evolution of the dynamical variables are just

the Euler Lagrange equations, which in principle are known, thus solving the dynamics of

the problem, at least at the classical level.

2. The Dirac Oscillator

Let us begin with a simple introduction to the Dirac Oscillator. Some years ago,

Moshinsky and Szczepaniak introduced a relativistic wave equation linear in momentum

and in position which has an harmonic oscillator spectrum plus a strong spin-orbit coupling

term [6]. This equation is obtained by the replacement of the momentum of the particle

in the Dirac equatiom by

p --4 p - irnwr_, 1)

where p is the momentum, m the mass of the particle and r is its position, w is the

frequency of the oscillator, and /_ the Dirac 3,° matrix. Taking advantage of the frame

dependence vector u ", it is easy to show that the Dirac oscillator equation can be put in
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the manifestly covariant form

(8. P + rnOs) ¢ = O, 2)

where

Pt` = pt` - 2imwx_. ( fi . 0)08, 3.a)

and

x__ - z" + (f. x)f" 3.6)

The operators Ot` and 8_, are expressed in terms of the Dirac matrices in the following way

i

8/* _-_757 g,

i

08 =_78,

=0,1,2,3

3.c)

where 75 = i7°717273. We use natural units in which h = c = 1 and our metric is

given by (qt`,,) = diag.(-1, 1, 1, 1). We recover the original Dirac Oscillator in the frame in

which fit, = (1,0,0,0). The solution, spectrum degeneracy, hidden supersymetry and other

important properties are discussed in [8,9], (and references therein).

3. Pseudoclassical description

Now, the idea is to reformulate the problem in a pseudoclassical language.

done in a natural way by translating Eq. 2) into a first class constraint

This is

ff ==_O . P + rrtOs _ O, 4)

where _ means weak equality and the dynamical variables become pseudoclassical ones

5.a)

Of course we know that

{xt,,p"} = rtt`v. 5.b)

The Poisson braker of the first class constraint 3" with itself, is the classical equivalent

of the square of the Dirac Oscillator. In this way, thus, we generate another constraint
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which could be 'calledthe pseudoclassicalanalogueof the Klein Gordon equation. This

new constraint is constructed in such a way to be again a first class, altought secondary,

constraint. Of course, if there is any second class constraint we should replace the Poisson

braket for the Dirac one, in order to get rid of them.

In our case the superalgebra obeyed by the constraints is given by

{J,J} =i7-/= i(P 2 + m 2 - 4im0.,A) _ 0,

{j,x} =0, 6)

=0.

In this equation, A is given by

A - (O. xz)fi. (too- 05P). 7)

Notice that the first of this constraints is precisely the pseudoclassical Klein Gordon equa-

tion. Is in this sense that we say that we translate the square root method into a classical

language. We also note from Eq. 7) that J and 7-/are first class.

Following the procedure described in Ref. [7], we can construct the Lagrangian of

the problem. Since the whole dynamics of the theory is contained in the constraints, the

Hamiltonian of the system is a linear combination of them

H = NT't + iMJ =_ O, 8)

where N and M are gauge fixing parameters. This in turn means that the Hamiltonian is

weakly zero, implying a reparametrization invariant Lagrangian as a consequence. Accor-

ding to Ref. [7] the whole action is given by

S= ["'dr{-m -X/_z2[1-2iw(0"x±)(fi'0)]+ i/2[0"0,,+0505]
Jr 2

- 2imw(O. x±)Os(fi, z) + 2imw(z. x±)(fiO)05 9)

- 2mwM(O. xz)(fi .0)05 -irnM05.

Where z, =___:" - iMO_'.

It is not hard to prove that this action is the correct answer to our problem. From

the Hamiltonian formalism, we know that the time evolution of any dynamical variable F

is given by

F = {F,H}. 10)
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Hence, for the dynamical variables in our case we obtain that

k" = iMO _ + 2NP _ + 4imwN(O. x k)Osu"

Ot" = 4m2wN[x_(fi • O) - (0. x±)fi _'] + UP" 11)

05 = rnM - 2imMw( O . x± )( fi . O) - 4rmoN (x z . P)(fi-0) + 4rnwY(0. x±)(fi. P),

which are precisely the Euler-Lagrange equations of the action 9) provided

,/:-;2
N(r)- 2m [l+2iw(0.x±)(_'0)]. 12)

This result proves the complete agreement between the Hamilton±an and Lagrangian for-

malisms, and as a result we are confident that action 9) is the corect answer. What Eq. 12)

tells us is that we can specify the gauge by giving a value to x/-L--z2, usually _ = -1. In

the same way we can construct the supergauge transformations for each dynamical variable

F by means of the equations

3F= {F, ea(T)¢,,}, a= 1,2 13)

where Ca represent our two constraints, and ca(r) are two time dependent infinitesimal

parameters. The result is too long to be given here, (see reference [7]), the only point we

want to remark here is that, as we already mentioned, they express the full dynamics of

the theory, as is suggested by the comparisson of Eqs. 10) and 13).

4. Conclusions

We note form Eq. 3.a) that the Dirac Oscillator interaction term is 0-dependent. In

eases like this, the quantization procedure should be done careflflly, since some properties

of the Grassmann variables changes radically when quantized. For example, the 05 variable

has the property that 0,_2 = 0 at the classical level, but at the quantum level (Eq. 3.c)

022 = -1/2. Thus if we consider for instance, the Taylor expansion of a 05 dependent

function, we obtain different results depending wether the quantization is done before or

after the series expansion.

In the case of the system studied here, if we put in Eq. 6) the square of P_' given by

3.a) and proceed to quantize by means of definitions (3.c), we obtain a wrong result. The
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central point here, is that we should regard P_' as a basic quantity to quantize. If instead

of developing the square of P_', we first quantize Eq. 6) and regard 3.a) as a quantum

operator identity, we obtain a complete compatibilty with the Klein Gordon wave equation

associated with the Dirac Oscillator. Finally, we would like to remark that our approach

could be useful to problems that are not fully understood at the quantum level, but that

have 6-dependent interaction terms, such as the afforementioned two body relativistic wave

equations and some supergravity theories [7].
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