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Abstract

We discuss the Shannon-Wehrl entropy within the squeezing vocabulary for the cosmo-

logical and black hole particle production.

Models and concepts of quantum optics have been applied to quantum cosmology (cosmo-

logical particle production) already in the seventies [1]. More recently Grishchuk and Sidorov

[GS] [2] used the formalism of squeezed states to discuss the spectrum of relic gravitons from

inflation, the spectrum of primordial density perturbations, and even the Hawking radiation

of Schwarzschild black holes. Apparently there is no new physics entailed [3]. However, the

squeezing language may well be more effective in characterizing those physical processes which

are of basic theoretical interest. Therefore many authors started to use this language in the

cosmological context.

Here we apply the Shannon-Wehrl entropy (Ss_) [4] to the squeezing approach of [GS] [5].

In quantum optics Ssw is known as an important parameter which is employed to distinguish

among various types of coherent states, measuring the relative degree of squeezing with respect

to pure coherent states for which Ss., = 1 is minimum [6]. It is defined as follows

S,,,, = --re1 f d2o_Q(a,) ln Q(oO (1)

where Q(o_) is the Q representation of the density operator satisfying the normalization condition

'- f = 1.
7r

The calculation of S_ for various types of states is not difficult [7]. Here we quote two

results of which we shall make use in the following. For the one-mode squeezed states

1

S,_, = 1 + _ ln(sinh 2 r - lel2) (2)

where e is the coherent percent component of the squeezed state, e = 0 means the squeezed

vacuum state. For the thermal states the S,_ parameter may" be written

S.., = 1 - ln(1 - _) (3)
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where _ is the inverse of the Boltzmann modal factor _ = exp(-flhw).

Let us pass now to the squeezing approach of [GS]. The main idea is that gravitons cre-

ated from zero point fluctuations of an initial vacuum cosmological state are at present in an

one-mode squeezed quantum state as the result of the parametric amplification due to the in-

teraction with the variable gravitational background. The squeezing coefficient r is a function

of the cosmological evolution. Most authors [8] use an expansion in three stages: inflationary

(i), radiation-dominated (r), and matter-dominated (m), with the transitions between stages
considered in the 'sudden' approximation in which the kinematic effects of the transitions are

neglected. Thus the Universe remains in the same quantum state as before transitions [9], and

only a redistribution (squeezing) of the quasiparticles takes place. The parametric amplification

occurs mainly at the inflationary stage, where the variation of the background is most rapid.

The squeezing coefficient can be obtained from the ratios of the dimensionless scale factors at

the returning (either at r-stage or m-stage) and exit of a given mode out of the Hubble sphere

at the i-stage, as follows
expr = a(rl,,t)/a(rle=) (3)

According to [GS] r increased from r ,._ 1 up to r ,-, 100 for waves with present-day frequencies

ranging from v _ 10 -s - 10-16Hz, which were amplified at the inflationary stage only. For waves

in the range v _ 10 -16 - 10-1SHz, the squeezing parameter may reach a value of 120 due to the

additional amplification at the matter-dominated transition. We see that cosmological squeezing

is about two orders of magnitude bigger than ordinary laboratory squeezing. This is indicative

of the huge mean number of quasiparticles in every mode. Making use of the numerical values of

the cosmological squeezing coefficient we can plot the S,_o entropic parameter for the one-mode

squeezed graviton states a¢cording to Eq.(2).
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Fig. 1: Shannon-Wehrl entropy for graviton squeezed states with different co-

herent components e (full line e = 0%, slash line e = 10%, slash-dot line e = 20%).

The non-zero coherent component we allowed for would correspond to possible deviations of

the initial quantum state of gravitons from the vacuum state [10].

In the case of Schwarzschild black holes a two-mode squeezing comes into play for any type

of radiation detected at asymptotic infinity. However due to the special causal structure of

the black hole spacetime, the asymptotic observations are limited to one mode only. Under
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such conditions the detected states turn into thermal ones. Actually, Hawking radiation is a
distorted blackbody radiation, but wecanconsiderit asaneffectivethermal one [11]. Therefore
we plotted S,_ according to Eq.(3), with 7 in the effective Boltzmann factor defined by

1 _ r(_) (4)

exp(7)- 1 exp(flhtiw)- 1

where flh is the horizon inverse temperature parameter, and F(w) is the penetration factor of

the curvature and angular momentum barrier around the black hole.
Fig. 2
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Fig. 2: Shannon-Wehrl entropy for the 'thermal' radiation of a M = g

Schwarzschild black hole as a function of the inverse of the effective Bolzmann factor.

We chose the mass of the black hole so that no massive particles are emitted. This would better

correspond to the analogy with quantum optics.
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