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Abstract

Kravchuk orthogonal functions -- Kravchuk polynomials multiplied by the square root

of the weight function -- simplify the inversion algorithm for the analysis of discrete, finite

signals in harmonic oscillator components. They can be regarded as the best approximation

set. As the number of sampling points increases, the Kravchuk expansion becomes the
standard oscillator expansion.

1 Introduction

In a harmonic oscillator environment, such as Fourier optics in a multimodal parabolic index-profile

fiber, sampling on a finite set of discrete observation points reconstructs the wavefunction

through partial wave synthesis. For the harmonic oscillator eigenfunctions, one must invert a

nondiagonal matrix with the dimension of the number of data.

We show that Kravchuk orthogonal functions optimize the algorithm for the expansion coef-

fients, because the matrix is already diagonal.

* Kravchuk functions [1, 2] are solutions of the difference analogue of the Schr6dinger equation

describing a discrete harmonic oscillator system.

• Kravchuk functions have a well-defined analytical structure inside the measurement interval.
i

• Kravchuk functions become the standard oscillator wavefunctions, as the number of sampling
points increases.

J

This contribution is a r6sum6 of Ref. [3].
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2 Harmonic oscillator expansions over a lattice of sam-

pling points

The standard harmonic oscillator eigenfuctions are

1 H_(_) e -_/2 n = 0, 1,2,...,

=

where H_(_) are the nermite polynomials, ( = mC-_/h x, m is oscillator mass, w is oscillation

frequency, and the position coordinate is x. This function set is orthonormal under the £:2(R)

inner product:

F { 1, whenm=n,(¢,,, ¢_)u = d_,,_(_)¢,,(_)=5_,,,= O, when m # n.
oo

Thus, an arbitrary function f(_) E £2(_) can be approximated in the norm as

f(_) = _ c_ ¢_(_),
n_O

C o¢where the expansion coefficients { ,_},,=0 are determined by

/°c_ = (¢_, f)_ = d_ ¢=(_) f(_).
oo

When the g + 1 values {f(_j)}N=o of function f(_) are sampled on the points

1
_o = -_gh, (j (_1 + j) h,. . _N ='... = _N . _Nh,

then N

f(_j) = _ c(N) ¢=(_i), J = 0, 1,... N.
n----O

The task to determine the N + 1 coefficients {c(N)}_=0 is formulated in matrix form as

f = _II(N) e(N),

(2.1)

where

f(_o) c_N)

f = f(_a) c(N) =
• , • ,

f(_N) c (N)

and

@(N) =

¢0(¢0) ¢0(6) ... ¢o(¢N) )

¢,(_0) ¢,(6) ... ¢,(¢N)
: ° . o , °

CN(_o) _N(6) .-- _N(_N)

This is the N × N matrix that has to be inverted to find the coefficients in (2.1)•
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3 Kravchuk functions are difference analogs of the osci-

llator eigenfunctions

Kravchuk polynomials k(_P)(x, N) are:

• polynomials of degree 0 < n < N,

• in the variable x C [0, N],

• of the parameter 0 < p < 1.

These polynomials are related to the binomial distribution of probability theory [4, 5]. They form
an orthogonal set

N

_-_o(j)k_)(j,N)k(V)(j,N) 2= d,,5,_,,_
j=0

with respect to a discrete binomial weight function

_(x) = c;_p_(1- p)N-x.

Kravchuk functions are defined as

¢(P)(x, N)=d_' k(_P)(Np+ x,N)_'/2(x + Np),

O<_n<_N, -Np<_x<_(1-p)N

(cf. definition of the Hermite functions in Ref. [6]). They obey the three-term recurrence relation

_ _z.(p) (x,N)+p(1 p)(W-n+ "J'_n-,[x-n p(N-On)]k(P)(x,N)=(n+ lm_+ , _ ,_IAp) (x,N),

and satisfy the equation

/'(V)(x N) = (n + !_,6(V)(x N)

with the difference Hamiltonian

_ 1 _ V/P(1 p)[c_(x)e -_ + a(x + 1)e°*],H(N)(x) = (1 2p)x + 2p(1 -- p)N + _ -

namely

[(1 - 2p)x - n + 2p(1 - p)N]¢_)(x,N) = Cp(1 - p)[_(/)¢(_P)(/- 1,N) + (x(x + 1)¢(_P)(/+ l, N)].

The oscillator equation of motion in the Schr6dinger representation [7] is [H,[H,x]] = (hw)2x.

Fhe difference analogue of this relation satisfied by this Hamiltonian is [1]

[H(N)(x),[u(m)(x),x]] = x.

Finally, the limit N --. oc of Kravchuk functions is

lira h-'/2b(V)(h-'l: N)- _/,,_(_).
N--+ oo _z \ "_,
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The set of Kravchuk functions ¢_)(x, N), n = 0, 1,... ,N forms a basis for irreducible represen-

tations of the rotation group SO(3) [8], corresponding to the eigenvalues / = _N of the invariant

Casimir operator; the eigenvalues of generator Jz are the integer m = n - ½N = n - l. The

representations corresponding to different values of the parameter p turn out to be unitarily equi-

valent [1], so it is sufficient to consider a set of functions ¢_)(x, N) with some fixed value of this

parameter. It is convenient to choose the value p = ½, since these Kravchuk functions have definite

parity with respect to reflections of x,

¢_/2)(-x, N)= (-1)_¢_'/2)(x,N).

We thus use henceforth the symmetric Kravchuk functions

1N N) _ n!(N - n)!¢_(z,N) = 2_-N/2k.(x+ 2 ' r(½(N + z + 1)F(I(N - x + 1)"

4 Finite approximation by Kravchuk functions

A function f(_) that 'lives in a harmonic oscillator environment', of which the values on N + 1

equidistant points _j are known, is meaningfully expanded in symmetric Kravchuk functions as

1 N

_(_j)_ x/_ y_ a(N) ¢,_(_j/h,N), j=0,1,...g.
I n=0 I

To find the expansion coefficients I,,(N)_N we multiply the above equation by ¢,_(_j/h, N) andI.'_n Jn=O'

sum over the sample points _j:

N

a(N) = v/-h _ ¢,_(_j/h,N) f(_j).
j=0

We thus have only to multiply the sampled values f(_j) by the (numerically calculated) values

of the Kravchuk functions at the points xj = _j/h, for n = 0, 1,...,N, to find the expansion

coefficients. No matrix inversion is necessary.

The sum
1 N

f(_,g) - v/-_ _ tc(_N)¢,_(_/h,N), j=0,1,...,g,
rt----O

interpolates the original function defined on discrete points to the interval [_0, _N] and is a finite

approximation to the square-integrable function f(_). This approximant is finite because for

any fixed N it has a finite support (-h- h -1,h+ h -1) with h = V/2/N. When N grows,

the approximation to f(_) becomes better. The time evolution of the approximating function

multiplies each ¢,_(_j, N) by the usual time dependence exp(-iE,_t/h), with the equally spaced

energy eigenvalues E_ = hw(n + ½).
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5 Position and momentum functions

The canonical vector basis of position functions

A0 (1)/0 A1 =

0
, -" AN =

is interpolated to
N

f(_j)= Zf{kN) Ak(_j,N)_ = fJN), j=0,1,...N.
k=o

These basis functions can be expanded in terms of Kravchuk functions as

1 N

Ak(_3, N)- v/_ _ _(w)k,,_ ¢,_(_j/h,N),
n_O

where the coefficients are

)_(g) v_¢,_(_k/h,g)i k,n -_

j = 0, 1,... N,

J

for k = 0, 1,... [N/2] and continuous 4. These functions are the localized states of the discrete

oscillator.

Momentum basis functions are defined in the same way, because Kravchuk functions are

self-reproducing under the discrete Fourier transformation [2], i.e.

N

Ak(_,N) = _ i_¢,_(_k/h,N)¢,_(_/h,N) •
n:O
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