
/

N95- 22997
/

NOTES ON OSCILLATOR-LIKE INTERACTIONS OF

VARIOUS SPIN RELATIVISTIC PARTICLES*

Valeri V. Dvoeglazovt _t

Escuela de Fisica, UAZ, Ciudad Universitaria

Antonio Dovali Jaime s/n, Zacatecas, ZAC., Mdxico 98068

Antonio del Sol Mesa§

Depto. de Fisica Te6rica, Instituto de Fisica, UNAM

Apartado Postal 20-364, D. F., Mdxico 01000

Abstract

The equations for various spin particles with oscillator-like interactions are discussed in
this talk. Contents: 1. Comment on "The Klein-Gordon Oscillator"; 2. The Dirac oscillator

in quaternion form; 3. The Dirac-Dowker oscillator; 4. The Weinberg oscillator; 5. Note on

the two-body Dirac oscillator.

1 Comment on "The Klein-Gordon Oscillator"

In connection with the publications of Moshinsky et al., e. g. [1], the interest in the model with

the j = 1/2 Hamiltonian that is linear in both momenta and coordinates has grown recently [2].

Analogous type of interaction has been',considered for the case of j = 0 and j = 1 Duffin-Kemmer

field [3] and for the case of j = 0 Klein-Gordon field [4].

In the paper [4] the operators Q, coordinate, and /3, momentum, have been represented in

n ® n matrix form

1_ = 00", /% - @, (1.1)

= 1. The interaction in the Klein-Gordon equation has been introduced in the followingwith 02

way:
/% _ /% - im_ . Q, (1.2)

where for the sake of completeness _ is chosen by 3 ® 3 matrix with coeificients _ij = _oi_ij. The

"_ matrix obeys the following anticommutation relations {'_, _)} = 0, _2 = 1.

The Klein-Gordon equation for qJ(_',t), the wave function which could be expanded in two-

component form, is then

02 ..., -. _2
- -_(q,t) = (fi2 + rn2¢. .¢+ m_ trf_ + rn2) qt(¢,t), (1.3)

*The extended versionof thistalkcould be found in the LANL database,HEP-TH/9403165.
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what gives the energy spectrum [4]

E_a)N * -- m 2 = 2m (wIN1 + w2N2 + w3N3) , N1, N2, N3 = 0, 1,2...

E(b)gi2 _m 2 = 2m(wl(gl+l)+w2(N2+l)+w3(N3+l)). (1.4)

However, the physical sense of implementing the matrices @ and _ in [4] is obscure. In this

Section we try to attach some physical foundations to this procedure. It is well-known some

ways to recast the Klein-Gordon equation in the Hamiltonian form e. g. [5, 6]. First of all, the

Klein-Gordon equation could be re-written to the system of two coupled equations [6,p.98]

0@ 0E _

c3x, _ - tcE_, Ox,_ - t¢_, (1.5)

where t¢ = mc/h (in the following we use the system where c = h = 1). By means of redefining

the components they are easy to present in the matrix Hamiltonian form (cf. with [7])

i(0 ) 0010)]/;:/0 o 0
X1 = Pl + m

z_- X2 P2 0 0 0 0 -- 01
X3 P3 0 0 0 0 0 -- \ X3 /

(1.6)

provided that ¢ = iOt@ + mdg, Xi = -i Vi @ =/7i_. Using matrices (_ and _, corresponding to this

case, and introducing interaction analogously [la] we come to the equation for upper component

(1.7)

what coincides with Eq. (10a) of ref. [4] in the case wl = w2 = w3.

The similar formulation also originated from the Duffin-Kemmer approach. In this case the

wave function q) = column(C1,4_2, Xi) is five-dimensional and its components are ¢1 = (iOtqt +

m_)/vf2, 4'2 = (iOt_- rnq2)/v/2, Xi = -i V; qJ = fi;9. It satisfies the equation

.0@

'-x : (a¢+mZ0)¢, B t, = [f_0, ]_]- (1.8)

(our choice of 5 ® 5 dimension fl-matrices corresponds to ref. [3]). As shown there, the substitution

--4 _-imwrlo_'leads to the equation (1.7) for both ¢1 and _b2. Let us remark, in both the approach

based on Eq. (1.6) and the Duffin-Kemmer approach, Eq. (1.8), we have the equation

t(E 2 - m2)xi = (Pi- imwxi)(P.i + imwxJ)xj (1.9)
i

for down component, which seems to not be reduced to oscillator-like equation.

Then, Sakata-Taketani approach, e. g. [5], is characterized by the equation which we write in

the form:

i_--_(_--{ fi(v3A-iT2)fi }2-m + roT3 ¢, (1.10)

with ri being the Pauli matrices. (I) = column(C, X) is the two-component wave function with

components which could be written as following: _b = (@ + i(gt_)/v_, X = (_ - -_(gt_)/v_.
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From the previous experience we learned that in order to get the oscillator-like equation we need

to do substitution with matrix which anticommutes with matrix structure of the momentum part

of the equation. In our case the matrix which has this property is rl matrix. Therefore, we do

the substitution/Y _ g- imwrlF and come to

E2_ = [/72 + m2w272 _ 3rnw + m 2] _,

where _ = ¢ + X, and to the analogous equation for 7/ = 0 - X = E(¢ + X;)-

calculations we convinced ourselves that the interaction Hamiltonian

1
(fi2 + m2,_2_2 3row) (T3 + it2) + tara (1.12) =Tmm

is the same as in [3, formula (3.9)] since Tl(r3 + i7-2)rl = --(7-3 + it2) and (T3 + ir2)7-1 = T3 + it2.

(1.11)

In the process of

2 The Dirac oscillator in quaternion form

The quaternion (and conjugated to it) with real coefficient is defined as q = qo + iql + jq2 + kq3,

q = qo-iql-jq2-kq3. The basis vectors satisfy the equations i 2 = j2 = k2 = --1 and ij = -ji = k

with cyclic permutations. Considering a two-component quaternionic spinor (or SL(2, H) spinor)

one could write the free, Dirac equation as following, ref. [8c,d],

[' . 0'_ - rn r3 '_ k = 0. (2.1)

Anticommutation relations for F are given in [8d,p.222]. In Pauli representation (i _ -_L--Trl,

j _ -_/-L---i-r2 and k _ --_/-J-i-T3) it goes through to usual Dirac equation and its complex

conjugate. As mentioned in [8] it is convenient to diagonalize the matrices entering in Eq. (2.1)

using matrix

1(1 _) (2.2)T - v/'_ 1

In such a way we come to biquaternionic formulation (qi E 12):

{ 00L + irn_b_ = 0 (2.3)0 *a + = 0,

where 0L = 0P+, 0R -- 0P-. This decomposition of _ into left ideals is carried oult by means of the

projection operators p+ = (bo+b3)/2. New basis is b0-= 1,b, =- _'-L-ii, b2- v/L---lj, b3- x/'_k and

b0 = b0, b,_ = -b_. Introducing interaction in the form Oi _ 0i+TaV/(£), V is the compensating field

for this type of Sp(1, Q) transformations, and taking into account that the vectors of biquaternionic

basis anticommute b_/_ + b_b,_ = -2r/_, r/,_O = dia9(-1, 1, 1, 1), we come to the equations for the

left and right spinor-quaternions in the following form:

(E 2 _ m2)OL = [(fi2 + k2:_2)_ 3k- 2EijkbkXiPj ] _)L (2.4)

(E 2 _ m2)g)t R = [(/y2 + k2_2)+ 3k + 2e,ikbkx@j ] _b_ (2.5)

if we choose V_(£),= kx_. Eqs. (2.4) and (2.5) are the Dirac oscillator equations in the Pauli

rep, bk _ Tk. Analogous equations for OR and _tL could be obtained from (2.3) if one choose the

opposite signs at the mass terms.
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3 The Dirac-Dowker oscillator

In this Section we start from the equation for any spin given by Dirac [9] in the form written down

by Corson, ref. [6,p.154], (here we use Corson's notation)

OABvB(k + ½)_b(k + ½,1- 1)_ m (2_9_)'/2vA(l),(k, 1) = 0
( 21 _l/2vB(k .__ 1)_)( k @ ½,1- l) =0,OABVA(l)¢(k, l) + m k2k+l/ 2

(3.1)

where VA and v A are the rectangular spinor-matrices of 2k rows and 2k + 1 columns (see, e. g.,

section 17b of ref. [6] for the details). The wave function ¢(k, l) belongs to the (k, l) representation

of the homogeneous Lorentz group. The choice I = 1/2 and k = j - 1/2, j is the spin of a particle,
,

permits one to reduce a number of subsidiary conditions. Moreover, the equations (3.1) are shown

by Dowker [10] to recast to the matrix form which is similar to the well-known Dirac equation for

j = 1/2 particle

(3.2)

The 4j- component function (I) could be identified with the wave function in (j, 0) $ (j - 1,0)

representation. Then, T, which also has 4j components, is written down

T=(-1)2J(2J)-]( v'4(j-½)®vA(½))uA(j)®v'a(_ll_¢(J-2,1 15) . (3.3)

and it belongs to (j - 112, 1/2) representation. The matrices _" and Or = _, obeys all the
algebraic relations of the Pauli matrices 6(ocff) = g_'_, except for completeness.

Defining p_, = -iO, and the analogs of 7- matrices as following:

7_=( 0ia" -i_v)0 (3.4)

the set of equations (3.2) is written down to the form of the Dirac equation

However, let us not forget that (I) and T are 2-spinors only in the case of j = 1/2.

In the case of spin j = 1/2 it is well-known the set of 7- matrices is defined up to the unitary

transformation and Eq. (3.5) could be recast to the Hamiltonian form given by Dirac (with ak

and fl matrices) by means of the unitary matrix. It is easy to carry out the same procedure

(a k = ST°"/kS -1 and /_ = $7°S -1) for 7- matrices, Eq. (3.4), and functions of arbitrary spin

(@ = S-I(I)). For our aims it is convenient to chose the unitary matrix as following:

1 ( 114104j il14j®4j3
S -- -_ \ ill4jO4j "fl4j®4j / "

(3.6)
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After standard substitution/7..--*/7- imwT°f" we obtain

E¢ = -i [ao( ffp") + imw(ar-')] v + mao¢, (3.7)

Ev = i[a0(c_p") - imw(_r-*)]¢- maov. (3.8)

Since it follows from the anticommutation relations that aio0 = aoai we have the equations which

coincide with Eq. (8) 6f ref. [la] or Eqs. (3.6) and (3.12) of ref. [ld] except for r u .--* au, i. e.

their explicit forms,

(E_- m2)¢ = [/7_+ m_r_- 3_0m_- m_0_E'c_lr'v_]¢ (3.9)

(E_+ m% = [_ + m_ _+ 3_0m_+ m_0_t'_lr'V_ ] v. (3.10)
Thus, we convinced ourselves that we got the same oscillator-like interaction and the similar

spectrum as for the case ofj = 1/2 particles in [la].

4 The Weinberg oscillator

The principal equation of 2(2j + 1)- component approach [11] in the case of spin j = 1 is

(%,'PUP; + M2)qt(J=l)(x) = O, (4.1)

with 7_ being 6 ® 6 covariantly defined matrices. The j -- 1 Hamiltonian has been given in refs.

[llb,c]:

2E 2 [ 2E _ 21
7-[ - 2E 2 _ M_(_p'*) + j3 LE 2E 2 _ M2 (p") ] , (4.2)

where

C_ _ 0 ' ]]-3@3 0 "

(Si are the spin matrices for a vector particle).

In general, the upper and down components of 6- component wave function do not uncouple

neither under the interaction t7 ---. /7- imwj3F nor under 75,t,_ut, r_,. However, if we introduce

the Dirac oscillator interaction so that the conditions of the longitudity of q2 = column(¢i, Xi)

respective to F', i. e. Ex¢ = O, Ex_ = 0 are fulfilled, we come to the equations more simple

(2E 2 - M2)_ = E(Sp-')rl+ [(ffp')-k(Sff)] (ffP-3_, (4.3)

E(ff_( = [(ff_ + k(ff_] (ff_q (4.4)

(_ = ¢ - X, r/= 0 + X), which could be uncoupled to the following form (k - imw)

(ffp-')(E 2 - M2)(ffp-')_ = (ffp-') [iff2 + mw272 + 3mw + 4mwfftf" x p_] (ffp-')_ (4.5)

(#p_(E_- M_)(gp'), = (_p_[g_+ m_e _- 3m_- 4m_#V×Pl](gP_O-
-imw(2E 2 - M2)( Sr-')( ffp-')rI (4.6)

These equations can be considered as the extension of the equations with Dirac oscillator

interaction to the j = 1 case, for the components (ff_ and (S_T1. However, remark that one has

the additional spin-orbit term acting as earlier at 0.
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5 Note on the two-body Dirac oscillator

The two-body Dirac Hamiltonian with oscillator-like interaction is given by (see, e. g., ref. [lc])

1 . 1 .. .. i ._ ]_f_lb _--= "_(O_1 "[- d2)" P "[- "_(O_1 -- (:_2) " P -- -_(Oq -- (:_2) " FB + m(fll + f12) lb.
(5.1)

In the c.m.s, it is possible to equate/3 = 0. The matrices are given by the direct products

0) 0) (oo°
0 0 ]]2@2 ' ]12@2 '

112®2B =/71 ® _2 = 0

( o112_2

--]102®2) @ ( ]12®20 --_-2®20 ) , (5.3)

11;®2)®( 0 I1;®2) (5.4)
112@ 2

Now we apply the same procedure like that was used for transformation the Bargmann-Wigner

equation to the Proca equations. The 16- component wave function of the two-body Dirac equation

could be expanded on the complete set of matrices: (3'IAC), (alA_'C) and C, (_/5C), and (757lAC).

We consider the system multiplied by C, the matrix of charge conjugation, in order to trace for

the symmetric properties under oscillator-like potentials. The wave fimction is decomposed in

symmetric and antisymmetric parts using the above-mentioned complete system of matrices:

In such a way we obtain the set of equations:

EAo = O, EAo = -2m¢, E¢ = 2ivf2(fii - iFi)F '°

E(_ = -2raft,0 + v/'2eiik(fii + i_'i)F ik

ETti = -ivf2e,ik(fij q: if'J)A k

EA i = 4imF °i + iv/2eijk(fij :k i_'J)A _

EEOi = _2imA i + ivf_(fi_ + i_.i)¢

1

S Fjk = --_eijk(fii - ir'i)¢

(5.7)
(5.8)
(5.9)

(5.10)

(5.11)

(5.12)

Let us mention that for another type of Dirac oscillator-like interaction -,_ ((_1 - (_2)BF5 the only

changes are the sign changes at the term i_'in Eqs. (5.9) and (5.10) of the above system. The two-

body Dirac oscillator equations in the form (5.7)-(5.12) could be uncoupled on the set containing

only functions ¢, ¢ and AlA and the another one containing only AlA and FlAy:

{( )}• 1 16me kf"Fj
1) (E 2 - 8m2)¢ = 4(fii - iP)(fii + i_")¢- _ 0 ._k

(E 2 -4m2)¢ = 2(/_. + _*i)(Fi- i7i)¢

(5.13)

(5.14)
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EA0 = -2m¢ (5.15)

(E 2 - 8m2),4 i = 2(/_ =F ir-'J)(P-'i 4- iFi ) ft j - 2(/7j q= i_q )(_j 4- iTi ) f_ i +

2) EAo = 0 (5.17)

(E 2 - 8m2)F °i = 4(i_ + igi)(fij - ff'J)F °j -

. m _, ...,. .-, . m ..,

-4,-_(pj 4- zr')(pi =F i_i)A j + 4,-_(pj 4- if'J)(ffj _= igi)A i (5.18)

E2A i = 2(ffj 4- igJ)(p-_ T if'i) Aj - 2(/7j 4- ir-'J)(p_ . :F ff'J)A i + 4imEF°i

(E 2 - 4rnZ)F jk = eijket,,n(fii - i_)(_ + iFi)F m". (5.19)
I

This fact proves the Dirac oscillator interaction, like the case of introduction of electrodynamic

interaction in the Proca or the Bargmann-Wigner equations, does not mix S = 1 and S = 0 states.

Next, the interaction term of the following form:

l;int 1 dV(r)/dr ._. 62)BF5 '
= r 1 -

(5.20)

has been deduced [12] from the equation of Relativistic Quantum Constraint Dynamics (RQCR)

or N- particle Barut equation. In [12] it proved to lead to the Dirac oscillator-like interactions

provided that the definite choice of the fimction V(r). In connection with that let us remark the

curious behavior of the another potential V(r) which has been proposed in ref. [lab,c]:

V(r) = -g 2 c°th (rrnzr ) _ _g2 coth ( _r )
47rr 4_rr

(5.21)

It could be deduced from the one-boson exchange quasipotential V(/7, f¢; E) = _g2(p_ k)-2 by

means of the transformation into the relativistic configurational representation (RCR) using the

complete set of Shapiro plane-wave functions: ((z_, r-') = (A0 - Aft/m) -i-i'm, A0 = _/_,2 + rn 2,

In the case of the quasipotential (5.21) the interaction term 12, Eq. (5.20), has the different

asymptotic behavior in three regions (g2/(4zr) = 1). Namely,

1

)2i"t --"_r(r 2 - 1)(iT1 - _2)Brse'__

,,_ / (1/r3)(_1 -- _2)BFsr', if

-(1/r)(gl - t72)Brs_', if

r >> ! and r > 1
K

1 << r < 1,
K

(5.22)

in the infrared region (r >> ¼, large distances); and

1
l) i"t _ -2t¢(_1 - ff2)BFs_', if r << -, (5.23)

in the ultraviolet region (small distances). In one of the regions one has the Dirac oscillator-like

behavior.
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