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Abstract

From the minimal action principle follow the Hamilton equations of evolution for geomet-

ric optical rays in anisotropic media. As in classical mechanics of velocity-dependent poten-

tials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy

vector potential, similar to that of linear electromagnetism. Descartes' well known diagram

for refraction is generalized and a factorization theorem holds for interfaces between two

anisotropic media.

1 Fermat's principle

Fermat's principle states that the light ray joining two points in an optical medium takes the path

where it employs an extremal time [1]:

dt = _ ds_(¢(s),/_'(s))= O.

do"
Here we denote by ds the length element along the ray o", the ray direction by O. = _ and by n tile

refractive index of the medium. The refractive index characterizes the optical medium. Constant

n indicates that the medium is homogeneous (invariant under translations) and isotropic (invariant

under rotations). In anisotropic media, the refractive index depends also on the direction of the

ray [2].
We use one of the Cartesian coordinates of _3 as the evolution parameter to describe the

evolution of the ray o" =

Fermat's principle as [3]

) dq dz
q . Defining v =- with ds-
z dz

ZB dz L(q(z),z; v(z)) = O,
•,'Z A

with the Lagrangian function L(q,z; v) = v/i + v 2 n(q,z; v).

- dz vq + v 2 we write
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2 Evolution equations

The Euler-Lagrange equations that follow from the Fermat principle are [4]

d OL

d--_p = Oq'

where the canonical momentu_ is

OL nv On

P=bv- 1JV4- + lcV4- -=ov ncl + A(q, z, Cl),

and we define the anisotropy vector

A : _ O___n= (1 -ilit T) On(q'z'i:t)
0v 0_1

We obtain the Hamilton evolution equations through the Legendre transformation

dq OH dp OH

dz Op ' dz Oq '

with the Hamiltonian function"

H(q,z; p)= p.v - L(q,z;v) = -k/n 2 -IP- A[ 2 +
(p-A).A

%/n_ - Ip - AI_

In anisotropic media, the three-vectors of ray direction q, momentum if, and anisotropy A, are

thus characterized by:

ff = nq-'+ A(_', q_), pz=-H, Iq-'l = 1, 1t7- AI = n(_*, q-*),

i.e., we have the orthogonal decomposition of momentum/7into ray direction q'and the anisotropy

three- vector

• " _ = 60 On 6_ On
A= V_.n Iql=' = (1 - ¢gT) Oq Iql=1 0-0 + sin 0 0¢ "

The anisotropy vector is orthogonal to the direction of ray propagation q.

While [q'l sweeps over the ray direction sphere S2, the vector/7- A draws out a closed surface

n(q, q )--the ray surface at the space point _', and the three-vector/7 ranges correspondingly over

another closed surface that we call the Descartes ovoid of the anisotropic medium at _'.

The Hamilton equations are thus written in manifestly euclidean-covariant form as

de_ OH /7- X d/7_ OH _ n On

dz 0/7 p_ - A_' dz 0_' p_ - A_ O_

On

From the second equation it follows that dig x _ = 0". As in the isotropic case, we get the Ibn

Sahl [5] Snell law of refraction between two anisotropic media [6].
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FIGURE 1. Dipole medium: the momen-

tum iff of a ray is obtained by adding the

direction vector q_ times n o to the dipole

vector of the medium 1_. The bnisotropy

vector A ranges over a cardioid-type sur-

face.

n j

3 Dipole anisotropic media

Consider the refractive index with linear dependence on ray direction

= D(¢,q'),

D(_', g) = y_. Dj(g)q-_ = /_(g)r_
j=x,y,z

We call n o the monopole part of the medium and/_ its dipole vector. The anisotropy vector is

.4(')--(1- q-.gT)/_= /__ 5T(q-*)g= (g× /_) × _.

This vector lies in the plane of q_ and /_, and is orthogonalto the ra.y direction _ The relation

between ray direction and optical momentum is ig= n°_'+ D. While q*E $2, the Descartes ovoid

is a sphere of radius n°(q) and center at/_. (See Figure 1).

4 Quadrupole media

Consider now a refractive index with quadratic dependence on ray direction g

n(g,g) = n°(i)+Q(g,q-'),

Q(q, g) : Z Qj,k q-_q_ = gTQ_.

j,k=x,y,z

We have a _-quadratic summand with coefficients Qj,k in a 3 x 3 optical quadrupole matrix O.

that must be symmetric and traceless. It is common to restrict consideration to principal axes; in

that frame of reference, Q = diag(Q,,Qv,Qz) and Q= + Qu + Qz = o. Then, the an,sotropy and

momentum vectors are

A(2)= 2(1- _-q-*T)Qq- = 2[_)g- Q(g, g) q-'],

/_= [n(_, g)+ 2(1 -q-'q-'r)Q]q-'= (n o + 2Q - q-'rog)q -'.

In two-dimensional optics, 2 x 2 symmetric traceless matrices have two independent coefficients

that describe the ellipticity and orientation of the figure. When q-"ranges over the sphere of

directions ,92, iff will range over the Descartes ovoid of the quadrupole medium. (See Figure 2).
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FIGURE 2. n°q- ranges over the sphere

(circle in the two dimensions of the figure)

of radius n °, nq- over the peanut-shaped

surface, and the momentum /7 draws a

Descartes oval. The thin lines joining

points on the circle and on the oval re-

late the direction of the ray with the corre-

sponding direction of the momentum vec-

tor.

S
J

J
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5 Free propagation in homogeneous uniaxial media

For the uniaxial quadrupole media we can write the refractive index as

n(q_)= n0+ (_,y,s) 0 u 0
0 0 -2u

where n o is the monopole part and u is a quadrupole anisotropy coefficient.

Putting Cl in terms of v, we can write out the components of momentum as

p = (n o + 4_)cl- 3.el 2 cl = (1 -+-v2)-3/2[(n ° --b4v) -F (n ° + v)v2]v

For free propagation, the Hamilton equations and their solutions are:

dq dp =
d--_ = v =_ q(z) = q(0) + zv, dz 0 =v p(z) = p(0).

Although the solutions are apparently independent of the anisotropy of the medium (they are

straight lines in space), the anisotropy is expressed through the relation between the ray momen-

tum p and the ray direction v. In isotropic media, the momentum vector is n times the direction

vector and we can easily invert this particular case to [7]

P P = n ov = -- -- Iv[ tan0 (u = 0).

.z'

In the more general uniaxial anisotropic case, to find a simple closed inversion, we expand this

equation with a Taylor series in (v2)kv for k = 0, 1,2,... and propose a similar expansion of v in

powers of (p2)kp. Equating the series we find the expansion coefficients

3z 0_2 !_ n0 t/
1 }n °+5u p2 gt n ) + +51v2

v(p) - nO+4u p + (n °+4u) 4 P + (n°+4u) 7 (p2)2p

75 / Ox2

_(.0)3 + -¢tn _. + 114n°.:+ 650._(p_)3p+ ...
(n o + 4u) '0
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FIGURE 3. Descartes diagram to construct

refraction angles between two anisotropic

medi_.

The evolution Hamiltonian is then

V 2

H(p) = p.v-(n °-2u)v_+v 2 -3u
vq+v 2

n o + 10u 3(n°) 2 + 60n°u + 408u 2
1 p2 + (p2)2 + (p2)Z

= -(n o - 2v) + 2n-----_ 8(n_)4 16(n_) 7

5(n°) 3 + 150(n°)2u + 1824n°u _ + 10400 u 3
,

-t- 128(n_)1 o

where n _ = n o + 4u plays the role of an effective paraxial refractive index. In the isotropic case

(when u = 0), this is the expansion of -x/n 2 - p2, the well-known optical Hamiltonian for such a

media [8].

6 Finite refraction

Let us consider the case when rays cross the flat interface z = 0 between two different aligned

uniaxial quadrupole anisotropic media. Let their refractive indices in two half-spaces be n(_')

and n'(q-') with monopole parameters n o and n °', and quadrupole anisotropy coefficients v and

u', respectively. The refraction law claims that the projection of the momentum vector on the

refracting surface is conserved, which for our refracting surface gives p = p'. Generally, the

incident and refracted rays are not coplanar with the surface normal. However, in the aligned

uniaxial case both refractive indexes are axially symmetric (under rotations around z-axis) and

the two anisotropic vectors are coplanar with the suface normal (z-axis). Refraction in our case

is thus coplanar.

Using 'ruler, compass and plotter' on the plane Figure 3, we construct the Descartes diagram

for the point at the interface joining two 'half Descartes diagrams' and matching the length of the

momentum vectors p and p' on the interface. To find the angle of refraction O' in terms of the

angle of incidence 0, we construct ct'(Cl; n°, u; n °', u') expanded in series of sines, and find

I [( ]__ p t b,t n_ ' /2t

sin0' - n"' sinO+n,, _-7 -v sin a0+ (n7)2 _7 _-7, -v sin s0
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-- u' u'-u 4_-j -u sin 70+...

The first summand is the very well know law of sines (Ibn Sahl-Snell law [5]); it is here also the

paraxial approximation with the ratio of effective refractive coefficients. The succeding terms are

corrections of orders u k'and sin 2k+1 0 due to anisotropy.

7 The roots of refraction

We consider now the ray transformation due to refraction at a smooth surface S(q-') = _'(q) -z = 0

between two general anisotropic, homogeneous media n(q-') and n'(_'). The rays in the first and

in the second media are given correspondingly by the equations

q(z) = q + zv, p(z)= p, z < z,
q'(z)=q'+zv', p'(z)=p', z>2,

where we have indicated the point of impact at the refracting surface by bars _" = (q, 2 = ((0))-

We can formally consider the second pair of equations also on the left of the refracting surface,

z < 2. It allows to parametrize the rays behind the surface by the coordinate q' and momentum

p' on the same screen z = 0; v and v' are the two ray directions on the screen. Thus, the point

of impact coordinates can be written in two ways:

q(2) = q + _'(q)v = q = q' + ¢(q)v' = q'(2).

This is the first root equation of refraction [9]; it is an implicit equation for (t.

The second root equation follows from the conservation of the tangential component of mo-

mentum and implies the refraction law. If the normal to the surface S is denoted by VS(_ =

(_, _v,-1) - (_(q),-1) then we have (/7-/7') x VS(q-_ = O. As we know, the momentum

vector has components/Y = (p_,py,pz) = (p,-H). Denoting the Hamiltonians before and after

the refracting suface as H and H' we can rewrite the last equation containing the vector product

p- H(p)_(_) = 15 = p'- H'(p')_(q).

This is the second root equation determaning explicitly/3 once _ has been found.

We have thus determined the root transformation for generic surfaces S = _(q) -z = 0 between

homogeneous, anisotropic media. On optical phase space the root transformation is

7_,,;¢ : q H _1= q + v(p) _(_t),

_,,;¢:p _-+ 15=p-H(p)E(q),

where v(p) and U(p) contain the refractive index function n(q-'). From our construction follows

that the refracting surface transformation

,S'_,.,;_ : (q,p)_-_ (q',p')

thus factorizes into the product of the root transformation in the first medium and the inverse

root transformation in the second medium, .c,_,,_,;¢ = 7_,_;¢ (7_,v;¢) -1. When the surface S is a
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FIGURE 4. Refraction at a surface is

a map between phase space points (q,p)

and (q',p'). This transformation visi-

bly factors into transformations back and

forth from the point of impact q on the

surface z = _(q).

q"

q

_ J1_11_J_ I

i

z = constant plane, the second root transformation is simple free flight by generic z. The root

transformation is illustrated in figure 4.

Let us consider explicitly the example of the symmetrical surface under rotations around z-axis

_(q) = ¢2q 2 + _4q 4 +....

The refraction by such a surface is determined to third aberration order as [9]

1 1 ) [n o'- 2u']- [n o- 2v]q-_2 n °'+4v' n °+4v q2p+2_ n °'+4v q2q,

(1 1)p+2_2([n °'-2v']-[n °-2v])q+_2 nO,+4v, n °+4v p2q

[n°' - 2,'1- [n° - 2.1 [no' - 2,'1 -[_o _ 2d
-4_ n °'+ 4v p.qq- 2_ n o' + 4v q2p

(_ ([n o'- 2v']- [n o - 2u]) 2 _ _4 ([n°'- 2v']- In ° - 2u])] q2q.+4
n °' + 4u\ /

The paraxial part of the transformation is recognizably that of a quadratic surface.
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