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PREFACE

The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association,
and the National Aeronautics and Space Administration co-sponsored a conference on

"Environmental, Safety, and Health Considerations---Composite Materials in the Aerospace
Industry." The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen

papers were presented in four sessions including general information, safety, waste, and emissions
from composites. Topics range from product stewardship, best work practice, biotransformation

of uncured composite materials, to hazardous waste determination and offgassing of composite
materials.

The general conclusion of the conference was that more research needed to be conducted on the

effects of composites on environment, safety, and health throughout the product lifecycle. It was
recommended that task groups such as the composite dust task group and best working practices
group should forge ahead in their research efforts. Moreover, it was felt that the conference should

be held bi-annually to allow for new research to be completed and for timely dissemination of
research results so as to further promote safe and efficient use of composites in the aerospace
industry.

Huai-Pu Chu
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There have been many changes over the last several years in the ways that we're

required to label, handle, and dispose of the products of our manufacturing

processes...and we all know there will be more, not fewer, environmental regulations
to deal with in the years to come.

Many of the easily solved environmental problems are gone. Those that

remain are complex and sometimes global in nature: acid rain, the "greenhouse

effect," stratospheric ozone depletion, atmospheric ozone increases, hazardous wastes,
and abandoned waste sites.

These problems are manifestations of what some of us may call "environmental

gridlock" -- when industry, government and the public feel overwhelmed by the tough

decisions and actions that must still be taken -- and misunderstanding may get in the
way of cooperative productive action to preserve the environment.

There is a way to break out of this gridlock, and to lay the groundwork for a

future where both our businesses and our environment can survive and thrive. It

demands that we not only comply with the regulations of today, but that we take the

initiative in continuously improving our environmental performance.

Industry must keep abreast of and in compliance with the regulatory

requirements that already exist and respond proactively with responsible

manufacturing and disposal practices that will keep our business running profitably
tomorrow.

This sounds like a tall order -- but it's based on the belief that no matter what

kind of hazard a chemical presents, we in industry can help find ways to work with it

safely from manufacturing through disposal. We must challenge ourselves to take the

lead role in addressing safe handling and environmental issues, before we are forced
to do so by law.



And there are plenty of people standing by to see how well we respond to that

challenge. Our industry, for example, is watched over by the EPA and OSHA, among

other governmental agencies. We follow TSCA, CERCLA, CAA, SARA, RCRA, and

MSDS requirements. In addition, there are requirements for premanufacturing

notices, consent orders, hazard communications, and labeling. In addition, as our

industry has become global, we must also be aware of regulations in other countries.

To better understand how all these requirements fit together, let's take a look at

what we call a "Regulatory Road Map" -- a schematic view of some of the federal

regulations and state initiatives that impact our MSDS, labels, and overall compliance

requirements. (See Table 1)

It's important to be aware of how a chemical is listed by federal or state

regulations or recommending bodies. For example, if a chemical has been listed by

OSHA, IARC (International Agency for Research on Cancer), or NTP (the National

Toxicology Program) as a carcinogen, this listing will trigger hazard communication

requirements. It may also cause restrictions on the levels of a chemical that you may
release into the air or water, as well as how you manage your plant wastes.

Understanding how a chemical is listed is the first critical step in overall

compliance. Once a chemical makes one of these lists as a hazardous material or a

carcinogen, your emissions, labeling, or MSD sheets may need to be changed in order

to comply with federal or state regulations. Being fully aware of how the chemicals

you use are listed by all pertinent bodies is the essential compass that you must have

to follow the regulatory road map. As an example of how the regulatory road map

works, let's look at a chemical which is listed by either IARC, NTP or OSHA and

follow its compliance requirements for MSDS, labels, and other state and federal

regulations.



Re_,ulatorv Road MaD -- Federal Hazard Communication Reouirements

The OSHA Hazard Communication Standard, 29 CFR 1910.1200, was

promulgated in 1983 and went into effect on November 25, 1985. It initially required

that chemical manufacturers and importers label shipping containers and provide

Material Safety Data Sheets for all hazardous chemicals they manufacture.

In addition, if chemicals considered hazardous under OSHA are present at

1.0% or greater in a mixture, all of the hazardous effects reported for the component
must be addressed on the MSDS unless the mixture as a whole has been tested.

Carcinogens, as determined by OSHA, IARC or NTP, must be addressed on the

MSDS if they are present at 0.1% or higher, again, unless the mixture containing the

carcinogen has been tested and found not to be a carcinogenic. For example

Methylene Dianiline (MDA) has recently been listed as a carcinogen by OSHA and

therefore must be shown on MSD sheets to levels of 1,000 ppm or 0.1%.

The procedures and criteria used by OSHA, NTP, and IARC to classify

carcinogens, vary somewhat. OSHA classifications result from the standard-setting

process that the agency uses to regulate chemicals and presently includes Methylene

Di Aniline, the others are listed on Table 2.

NTP has a two-pronged approach:

1) "Substances or groups of substances, occupational exposures

associated with a technological process, and medical treatments that are known to be

carcinogenic," and

2) - those which may "reasonably be anticipated to be carcinogens,"

which are defined as "those for which there is a limited evidence of carcinogenicity in

humans or sufficient evidence or carcinogenicity in experimental animals."

IARC has its own evaluation scheme.

Group I Carcinogenic to humans, based on sufficient evidence of

carcinogenicity in humans;

Group 2A - Probably carcinogenic to humans, based on limited evidence in

humans and sufficient evidence in experimental animals;

Group 2B - Possibly carcinogenic to humans, based on limited human evidence
in the absence of sufficient evidence in humans.

Group 3 - Materials are not classifiable as to carcinogenicity to humans.

Group 4 - Chemicals are considered probably not carcinogenic.

The carcinogen classifications determine whether or not a statement for

carcinogenicity should appear on the label. OSHA has issued guidance for such

determinations, as shown in Table 3.



As the Table shows, for chemicals regulated by OSHA, on the NTP list or

categorized by IARC in Group 1 or 2A, a notation of carcinogenicity is expected to be

on the label.

The OSHA Hazard Communication Standard also requires that other "chronic

effects" be noted on the label, although the agency's guidance is not as clear as it is for

carcinogenicity. Chronic hazards to be included on a label can be selected by a

weight-of-evidence assessment. If the effect is "well-substantiated", then it should be

noted on the label.

Of course, OSHA isn't the only agency on the regulatory road map. The

Superfund Amendments and Reauthorization Act of 1986 ("SARA") was enacted into

law in October 1986. Title rll of SARA significantly impacts a manufacturing

facility's legal requirement for hazard communication in the community in which it

operates.

Sections 303 and 304 require that facilities cooperate in emergency planning

and report releases of certain extremely hazardous substances to the community.

Section 311 of SARA Tide [] requires that the MSDSs for chemicals

considered hazardous under OSHA Haz Com (or a listing of those chemicals) be

provided to state and local emergency response organizations and to local fire

departments.

Section 312 requires that for those chemicals, the facility submit an inventory

form to the above agencies on an annual basis.

Section 313 covers a list of toxic chemicals initially derived from several state

right-to-know lists. The law requires annual reporting of releases of these chemicals

to EPA for the Toxic Release Inventory (TRI). A list of the Section 313 chemicals

can be obtained from a EPA office.

In addition, a manufacturing or supplier must notify a customer of the fact that

a chemical component in a mixture is on the 313 list. Such notification must be

included with the MSDS, if an MSDS is required for a product.

As these regulations have evolved over the last eight years, the road map has

become increasingly complex.



State Initiatives and

Ri_,ht-To-Know Laws

Some states have also taken a role in regulation. Right-to-know laws are now

on the books in New Jersey and Pennsylvania, among others - and more states are

likely to follow with various other requirements.

And although state laws are effective only for operations within that state, the

logistics of assuring compliance can be complicated.

For example, the New Jersey statute covers workers and communities. It

applies to any hazardous substances used, studied, produced, or handled at a facility
in the state.

The law includes requirements for labeling and training. It also mandates

environmental and workplace surveys by employers. Any person may request copies

of the surveys, and employers must send copies to local police and fire departments.

The Pennsylvania state law requires labeling and MSD sheets for substances
which the state has listed.

Manufacturers must prepare MSD sheets for each hazardous substance they

produce or import, and must provide all purchasers with copies of the sheets for the

hazardous substances purchased. MSD sheets are also made available to the public

upon request.

New Jersey and Pennsylvania have Right-to-Know laws requiring that labels

include statements of the presence of chemicals at various concentrations.

Pennsylvania requires this type of information on the MSDS as well. Some products

containing specific state listed chemicals may need to list these chemicals on

labels/MSD Sheets at levels as low as 100 ppm. Of course, the state lists can be

obtained by asking the state for this information.

Proposition 65

California's Proposition 65, the Safe Drinking Water and Toxic Enforcement

Act of 1986, is a citizen initiative approved by 65 percent of state voters.

The law requires the governor to publish a list of chemicals "known to the state

to cause cancer or reproductive toxicity." It establishes two prohibitions regarding use
of the listed chemicals.

First, no person may knowingly discharge or release a listed chemical into

drinking water or into or onto land where it will pass into a source of drinking water.



Second, no person may knowingly exposeany individual to a listed chemicals

without first providing a "clear and reasonable warning" of significant risk to the
individual if an assessment indicates a certain risk level. For carcinogens, the trigger

is a risk of 104 i.e., in 1 in 10,000, as determined by the linearized multistage model

for risk assessment.

For reproductive toxins, the trigger is the no-observed-effect-level divided by

1,000.

Warnings must then be provided for environmental, workplace, and, most

significantly, consumer-product exposure of an individual to the state listed

chemicals. If warnings are necessary they may be included on labels, MSD sheets or

fax sheets. In addition, they may also be placed in the workplace or other areas to

indicate to the public that there may be a warning necessary for that particular product

which contains a state listed chemical.

The imnact of other Initiatives

In addition to being aware of and in compliance with the federal and state

regulations we've already discussed, industry also needs to be aware of how a

chemical can be affected by the many branches within the EPA, particularly the

offices of Air and Radiation and Solid Waste.

A primary focus in the Office of Air and Radiation is Clean Air Act

implementation and ambient air quality. Also important is the Emissions Standards

and Engineering Division, which develops standards to regulate air pollutants.

In addition to knowing how a chemical is regulated or listed by various EPA

offices, we must also be aware of how a listed carcinogenic or hazardous chemical is

regulated by the EPA.

If a particular chemical is listed by EPA as a hazardous waste, one must be

aware of how it is to be disposed of properly. The identification of a chemical as a

hazardous waste may also include process chemicals, by-products, or still bottoms

that are listed under the Resource Conservation and Recovery Act or RCRA. The

Waste Management Division in the office of Solid Waste, is seeking further ways for

industry to reduce pollution through waste treatment, minimization or elimination, and

recycling.

6



How to Survive

There is no question that concern for the environment has place a significant

responsibility on all of us. And while the costs of compliance are often high, the costs

of non-compliance can be many times higher.

In order to survive, we must see ourselves and be seen by others as part of the

solution, not part of the problem. That means we must voluntarily reduce emissions

and waste further. This voluntary action will build our credibility and show

lawmakers and the public that regulation isn't the only way to make progress in
protecting our environment.

At Dow, we've been trying to do our part. In the last several years, we've

significantly reduced both air and water emissions. For example, we've reduced our

emissions to the air by 85 percent since the early 80's. Also, for many years, we've

been committed to handling our non-water waste internally in state-of-the-art
incineration facilities.

And in the last six years, we've invested over a billion dollars in capital alone

to make environmental, health, and safety improvements in our plants around the
world.

In addition to making real, measurable improvements, we must also all work

harder to acknowledge the legitimacy of the public's concerns and to encourage

greater public involvement in environmental policy making.

We should open our facilities for tours and invite visits from neighbors, elected

officials, and special interest groups. By working together, we will lessen the

misunderstandings, increase the level of communication, and demonstrate our

willingness to cooperate and negotiate.

The third thing we can do is strengthen our participation in various trade and

industry organizations, like SACMA and A/A, etc. This can help us achieve

consistency in environmental and health and safety policy by promoting reasonable,

scientifically based federal regulations and a more influential EPA and OSHA. Trade

associations provide an opportunity for industry and government to work together on

common issues. They can also help you better understand the regulations being

addressed and how your company can achieve compliance at an early stage.



A good example of this kind of effort is Responsible Care®, a voluntary

program being adopted by chemical companies in the U.S., Canada, Australia, New

Zealand, the United Kingdom, and France. All participants agree to adhere to specific

principles and management practices which require them to continuously improve

their environmental, health, and safety performance in the areas of community

awareness and emergency response, distribution and transportation safety, waste and

release reduction, safe plant operations, worker safety, waster management, product

stewardship, and more. By participating in Responsible®, the chemical industry is

making a public commitment that their environmental performance will improve -- in

ways that government and the public can measure. (See Table 4 for the guiding

principle of Responsible Care®.

Ultimately, the answer to survival in the 1990s is awareness. Make use of the

many resources available to keep abreast of how the chemicals you use are listed and

what regulations you must comply with.

Make sure you know how the chemicals you use are listed by NTP, OSHA and

IARC, as well as staying up to date on the requirements of the EPA and individual

states.

A healthy environment and a healthy economy are both achievable goals. By

responding proactively, working together, and communicating openly, we can help
ensure that the 1990s are remembered as the decade of environmental progress

throughout industry.

Please note: This paper is being presented in good faith, but is not intended

as a substitute for legal advice. If you require legal advice, consult a legal

professional who is well-informed as to the latest regulatory developments for the

specific chemicals you use in your operations. Reference should also be made to

primary legal sources to verify that the most recent developments are considered.

The authors are not attorneys.
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OVERVIEW

• What is Product Stewardship and what does it mean to

your business

• How can you make Product Stewardship work for you

• How does the Product Stewardship Code of Management

Practice apply to the Advanced Composites and Aerospace

Industries

• How does Product Stewardship fit into your business

organization

• What is life cycle thinking and how does it impact your
business decisions

16



WHAT IS PRODUCT STEWARDSHIP?

Product Stewardship is a system for identifying and managing

safety, health and environmental risks throughout all stages of a

product's life cycle and continuously seeking ways to reduce the

adverse impact upon human health and the environment

Product Stewardship means providing information and support,

as an integral part of our business offering, so that our

contractors and customers can use our products safely and
without environmental harm.

17



WHAT IS THE PURPOSE OF PRODUCT STEWARDSHIP?

The Purpose of Product Stewardship is to make health, safety

and environmental protection an integral part of

designing, manufacturing, using, recycling and disposing of your

products.

Janos Schulze

Director of Regulatory Affairs

Ciba-Geigy Corporation

SACMA Presentation

October 1993

18



WHY DO PRODUCT STEWARDSHIP?

GOOD BUSINESS. You can improve your offering by responding

to the needs, concerns, and outrage of customers and society

It helps you be responsive to society's expectations

Some is required by regulatory and liability considerations

Required of members of the Chemical Manufacturer's Association
(CMA)

Corporate Policy

GOOD BUSINESS

19



A DOZEN WAYS TO MAKE PRODUCT STEWARDSHIP WORK FOR YOU

1. Review the safety, health, and environmental information

you provide your customers for one product. Is it the best

information you can provide? Can your customers use this

product safely? Are they likely to?

2. Summarize the principle safety, health and environmental

hazards of one of your products. Do competitive products

have less serious hazard? How might this impact your
business?

3. Examine the risk associated with one of your products

Risk = Hazard (fact) + Outrage (perception)

Do competitive products have less serious risk?

this impact your business?
How might

20



A DOZEN WAYS TO MAKE PRODUCT STEWARDSHIP WORK FOR YOU

(cont.)

, Determine how your customers use one of your products. Do
employees of your customers have sufficient information to

work with your product safely? Are the customers'

employees using correct personal protective equipment?

What happens to residual product? How can you help reduce
hazards and minimize emissions?

5. Review how you and a customer dispose of a material.

5,our business have some continuing "liability" for this
material?

Does

6. Does the management of your company have a policy of

supporting Product Stewardship? Do you have goals and

responsibilities for implementing Product Stewardship? If not,

would this improve your company's offering or reduce your
liabilities?

21



A DOZEN WAYS TO MAKE PRODUCT STEWARDSHIP WORK FOR YOU

(cont.)

7. Examine your employees' perception of your company's SH&E

performance. Can you improve by involving them more?

8. Review your systems to design, develop or improve products

and processes. Do your systems make health, safety and

environmental impact key considerations?

9. Consider what your site looks like to the public. Do they know

how well you manage environmental risks? Have you

established a relationship of trust with community opinion

leaders?

22



A DOZEN WAYS TO MAKE PRODUCT STEWARDSHIP WORK FOR YOU

(cont.)

10. Determine how a contractor is using your products. Are all

appropriate safeguards in place to manage hazards and

minimize emissions? Is potential liability to your business
being properly managed?

11. Review transportation incidents with one of your products.
How can these be minimized?

12. Consider one of your key suppliers. Do they provide you

appropriate health, safety and environmental information

and guidance on their products? Is their operations such

that you can be assured of continuing supply of critical raw
materials?

23



THE RESPONSIBLE CARE @ CODE OF MANAGEMENT PRACTICF_

Responsible Care@ is a Chemical Manufacturers Association-led

initiative to improve the industry's responsible management of

chemicals

Code of Management Practice

Community Awareness and Emergency Response

Pollution Prevention

Process Safety

Distribution

Employee Health and Safety'

Product Stewardship

Adoption of these codes and an annual self-evaluation is

required for CMA members.

If you are not a CMA member, why should you be interested in

Responsible Care@?

24



WHY DO IT?

Responsible Care® developed in response to society's

concern about the chemical industry

Composites are part of the chemical industry

Society's concerns regarding chemicals impact composite
manufacturers and users

SH&E "risk" is not limited to hazardous or toxic chemicals. It

is defined by the public's perceptions

Growing regulatory requirements

Following the principles of Responsible Care@ is good
business

25



RES PONSIBLE CARE @

PRODUCT STEWARDSHIP MANAGEMENT PRACTICES

Management Leadership and Commitment

Information and Characterization

Risk Management

26



PRODUCT RISK CHARACTERIZATION

1. Make Hazard Assessment

Prepare summary of physical, human and ecological

hazards and understanding of data gaps

2. Identify potential for human and environmental exposures

Describe product trail: where, how much, to whom, how

used and disposed by customer and distributor

° Combine Hazard information and potential exposures

Are appropriate systems and procedures in place to protect
users of your products and the environment from the
identified hazards?

4. Identify potential outrage issues.

27
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SUMMARY

Product Stewardship is good business

Product Stewardship is a frame of mind

Product Stewardship is proactive action

Good Product Stewardship is important for

growth of composites

Product Stewardship is good business

29





Health, Safety and Environmental

Requirements for
Composite Materials

Kathleen A. Hazer

representing
Aerospace Industries Association

Conference on Environmental,
Safety and Health Considerations -

Composite Materials

in the Aerospace Industry

October 20, 1994
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O Data

users

required by chemical
to evaluate new

materials

O Many data elements

regulatory requirements

are

O Data elements are grouped by

the stage of product

development

emphasis on

aspects of use

practical

tied to SACMA/AIA

working groups
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PHASE I (PRE-ENGmEERING)
EVALUATION

Iss General Data: for the product

o Chemical identification for
each chemical

o % (wt.) of each chemical

present in product, including
impurities

o CAS number for all chemicals

o Physical properties of the
material

vapor pressure at 25°C

VOC content (mass percent

which is volatile per 40

CFR 51.165)

33



PHASE I (PRE-ENGINEERING)
EVALUATION

II. Toxicology: for resins, fibers,
adhesives and their constituents

o Primary skin and
irritation

eye

O Oral LD-50 or inhalation

LD-50; dermal LD-50

O Guinea pig sensitization

O Genotoxicity-Ames test

34



PHASE I (PRE-ENGINEERING)
EVALUATION

III. Industrial

product

Hygiene: for the

O Manufacturer's

procedures
handling

O Initial glove material and

protective clothing material
recommendation

35



PHASE I (PRE-ENGINEERING)
EVALUATION

Medical Concerns

O Existing medical condition(s)

potentially aggravated by

exposure

o First-aid treatment

36



PHASE I (PRE-ENGmEERING)
EVALUATION

V. Fire/Safety: for the product

O Storage requirements

O Incompatibilities

O Flash point

O NFPA rating

o Exotherms

- Conditions for occurrence

- How to handle exotherm

Chemical identity of

chemicals/classes that are
released

37



PHASE I (PRE-ENGmEERING)
EVALUATION

Vim Environmental:

product

for the

O Toxic Substances Control Act

Status

O SARA 313 listing

O SARA 311/312
classifications

hazard

O Shipping codes (DOT, IATA,

UN/NA)

o RCRA waste codes
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PHASE II (ENGINEERING)
EVALUATION

IR Toxicology: for resins, fibers,
adhesives and their constituents

O One to four week subchronic

toxicity

- inhalation or dermal

tied to effects shown
acute tox tests

in

o Genotoxicity

Mouse Lymphoma

In Vivo Rat Bone

Cytogenetics

Marrow

39



PHASE II (ENGINEERING)
EVALUATION

II. Industrial

product

Hygiene: for the

o Identification of

that off-gas

chemicals

when taken

storage

temperature

from cold

to room

during hot-iron operations

in lay-up

when a heat gun is used

during cure

during normal cure cycle

40



PHASE II (ENGINEERING)
EVALUATION

II. Industrial Hygiene:

product (continued)

for the

O Physical
of dust from

operations
materials

characterization

machining
on cured

% fibers_ % particulates

% respirable

O Chemical characterization

of dust from

operations
materials

machining
on cured

(eg., are original sensitizing
constituents being

released)

41



PHASE III (PRE-PRODUCTION)
FEASIBILITY

Ill Toxicology

O Need for specific studies
to be based on an evaluation

by manufacturer's and user's
toxicologists

O Specific studies should be tied
to health effects revealed in

completed tox tests or effects
observed in the workforce

42



PHASE m (PRE-PRODUCTION)
FEASIBILITY

II. Industrial Hygiene

O Monitoring methods for air
and surfaces

- collection medium

analytical method

O Recommended TWA/STEL

O Is a "SKIN" notation needed for

TWA?

O Specific glove material and

protective clothing material
recommendation

43



PHASE III (PRE-PRODUCTION)
FEASIBILITY

III. Medical Concerns

O Bio-monitoring methods for

early exposure monitoring

O Special clinical exams

part of

physical

routine, annual

additional exams

indicating exposure



PHASE III (PRE-PRODUCTION)

FEASIBILITY

ENVIRONMENTAL: for the

product and constituents

O TSCA PAIR_CAIR Status

O TSCA Inventory status

Section 8(b) and Section 5

O Section 8(d) list status

o Section 4 test rule status

O Section 8(e) submissions

O Aquatic toxicology

Acute LC-50 daphnia

- Acute LC-50 minnows
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ADVANCED COMPOSITE MATERIAL
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AIA COMPOSITES SURVEY

Aerospace Industries Association (AIA)

0 Newspaper articles on adverse health effects of

composites in 1988

0 Aerospace Industries Association wanted more
information

o HR Council tasked Safety & Health Committee to study

o Task Group formed in 1988
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AIA COMPOSITES SURVEY

AIA Composites Task Group Actions

O Sent letters to all AIA member companies requesting
basic information (28 responses)

0 Requested MSDSs from all companies for each composite
material used (15 responses)

O MSDSs categorized by composite type
(1000 usable MSDSs)

O Distributed "User Experience Survey Forms" to collect
specific data on each composite material
(12 responses)
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AIA COMPOSITES SURVEY

AIA Task Group Actions (continued)

0 Collected data on ventilation controls, PPE used, medical

and exposure monitoring, employee symptoms

0 Collected 677 User forms covering 258 different
materials

0 Grouped into 8 categories:
Aliphatic amine curing agents
Aromatic amine curing agents

Epoxy resin systems
Phenolic resin systems
Polyester resin systems
Polyimide resin systems
Silicon resin systems
Thermoplastics

0 Gathered toxicity and exposure route information from

published sources and on-line data bases
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AIA COMPOSITES SURVEY

Results/Findings

BARRIER CREAMS--Used in conjunction with gloves
70% of companies responding used with aliphatic and

aromatic compounds
Between 20-40% of companies used with the other

materials

SMOCKS

57% used with phenolics
48% used with polyimides
26% or fewer used with other materials

GLOVES--Most prevalent PPE requirement
--100% used with aliphatics
57% used with phenolics
All others fell in between

RESPIRATORS

> 70% used with aliphatics and aromatics
27% used with polyimides
22% used with phenolics
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AIA COMPOSITES SURVEY

Results/Findings--Composite-Specific Observations

ODOR COMPLAINTS

56% reported complaints from phenolics
52% reported complaints from polyimides
12% or less reported complaints from others

SENSITIZATION

35% complained of polyimides
19% complained of phenolics
16% complained of aliphatics
15% complained of epoxies

DERMATITIS

42% complained of phenolics and polyimides
20% complained of epoxies
12% complained of aliphatics
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AIA COMPOSITES SURVEY

Summary Recommendations

• Wear gloves and coveralls/smocks when handling

uncured composite materials and when handling cured or
uncured dusts.

. Wear cut-resistant gloves when cutting composite
materials•

• Use high velocity, low volume local exhaust when

drilling, sanding, grinding, etc.

= Use spray booths when handling large volumes of

hazardous or irritating materials or when conducting
spray applications of composite materials•

5. Have good general ventilation for other operations•
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AIA COMPOSITES SURVEY

More information needed:

On certain raw materials to understand how they react

under various conditions

More attention needed:

On communicating potential hazards to users

On exposure monitoring and medical surveillance

CONCLUSION:

Composite materials can be handled safety if proper work

practice procedures are followed. Some operations will
require additional, more stringent controls than others
due to the nature of the particular chemicals present.

Companies should respond promptly to employee
concerns.

Communication to employees on new composite

technologies is essential to provide employees with the
information and tools to minimize health risks.
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Executive Summary

In 1988, the Aerospace Industries

Association (AIA) anticipated that its
member companies would significantly

increase their use of advanced composite
materials in the future as a means of

improving product performance, because

use of composites as a substitute for
conventional materials would reduce

product weight, improve product strength,

and increase payload capacity of aircraft,

missiles, and space vehicles. These changes

would require modifications to be made to
the work environment to accommodate new

materials and processes. Additionally, the

product improvements would require safety
and health professionals to evaluate new

occupational exposure risks and to address

the concerns of employees at AIA member

companies about safety and health issues

related to handling these new materials.

These challenges encouraged the Human
Resources Council of AIA to direct its Occu-

pational Safety and Health Committee to

establish a Composites Task Group. The task

group included safety and health profession-

als from several AIA member companies.

The group's charter was to gain a better
understanding of effective work practice

controls for use in composite manufacturing

operations. This was accomplished by

reviewing toxicological data, surveying

industry's experiences and control methods

for various composites and processes, and

interacting with other professional organiza-

tions as the basis for establishing safe work

practice recommendations and identifying
information needs. This strategy was consid-

ered a cost-effective approach to gathering

information for the benefit of the group and

minimizing duplication of effort.

Effective controls that were identified

were compiled by composite type and by
manufacturing operation and are presented

in the following report. In summary:

1. Gloves and coveralls�smocks are

recommended when handling uncured

composite materials and when handling

cured or uncured composite dusts, to

prevent potential dermatitis from resins and

fibers, to prevent exposure to chemicals that

can be absorbed through intact skin, and to
minimize transfer of resins and dusts from

the immediate work environment.

5?

2. Cut-resistant gloves are recommended
when cutting composite materials.

3. High-velocity, low-volume local
exhaust ventilation is recommended when

performing dust-generating tasks (e.g.,
drilling, sanding, and grinding) to minimize

skin, eye, nose, and throat irritation from

chemical and mechanical properties of
fibrous resin dusts.

4. Use of booths is recommended for

spray applications of composite materials

and when large volumes of hazardous and/

or irritating materials are handled, to
minimize health risks and to improve

employee comfort and productivity.

5. Good general ventilation (3-5 air

changes per hour) is recommende_d_for most
other composite manufacturing operations.

As engineering controls continue to

evolve with changing technology,

occupational safety and health
recommendations will change accordingly.

Results of the AIA Composites Task Group

survey indicate that some employees

experience adverse reactions to composite

materials when performing various tasks.

The frequency of complaints associated with

certain composite material components

suggests an association between the specific

chemical/process and the degree of

protection. The data indicated that use of

controls presently available can have a
significant impact on minimizing these
adverse effects.

The result of the toxicological review

indicated that employees can be protected

from exposure to composite materials using

conventional engineering and personal

protective equipment controls. Additional
information is needed for certain raw

materials to better understand how they
react under various conditions. Communi-

cating potential hazards to users is an area
that needs additional attention to ensure

that employee concerns are addressed. Also,

occupational exposure monitoring and
medical surveillance procedures need to be

refined and standardized so that monitoring

and surveillance results can be compared
and decisions made using the greatest

amount of information possible.



Based on the data presently available,
composite materials can be handled safely if
proper work practice procedures are
followed. Some composite operations will
require additional, more stringent controls
than others because of certain chemicals

present; however, current technology is
available to satisfy these special
requirements. Companies should respond to
employee concerns about new materials and
processes. Communication to the work force
on new composite technologies is essential

to provide employees with the information
and tools to minimize health risks. •
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I Introduction

In an effort to gain a better understanding

of effective safety and health work practice
controls for composite manufacturing

operations, the Aerospace Industries
Association (AIA) Occupational Safety and
Health Committee* established a

Composites Task Group. Initially, the group
included safety and health professionals

from eight AIA member companies:

The Boeing Company
General Dynamics Corporation

General Electric Corporation

IBM Corporation

Kaman Aerospace Corporation

Lockheed Corporation
McDonnell Douglas Corporation

Northrop Corporation

The group's task was to provide AIA
members with recommendations for

minimizing occupational exposure risk and
to determine research needs and

information gaps. The strategy included a

review of toxicological information on

composites, a review of member company

experience and control methods, and
interaction with other professional

organizations who share an interest in

composite work practices. •

* The AIA Occupational Safety & Health Committee was combined with the Environmental Affairs

Committee in January 1994, to form the AIA Environmental, Safety & Health Committee. This
committee functions as AIA's only free-standing committee and reports directly to the AIA president.
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!1 Information Resources

A. Toxicological Review

Toxidty and exposure route information
was needed to determine which controls

were most effective, from a theoretical

perspective, to minimize exposures while

performing various manufacturing tasks.

On-line databases, including MED-LINE and
TOX-LINE, were utilized in addition to

current toxicology sourcesOL

B. Member Company Experience
Survey

The member company experience survey
was the primary source of practical
information used to evaluate the

effectiveness of various controls. The survey
was conducted to collect information from

composite users on controls being used and

was compiled by composite type and by

manufacturing task. This plan enabled tile

group to identify trends and to outline
control recommendations for "like"

materials and processes.

C. Task Group Interaction With
Other Orgamzatlons

The AIA Composites Task Group established

formal dialog with other organizations that

have an interest in improving composites

technology and enhancing manufacturing
process performance.

The AIA Composites Task Group and the

Suppliers of Advanced Composite Materials

Association (SACMA) formed a joint

composites working group. This group has
since formed several ad hoc committees to

review common topics of interest, such as

information on Material Safety Data Sheets

(MSDS), composite dusts, combustion

products, neurotoxicity/synergistic effects,

and test/development protocol.

The National Center for Advanced Tech-

nologies (NCAT) is a professional organiza-
tion that provides information about ad-

vanced technologies, including composites.

The AIA Composites Task Group presented

an overview of AIA task group activities at

the NCAT-sponsored Advanced Composite
Materials Conference in December 1990, to

encourage organization members to con-

sider health effects of composite materials

when implementing new materials and
processes<2L
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The Department of Defense (DoD), in

cooperation with AIA and SACMA,

sponsored a symposium on health effects of

composite materials held in Dayton, Ohio,
in February 1989. Many of the AIA

Occupational Safety and Health Committee

members contributed to the symposium.

The conference proceedings were later

published by DoD _3>and later in a technical
journal¢4L

The American Conference of

Governmental Industrial Hygienists

(ACGIH) is a professional organization that
establishes guidelines for occupational

exposures to chemical and physical hazards.

The AIA Composites Task Group presented a

paper at the ACGIH-sponsored Conference

on Advanced Composites in February 1991,

to reinforce the need to develop standards

using input from the user community. The

conference papers were later published by
ACGIHCS>.

The American Industrial Hygiene
Association (AIHA) is a worldwide

organization dedicated to facilitating
communications among industrial

hygienists. The AIA Composites Task Group
presented information at the AIHA annual

conference in May 1991, to demonstrate

how data can be collected industry-wide, to

establish work practice guidelines_6L •



III Scope of Survey

A. Composite Materials Reviewed

Composite materials included in the survey
were those that the group defined as "Ad-

vanced Composite Materials":

Advanced composite materials refer to a

group of high performance resin�fiber sys-
tems that are being developed as replace-

ments for conventional materials, such as

metals, to improve product performance.

Advanced composites typically contain

high strength fibers that are embedded in

an organic polymeric matrix. The resin-

impregnated fibers are blended or orien ted
and cured (hardened) to give the end prod-

uct superior strength, toughness, and/or

tempera ture resis tance properties.

To better focus the scope of the survey to

composites used by AIA-member companies,
company contacts were requested to submit
one MSDS for each composite material used

at their company. MSDSs were reviewed and

categorized by composite type based on the

chemical composition of the material.

Categories included aliphatic amine curing

agents, aromatic amine curing agents,

epoxy, phenolic, polyester, polyimide and
silicone resin systems and thermoplastics.

Even though aliphatic and aromatic amine

curing agents are not "stand alone" compos-

ite systems, these resin components are
subject to unique handling and use require-

ments. Therefore, aliphatic and aromatic

amine curing agents are treated separately in

this report. Section IV (B)(2) includes a

summary of industry experience with these
materials, a description of each composite

category, toxicological properties and safe

work practice recommendations.

B. Manufacturing Operations
Reviewed

The industry survey focused on composite
manufacturing operations most frequently

performed by AIA member companies such
as assembly, bagging, curing, wet and dry

lay-up, rework, trimming, sanding, machin-

ing, research and development and tooling.

Engineering controls, administrative actions,

and personal protective equipment require-

ments or provisions were reviewed to
determine those that are most effective in

minimizing exposures to various materials.

Section IV (B)(3) describes each operation

reviewed, presents the results of the industry

survey and toxicological findings, and

provides safe work practice recommenda-
tions.

C. Toxicological Review

A toxicological review was conducted to
determine potential health effects, routes of

entry, and information gaps for various

components of composite materials using
on-line databases and other toxicological

references. This information was used to

determine the types of controls that would

be most effective from a theoretical perspec-

tive.

•Exposure routes are discussed in Section IV.A.

A toxicological summary for each composite

type is included in Section IV.B.2. Control
recommendations based on toxicological

findings are integrated into recommenda-
tions contained in Sections IV.B.2 and IV.B.3.

Information needs are discussed in

Section IV.C.

D. Industry Experience Survey

An industry experience survey was con-
ducted concurrently with the toxicological

review. AIA member companies were sur-

veyed to identify composite users and their

experience with composites during various
manufacturing tasks. Data was used to

identify controls that are most effective

from a practical perspective. The following is
a more detailed description of the survey:

(1) Phase I: AIA member companies

were surveyed to identify composite users
and a contact person at each company and/

or facility to establish a correspondence

database. Companies were also requested to

report on the number of years experience

that they had with composites, floor space
dedicated to composites work, and the

number of employees who work in these

areas.

Of the 70 companies surveyed, 28 used

composites. On the average, member com-

panies had 19 years experience with com-
posites, dedicated 4,750 square feet of floor

space to composite operations, and em-

ployed about 343 people in composite work

areas. Ninety-one percent of respondents did
not manufacture raw composite-related
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materials, 88 percent cured vendor-supplied
composites, and 94 percent machined cured
composites.

(2) Phase Ih MSDSs were requested
from each company for each composite
material used. Each MSDS was reviewed and

categorized by composite type, based on
chemical composition. Information on each
material and user was entered into a "demo-

graphics" database.

Fifteen companies submitted over 1,700

MSDSs to be reviewed for applicability to
this survey, of which approximately 1,000
were accepted. The 700 unused MSDSs all

concerned solvents, paints, adhesives, and/
or other materials not meeting the defini-
tion of "advanced composites."

(3) Phase II1: Information collected

during Phase II was used to generate a "User
Experience Survey Form" for each composite
material used at each company. Forms were
sent to each company contact, who was
instructed to complete a separate form for
each manufacturing operation where the
material was used and where data was

available. The form included questions on
ventilation controls, personal protective
equipment requirements or provisions,
medical monitoring, and employee com-
plaints regarding odor, sensitivity, and
dermatitis. Results from this survey were
used to generate a "User Experience" data-
base, which is a relational database capable
of reorganizing data by data field.

A total of 12 companies, with one or

more subsidiary location reporting from
each company, participated in Phase III of
this project :

Member Companies Contributing to
DataBase

The Boeing Company
General Dynamics Corporation
Grumman Corporation
Hexcel Corporation
Kaman Aerospace Corporation
Lockheed Corporation

Martin Marietta Corporation
McDonnell Douglas Corporation
Northrop Grumman Corporation
Rohr, Inc.

United Technologies Corporation
Westinghouse Electric Corporation

A total of 677 survey forms were col-
lected, representing 258 different materials
and 10 primary manufacturing operations.
Sixty-five percent of responses were related
to use of epoxy resins, 9 percent for
polyimide resins, 8 percent for aliphatic
amine curing agents, 7 percent for aromatic
amine curing agents, 6 percent for phenolic
resins, 2 percent for silicone resins, 3 per-
cent for polyester resins and less than 1

percent for thermoplastics. Results from this
phase were entered into a relational data-
base.

E. Work Practice Recommenda-
tions

The final step involved integrating informa-
tion that was compiled during the toxico-
logical review with information compiled
during the user experience survey. Reports
were generated by composite type and by
manufacturing operation to evaluate the
effectiveness of various controls. This report

represents the end product of the compos-
ites task group study. •
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IV Results/Recommendations

A. Exposure Routes

Reacted composite resins are polymeric and
not highly volatile or readily absorbed
through the skin. However, the unreactecl
resin base materials, including hardening

agents, may be volatile and released from a
pre-preg or resin material. Resins are some-
what reactive in the uncured state, but

hazards are generally limited to skin irrita-
tion and sensitization. The potential for a

resin to produce these effects can vary
significantly, even within a single resin type.

The route of exposure pertains to the
manner in which a toxicant enters the body.

Major differences are noted between routes
of exposure for uncured resins, partially
cured prepregs, and fully cured composites.

1) Ingestion
Potential for exposure via the oral route is
considered low for most composite opera-
tions. However, certain conditions may

increase the potential by this route. For
example, chemicals can be ingested through
foods or food service utensils contaminated
when in contact with working surfaces, or if

hands and face are not washed prior to

eating, drinking, or smoking. Also, oral
intake of a dust may occur when materials
are removed from the respiratory tract via

dliary transport and then swallowed.

Those materials which are irritants and

systemic toxicants are of special concern.
Irritants can produce significant gastrointes-
tinal disturbance when swallowed. Systemic

toxicants may be dissolved in the stomach
or intestine, absorbed, and distributed to

target tissues. The contribution of oral dose
is difficult to assess. Biological monitoring

combined with air monitoring, in some

cases, might be used to estimate the relative

significance of the oral route.

2) Inhalation

Inhalation is a major potential route of

exposure when dealing with composite
materials, espedally when uncured materials
are heated, or cured materials are sanded,
drilled, cut, or ground. The types of materi-
als encountered may range from particles to

vapors and the toxicity may be exhibited by
local lung tissue effects or by systemic

toxicity. The contribution of inhalation dose

can be estimated via personal air monitoring
or, in some cases, by biological monitoring
if all other sources of exposure are con-
trolled.

3) Dermal
The dermal route of exposure is also a major

potential route for uncured and partially
cured composite chemicals, because a large
proportion of work tasks involve significant
handling of these materials. An example of
extensive dermal contact occurs during the

hand lay-up process, where large surface
areas of pre-preg are rubbed with the fingers
and palms. Protection for skin surfaces is of
utmost importance in preventing direct
dermal contact. Secondary dermal contact
can also occur when contaminated clothing

or gloves come in contact____with the skin.

Dermal dose can be estimated by biologi-

cal monitoring, controlling for inhalation
exposure. The ability of a material to be
available for absorption through the skin
can be estimated by wipe samples taken
from the surface of skin and gloves, or from

workplace surfaces where skin contact is
likely. The potential for a material to be
absorbed through the skin can be calculated
or measured experimentally by in-vivo and
in-vitro absorption studies using a labora-

tory animal model.

B. Work Practice Recommenda-
tions

This section discusses work practice recom-
mendations that were compiled with input
from the toxicological review and the

industry-wide user experience survey. These
recommendations are provided only as

guidelines and should be treated accord-
ingly. As control technologies continue to
improve and additional toxicological data
becomes available, "best practice" work
recommendations will continue to evolve.

The following are current observations and
recommendations:

1) Engineering/Personal Protective
Equipment Controls
The user experience survey form requested
information on the types of engineering and

personal protective equipment controls that
are being utilized for various materials and
manufacturing operations. The toxicology
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review evaluated routes of entry for various
composites and manufacturing operations.
The following discusses various engineering
and personal protective equipment options
and provides an overall summary of recom-
mended use:

(a) Barrier Creams

Barrier creams are often provided as a
non-mandatory protective measure to
reduce skin contact with composite materi-
als. Many employees choose to use barrier
creams in conjunction with gloves to help
retain skin moisture and help resist solvent
penetration. Use of barrier creams in lieu of
gloves for protection from chemicals is not
recommended for three reasons: (a) barrier
creams may be removed either mechanically
or chemically while working and gives
employees a false sense of security, (b)

barrier creams may contaminate surfaces of
composites and adversely affect the bonding
strength of these materials, and (c) there is
limited experimental evidence that barrier
creams can effectively prevent skin contact/
permeation of composite resins or their
components. Use of barrier creams are
recommended as an enhancement to an

effective glove program. Figure 1 illustrates
responses from the industry-wide survey
regarding use of barrier creams by composite
type.

(b) Coveralls/Smocks

Use of coveralls, sleeves, and smocks are

recommended in areas where bodily contact
with uncured resins or cured or uncured

composite dusts is likely. Use of coveralls
and sleeves minimizes the risk of having
contaminated clothing leave the work area
and allows employees to move from regu-
lated areas to unregulated areas with little
effort. The degree of protection required is
dependent on the physical contact that an
employee has with the composite materials
and the degree of hazard associated with the
material. Figure 2 includes responses from
the industry-wide survey regarding use of
coveralls and smocks by composite type.

(c) Gloves

Use of gloves was found to be the most
prevalent personal protective equipment
requirement in the composites work envi-
ronment. Gloves are recommended for

manufacturing operations that involve skin
contact with uncured resins, cured or
uncured composite dusts, and where there is
potential for hand lacerations. Most compa-
nies try to use gloves that are impervious to
the resins, fibers, and solvents being used,

but are thin enough to provide the em-
ployee with enough dexterity to perform the
task. When cutting is involved, cut-resistant
gloves are recommended, and, if this task
also involves a chemical exposure hazard,
the cut-resistant glove is recommended to be
worn over an impervious glove to prevent
hand lacerations and to prevent puncturing
the impervious glove.

The type of glove or combination of
gloves are specific to the materials being
handled and the operation being performed.
Use of gloves is not recommended when
working near revolving equipment, as this
may result in serious hand injuries.
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Each job needs to be evaluated on a
case-by-case basis. Use G5glove charts can
help identify the appropriate glove material.
Glove try-out is recommended to enable
employees to evaluate the comfort factor of

similar glove materials and sizes. Figure 3
displays industry use of gloves by composite

type.

(d) Respirators

Use of particulate air-purifying respirators is
recommended if high-velocity, low-volume
local exhaust ventilation is not available

when performing dust-generating opera-
tions, but only if the protection factor of the

respirator is determined to adequately
minimize dust exposure. Otherwise, higher

levels of respiratory protection is recom-

mended, such as powered air-purifying or

air-supplied respiratory protection. If local
exhaust ventilation is provided, it is recom-
mended that respirators be made available
as an optional use item.

Use of organic vapor air-purifying respira-
tors are recommended to be made available

as an optional use item to minimize nui-
sance odors when performing tasks such as

mixing materials or applying wet resins in
absence of good general ventilation. Respira-
tors should be required when exposures
approach recommended limits, but only if
industrial hygiene evaluations indicate that
airborne levels are within the assigned

protection factors for tile respirator and
when warning properties of tile materials

provide tile user with sufficient notice of
breakthrough. Otherwise, higher levels of
respiratory protection are recommended,
such as powered air-purifying or air-sup-

plied respiratory protection.

Air-supplied respirators are recommended

when spraying composite materials in areas
where there is direct exposure to sprayed
material or when good booth ventilation is
not available. Figure 4 illustrates responses
from the industry-wide survey regarding use

of respirators by composite type.

(e) Ventilation

The four primary ventilation controls used
in composite manufacturing operations
include good general ventilation, local
exhaust, downdraft tables, and booth
ventilation:

• Good General Ventilation: Good

general ventilation (typically 3-5 air changes
per hour) is adequate for most composite
work areas, such as where pre-preg lay-up
operations are being performed or in general
areas where parts are being prepped for
processing. If dust is being generated (i.e.,
drilling, grinding, sanding, etc.) or when the
composite resin has a very strong odor that
may adversely affect employee comfort and
productivity, then high-velocity, low-
volume local exhaust, downdraft tables, or
booth ventilation should be considered.

• Local Exhaust: High-velocity, low-
volume local exhaust ventilation at the

point-of-operation is recom mended for
controlling dusts generated during cutting,
drilling, and sanding operations. These dusts
cause mechanical and chemical irritation of
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the skin, eyes, nose, and throats of some

employees. There is also the possibility that

incompletely cured composite dusts contain-
ing small amounts of unreacted monomers
could be absorbed through the skin or

respiratory system. Use of local exhaust
ventilation minimizes the need to provide

employees with respiratory protection and
minimizes contamination of adjacent work
areas. Exhaust ventilation is also recom-

mended to evacuate gases from autoclaves

that are used to cure composites.

• Downdraft Tables: Downdraft tables

are recommended in areas where composites

that have a strong odor are being handled or

where significant dusts are being generated.
The size and orientation of the part relative
to the table will determine the effectiveness

of this control (i.e., there must be enough

downward air velocity around the part to

capture contaminants at the source). The

system filtration method of choice will

depend on the hazard being controlled and
on whether the filtered air is recirculated
back into the work area or exhausted di-

rectly outside.

• Booth Ventilation: Booth ventilation

is recommended when composite materials

are being sprayed or when large volumes of

volatile materials are being handled. If areas
can be isolated where hazardous operations

are being performed, it is often more

cost-effective to perform the task within the
confines of a booth to minimize air han-

dling costs and prevent odors from adversely

affecting personnel in adjacent work areas.

2) Composite-Specific Observations/
Recommendations

The following is a summary of observations
from the user experience survey, including

data on odor complaints, incidence of
sensitization and dermatitis, and informa-

tion pertaining to medical surveillance.

The user experience survey indicated

significant differences in how employees

perceive odors from various composites.

Figure 5 illustrates a comparison of odor
complaints by composite type. Responses
indicate that one or more employees re-

ported a given effect for a given material.

The occurrence of sensitization (Figure 6)

and dermatitis (Figure 7) from survey re-

sponses may provide additional justification

for preventing exposures when handling
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specific materials. Responses indicate that
one or more employees reported a given
effect for a given material.

Most companies provide medical evalua-
tions to monitor the health status of person-

nel assigned to composite work areas. Figure
8 illustrates the percentage of respondents
who provide pre-placement medical evalua-
tions and Figure 9 illustrates the percentage
of respondents who provide periodic evalua-
tions.

The following observations and control
recommendations are based on user experi-

ences and toxicological considerations and
are reported by composite type. Percentages
are based on the total number of responses

for each question and indicate that one or

more individuals reported a given affect for

a given material:

(a) Epoxy Resin Systems

Description:

Epoxy resin systems are the most common
composite materials used in the aerospace
industry. This group represents about 65
percent of the total number of materials
reviewed. They are typically used on exterior
surfaces of aircraft as a general building
material or as structural components on
doors and sidewalls. They are generally used

in areas where temperatures will not exceed

300 degrees F.

The epoxy resin (part A) typically consists
of the reaction product between epichloro-
hydrin and bisphenol A. A curing agent
(part B) is required to cross-link polymers to
create the end product.

Toxicology:
AS is the case with all resin systems, the

degree of hazard presented is dependent on
the manner in which it is handled and

processed as well as its physical state. Even
though much confusion is created when
attempting to describe the specific physical
state of resin (e.g., reactive components, pre-
cured mixtures, B-staged resins, pre-preg at
room temperature, pre- and post-cured resin
dust, etc.), each of these physical states and
associated work processes present different
hazard exposure conditions.

A significant amount of work has been
done in characterizing the toxicity of epoxy
resins and epoxy components, diluents, and
hardeners. Much of the work reported was

performed on the neat chemicals. Borgstedt
and Hine _7>in a detailed review of the

literature on the subject, developed the

following categories of epoxy materials:
Epoxy compounds, amine curing agents,
related materials (other hardeners, diluents
non-reactive solvents, etc.) the curing
mixture, and the fully cured resin. Specific
chemical resin components and applicable

work processes have been described in a
white paper prepared by the Suppliers of
Advanced Materials Association (SACMA), a

trade association representing suppliers of

advanced composites¢SL

The pre-cured individual resin compo-
nents are considered the most reactive and

are sufficiently volatile to give rise to sys-
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temic effects, the components of notable

toxicity being epichlorohydrin and ethylene

oxide. Although epichlorohydrin is usually
fully reacted in a cured epoxy resin system,

the unreacted epichlorohydrin is a suspect

carcinogen. Also, a variety of aromatic

amine curing agents are used in the resin
systems, including methylene dianiline

(MDA), m-phenylene diamine (M-PDA), and

diamino diphenyl sulfone (DDS). MDA is a

suspect bladder carcinogen. However, these

materials are present in very small quantities

(usually less than 1 percent for epichlorohy-

drin) in the reacted epoxy system. The

irritant properties of the unreacted resin are

important factors in large single doses or

repeated exposure to individual epoxy resin

components. These have been reported to
produce damage to the liver, the blood, and

blood-forming organs, as well as causing

oncogenic effects in animals.

Probably the most significant occupa-

tional health concern with epoxy resins is

the potential for skin sensitization. Sensiti-

zation has been produced in animals and
monitored in humans in contact with

certain resin components as well as some

formulated and partially cured resin rnateri-
als(7.9,1o,11).

Inhalation exposure to dusts released

from uncured resin prepreg as well as cured

composites is also of concern when compos-

ites are processed.

The research completed thus far indicates
that for non-aramid-based cured materials,

the fibrogenic potential of these dusts was
much less than crystalline silica dusts, but

greater than control "nuisance" dustsClZ,_3L It
has been shown that aramid based compos-

ites, upon machining, may produce fibrils

characterized morphologically as fibers and

which have been shown to produce

fibrogenic and tumorogenic responses in

animals_SL Additionally, machining and

processing of cured composites may gener-

ate enough heat to evolve combustion

byproducts of the resin. For example, laser

cutting of cured epoxy composite has
resulted in formation of chemically diverse

gaseous byproducts of varying toxicities and
concentrations, polycyclic aromatic hydro-

carbons being the predominant species_14L

The majority of toxicology data on cured

composites has been generated with epoxy

resin systems and therefore, extrapolation of

this data to other resin systems often occurs.

This may become less practical as the

diversity of new resin components expands.

Observations:

(1) General Comments: A total of 417

responses were received from 16 companies/

subsidiaries. In summary, comments in-
cluded concern for skin and nose irritation

(both chemical and mechanical in nature).

Most companies did not report odor com-

plaints unless the material was heated, such

as with heat guns or during exotherms.

Irritation from the dust generated during

cutting operations was also reported. One

company reported swelling around eyes.

There were two reports of yellow discolora-
tion of skin (hands and fingers). Some of

these effects may be related to the curing

agent used concurrently in these processes.

(2) Odors: Eleven percent of responses

reported that some employees complain of
odors.

(3) Sensitization: Fifteen percent of

responses reported that some employees

experience sensitization to epoxy resin

composites.

(4) Dermatitis: Twenty percent of

responses indicated that some employees

experience dermatitis when working with

epoxy resins.

(5) Personal Protective Equipment:

Seventy-two percent of the responses indi-

cated that gloves are required, 30 percent

provide barrier creams (optional use), and

15 percent require use of coveralls/smocks
over street clothes. Forty-one percent require

use of respirators for certain manufacturing
tasks. Most respirators are used for protec-

tion from dusts.

(6) Ventilation: Forty-four percent of

responses reported use of good general

ventilation when using epoxy resin compos-

ites, 12 percent local exhaust, 10 percent

downdraft tables, 2 percent hood and 1

percent booth ventilation. Cutting and

dust-generating operations typically used
local or downdraft ventilation.

(7) Medical Monitoring: Sixty-seven

percent of responses reported that

pre-placement medical evaluations are

performed on employees and 65 percent

indicated that periodic follow-up exams are

provided.
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Recommendations:

It is recommended that work surfaces be

kept clean from accumulation of dust and
uncured resin to prevent possible dermatitis
and skin sensitization. Incidence of

dermatitis was moderate in the industry

survey, some of which is attributed to
mechanical irritation from fibers. Reporting

of sensitization among the worker popula-
tion is consistent with literature data con-

firming that epoxy resins and some compo-
nents are skin sensitizers (1°). Odor com-

plaints about resins at room temperatures
were relatively low unless materials were
heated or the work area lacked good general

ventilation. Therefore, use of good general

ventilation (3-5 air changes per hour) is
recommended during lay-up operations. If

materials are heated, exhaust gases should

be ventilated away from the work area.

Although cured composite dusts are not
believed to pose a significant health risk,

high-velocity, low-volume local exhaust
ventilation at the point of operation is

recommended to minimize exposure to

dusts that may result in respiratory and skin

irritation (chemical and mechanical) and

adversely affect production efficiendes. If

there is a possibility of skin exposure to
dusts or resins, skin protection, including

gloves and coveralls, should be utilized to
minimize dermatitis and sensitization

potential. Pre-placement medical evalua-

tions and periodic medical evaluations are
recommended. Employees should be trained

on the potential health effects of epoxies
and on how to minimize risk. Training

should be reinforced periodically, such as

annually.

(b) Polyimide Resin Systems

Description:

Polyimide resins are typically used where

high-temperature resistance is required (over

500 degrees F). They provide superior

impact resistance, toughness, and delamina-

tion strength. However, they are more

difficult to process.

"Polyimide resins" refer to a group of

structurally similar polymers, including
bismaleimides (BMI). The "imide" unit of

the polymer is usually a cyclic, five-member

ring and can be fused to one or more cyclic
or aromatic rings to maximize thermal

resistance.

Toxicology:

The toxicity and sensitization potential of
the molding powder ranges from low to

high depending upon ingredients and the
completeness of reactions. The effect would

appear to be dependent on the aromatic
diamine used. Certain curing agents, such as

MDA, are suspect carcinogens. In addition,

other curing agents may pose serious poten-
tial health effects and should be evaluated

very carefully before use (see Section
IV.B.2.g., "Aromatic Amine Curing Agents").

The health effects of polyimide resins as a

group have not been studied extensively.

The data gathered thus far indicates that the

resin systems may produce skin irritation
and sensitization reactions, however, signifi-

cant variability in claimed health effects

exists among different products based on
MSDS data. These differences may be due to

the residual level of reaction products

present in the resin formulation and the
actual extent of cure in the product. The

relative concentrations of unreacted 4,4, -

methylene dianiline or 4,4 -
diaminodiphenyl-ether, two possible com-

ponents of polyimide systems, may be

responsible for differences in the above-
mentioned effects. These amine reactants

have been reviewed and determined to

exhibit carcinogenic/mutagenic effects in

test animals (16) (see Section IV.B.2.g,
"Aromatic Amine Curing Agents").

Observations:

(1) General Comments: A total of 60

responses were received from 11 companies/
subsidiaries. In summary, comments in-

cluded concern for odors that cause head-

aches and dizziness; one company was
concerned about sensitization from

exotherms; and one company reported

employee concern for dusts generated from

some materials.

(2) Odors: Fifty-two percent of responses

reported that some employees complain of

odors, compared to 11 percent for epoxies.

(3) Sensitization: Thirty-five percent of

responses reported that some employees

experience sensitization to polyimide resin

composites, compared to 15 percent for

epoxy resins.
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(4) Dermatitis: Forty-two percent of

responses indicated that some employees
experience dermatitis when working with

polyimide resins, compared to 20 percent
for epoxy resins.

(5) Personal Protective Equipment:

Seventy-three percent of the companies

surveyed require use of gloves, 22 percent

provide barrier creams (optional use) and 48

percent require use of coveralls/smocks over

street clothes. Twenty-seven percent require
use of respirators when performing certain

manufacturing tasks. Required use of gloves

and clothing cover is slightly higher for
polyimide resins than for epoxy resins.

(6) Ventilation: Thirty-four percent of

responses reported that they utilize good

general ventilation when using polyimide

resin composites, 12 percent local exhaust

and 2 percent downdraft tables.

(7) Medical Monitoring: Forty-four

percent of responses reported that

pre-placement medical evaluations are

performed on employees and 31 percent

indicated that periodic follow-up exams are

provided. Required medical exams are lower
for this group as compared to the epoxy

resin composite users.

Recommendations:

The industry experience survey indicated

that use of polyimide resins resulted in the
highest overall adverse reaction experience

rate, especially during pre-preg lay-up

operations. Odor, dermatitis, and sensitivity
experience was high relative to other com-

posites. According to the toxicological

review, odor, dermatitis, and sensitization

potential for the polyimide resin itself is

low. Therefore, reported adverse experiences

may be due to the curing agents being used

concurrently with the polyimide resin.

Special precautions should be observed.

Toxicological data on the curing agents

should be carefully evaluated and adequate

exposure controls should be placed on the

operations before the material is approved

for use (see Section IV.B.2.g, "Aromatic

Amine Curing Agents").

It is recommended that work surfaces be

kept clean from accumulation of dust and

uncured resin to prevent possible dermatitis

and skin sensitization. Good general ventila-
tion should be used as a minimum and, if

possible, local exhaust or downdraft systems

should be used to control odors. If there is a

possibility of exposure to dusts or resin, skin
protection, including gloves and coveralls,
should be utilized. Use of barrier creams will

enhance the effectiveness of a good glove

program. If materials are heated, exhaust

gases should be vented away from the work

area. Although cured composite dusts do

not pose a significant health risk, high-

velocity, low-volume local exhaust ventila-
tion at the point of operation is recom-

mended for dust generating operations to

minimize exposure to dusts that may result

in respiratory and skin irritation (chemical

and mechanical). Furthermore, the slight (or

theoretical) potential exists for small
amounts of some unreacted monomers to

remain on dust particles and be absorbed

into the body. Pre-placement medical
evaluations and periodic medical evalua-

tions are recommended. Employees should

be trained o_,_-_hc' potential health effects of

polyimides and on how to minimize risks.

Training should be reinforced periodically,

such as annually.

(c) Phenolic Resin Systems

Description:

Phenolic resins are more temperature

resistant than conventional epoxy resins,

but are not as temperature-resistant as

polyimides. The service temperature of

phenolic resins is typically 350-370 degrees
F; these resins are used as materials for fire

barriers and hot air ducts. They are also used

as materials for interior aircraft parts.

Polymerization of phenolic resins in-
cludes a reaction between the phenol

monomer and an aldehyde (typically form-

aldehyde). Reactions are retarded with

inhibitors and accelerated using cata!ysts
and/or heat.

Toxicology:

Phenolic resin composites are reported to

produce dermatitis, most likely resulting

from exposure to the phenolic monomer

component in the resinO°L Phenol is a

potent primary irritant, and resorcinol,

furfural, and formaldehyde are irritants and

sensitizersOIL Formaldehyde is a suspect

carcinogen.

Contact dermatitis is probably the best

characterized health effect resulting from

worker contact with the phenolic resins°TL

Additionally, skin sensitization reactions to
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specific phenol-formaldehyde reaction
products have been described(18L

Although the amount of free phenol and
formaldehyde present in the reacted resin is
usually regarded as trace, both phenol and
formaldehyde are skin, eye, and respiratory
tract irritants. All contact with the uncured

resin during curing/heating should be
avoided as well as direct skin contact with

prepregs containing resin.

Formaldehyde is a potential skin sensi-
tizer and animal carcinogen(IOL Phenol is

systemically toxic and is well absorbed
through the skin in its vapor, liquid or solid
formCZOL

Observations:

(1) General Comments: A total of 36
responses were received from 10 companies/
subsidiaries. In summary, comments in-
cluded concern for dermatitis,-OT_tn me-
chanical and chemical in nature. Dermatitis

was reported to appear "occasionally" or "in
clumps" then disappear. Throat irritation

was reported by one company.

(2) Odors: Fifty-six percent of responses
reported that some employees complain of
odors, compared to 11 percent for epoxies.

(3) Sensitization: Nineteen percent of

responses reported that some employees
experience sensitization to phenolic resin
composites, compared to 15 percent for

epoxies.

(4) Dermatitis: Forty-two percent of

responses indicated that some employees
experience dermatitis when working with
phenolics, compared to 20 percent for epoxy
resins.

(5) Personal Protective Equipment:
Fifty-seven percent of the companies sur-
veyed require use of gloves, 24 percent

provide barrier creams (optional use) and 57
percent require use of coveralls/smocks over
street clothes. Twenty-two percent require

use of respirators for certain manufacturing
tasks.

(6) Ventilation: Thirty-two percent of

responses reported that they utilize good
general ventilation when using phenolic
resin composites, 40 percent use local
exhaust ventilation. Use of local exhaust
ventilation is over twice-as high for phenolic

composites compared to epoxies.

(7) Medical Monitoring: Fifty percent of
responses reported that pre-placement
medical evaluations are performed on

employees and 33 percent of responses
indicated that periodic follow-up exams are

provided. Required medical exams are
slightly lower for this group as compared to

epoxy users.

Recommendations:

The industry experience survey indicated
that adverse experience with phenolics use
was primarily due to odors and dermatitis
resulting from the chemical and mechanical

properties of the resins and fibers. There
may be an association between the reports
of limited glove usage and increased
dermatitis/sensitization in operations

utilizing phenolics. Odor complaints were
noted for most operations, especially in
absence of good general ventilation.

It is recommended that work surfaces be

kept clean from accumulation of dust and
uncured resin to prevent possible dermatitis.
Good general ventilation is recommended as
a minimum during lay-up operations. If
materials are heated, exhaust gases should

be vented away from the work area. Al-

though cured composite dusts do not pose a
significant health risk, high-velocity, low-
volume local exhaust ventilation at the

point of operation is recommended for dust
generating operations to minimize exposure
to dusts that may result in respiratory and
skin irritation (chemical and mechanical). If

there is a possibility of exposure to dusts or
resin, skin protection, including gloves and
coveralls, should be utilized to minimize
dermatitis. Pre-placement medical evalua-
tions and periodic medical evaluations are
recommended. Employees should be trained

on the potential health effects of phenolics
and on how to minimize risk. Training
should be reinforced periodically, such as

annually.

(d) Polyester Resin Systems

Description:

Polyester resins are typically used for high-
temperature applications and where low
dielectric strength properties are desirable

(low absorbency). "Polyester resins" are

made by polymerizing a polyester
pre-polymer, usually a condensed alcohol,
with a vinyl monomer, usually styrene.
Additional modifiers or ingredients can be
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added, such as phenolic resins, epoxy resins,
and fire retardants, and cross-linked by air

oxidation of the unsaturated groups to
obtain the desired end productCZ3L

Toxicology:

The unsaturated polyester thermoset resins

are prepared with styrene as the cross-

linking group between polymer units.

Additives such as methylmethacrylate

(increases resistance to weathering) and

dimethylaniline (accelerator) may be used in
the formulation and may be important in

the characterization of the potential health

significance of exposure to the wet resin.

Narcosis and mucosal irritation due to

styrene monomer exposure is reported as

the most frequently experienced health

effect due to the use of polyester resins, the

latter being so severe upon exposure that
contact with the material is generally

a_zoided_Z, z2L Dimethylaniline is a CNS

depressant and can produce

methemoglobinemia resulting in cyanosis.

Both styrene and dimethylaniline can enter
the bloodstream by either inhalation or

absorption through the skin c2_.

Exposure to dusts containing cured

polyester resins has produced respiratory

irritation and potential changes in lung

functionality in workersCZ4L Also, similar to
other resin dusts, mechanical irritation of

the skin can occur.

Observations:

(1) General Comments: A total of 16

responses were received from three compa-
nies/subsidiaries. There were no specific

concerns reported on polyester composites.

This may be due to the high level of control

when using these materials and the rela-

tively low usage within the aerospace

industry.

(2) Odors: There were no reports of

employee complaints concerning odors,

compared to 11 percent for epoxies.

(3) Sensitization: There were no reports

of employee sensitization to polyester resin

composites, compared to 1S percent for

epoxies.

(4) Dermatitis: There were no reports of

employee dermatitis as a result of working

with polyester resin composites, compared

to 20 percent for epoxies.

(5) Personal Protective Equipment:

Seventy-five percent of responses indicated

that gloves are required, compared to 72

percent with epoxies, and 44 percent pro-
vide barrier creams (optional use). None of

the companies reported that they require
use of coveralls/smocks over street clothes

when working with polyester resin compos-

ites, compared to 15 percent for epoxy
resins.

(6) Ventilation: Fifty percent of re-
sponses reported that they utilize good

general ventilation when using polyester

resin composites, 17 percent use local

exhaust ventilation and 17 percent use
downdraft tables. Use of ventilation is about

the same for polyester resins as it is for

epoxies.

(7) Medical Monitoring: Sixty-four

percent of responses reported that

pre-placement medical evaluations are
performed on employees and 64 percent

indicated that periodic follow-up exams are

provided. Required medical exams are
similar for this group as compare d to epoxy

users.

Recommendations:

The industry experience survey indicated
that most companies had very little adverse

information on use of polyester resin com-

posites. Odor complaints and incidence of
dermatitis and sensitization were extremely

low or non-existent. It appeared that use of

neoprene and natural latex gloves were
effective in preventing dermatitis and that
use of local exhaust and downdraft ventila-

tion was effective in minimizing airborne
dusts and odors. Additional recommenda-

tions are the same for polyester resin sys-

tems as were noted in the second paragraph

of recommendations for phenolic resin

systems.

(e) Silicone Resin Systems

Description:

Silicone resins can resist high temperatures,

but have a relatively low-strength capacity.

They are typically used as insulation in

high-temperature areas (above 350 degrees
F) and where flexible bonding is desirable.

"Silicon resins" are any of a large group of

organic siloxane polymers that are highly
cross-linked. The basic building blocks

include a silicate where various organic
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groups are attached as replacements for
oxygen atoms on the side chains °_.

Toxicology:

The order of toxicity is low for all routes of

entry except the eyes, in some cases. The
inhalation hazard is also low because the

vapor pressure of the liquid component is
1ow_13_.

The order of toxicity of this class of resins

is considered low, the primary health hazard

being skin, eye and respiratory irritation

upon contact with the resin reactants,
dialkylsilicon dihalides and organo peroxy

curing compounds (z_'zs). The cured material

is considered biologically inert (21>and

therefore is not expected to be a hazard
from an inhalation standpoint. Mechanical

irritation of the skin may occur, as will occur

with sufficient contact to any cured resin

dust.

Observations:

(1) General Comments: A total of 11

responses were received from two compa-
nies/subsidiaries. One company reported

employee concern for skin irritation.

(2) Odors: Eight percent of responses

reported that some employees complain of

odors, compared to 11 percent for epoxies.

(3) Sensitization: Eight percent of

responses reported that some employees

experienced sensitization to silicone resin

composites, compared to 15 percent for

epoxies.

(4) Dermatitis: Eight percent of re-

sponses reported that some employees

experience dermatitis as a result of working
with silicone resin composites, compared to

20 percent for epoxies.

(5) Personal Protective Equipment:

Twenty-seven percent of the responses
indicated that gloves are required, compared

to 72 percent for epoxies. None provide
barrier creams (optional use) or require use
of coveralls/smocks over street clothes when

working with silicone resin composites,

compared to 15 percent for epoxies.

(6) Ventilation: Sixty-four percent of

responses reported that they utilize good

general ventilation when using silicone resin

composites, compared to 44 percent for

epoxies. Seven percent use local exhaust
ventilation and 7 percent use hood ventila-

tion. Good general ventilation is used more

frequently than specialized ventilation, such
as local exhaust and downdraft systems as

compared to epoxies.

(7) Medical Monitoring: Thirty-six

percent of responses reported that

pre-placement medical evaluations are

performed on employees and 73 percent
indicated that periodic follow-up exams are

provided.

Recommendations:

The industry experience survey indicated

that there is very little adverse information

on odors, dermatitis, or sensitivity as a result

of working with silicone resin composites.
Additional recommendations are the same

for silicone resin systems as were noted in

the second paragraph of recommendations

for phenolic resin systems.

(f) Aliphatic Amine Curing Agents

Description:

Aliphatic amine curing agents are typically

used to cure epoxy resin systems. They have

a short pot life (30 minutes or less) and are

used where relatively low service tempera-

tures (150-200 degrees F) are expected. They
are often used in small quantities for repair

applications.

Aliphatic amines are derivatives of ammo-
nia where one or more hydrogens are

replaced by an alkyl or alkanol group.

Aliphatic amine curing agents (part B) are
mixed with a resin (part A) to create a
reactive mixture that results in cross-linking

of polymer groups.

Toxicology:

Aliphatic amine curing agents are consid-

ered highly irritating and corrosive and may

cause damage on contact with eyes, skin,

and the respiratory tract. Skin absorption is

a problem; many are capable of cutaneous

hypersensitization _s_.Systemic symptoms
from inhalation are headache, nausea,

faintness, and anxiety. These systemic

symptoms are usually transient _6}.These
amines are strongly basic (pH 13-14) and

can produce chemical burns of the skin.
Some contain dye bases that may yellow the

skin upon oxidation. Cutaneous amine
reactions cause erythema, intolerable itch-

ing, and severe facial swe!!ing. Blistering
with weeping of serous fluid, crusting, and

scaling may occur (8_.
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Aliphaticandcycloaliphaticamine
hardenersarebasiccompoundscharacter-
izedbytheir corrosiveproperties.These
materialsarecomponentsof epoxyresins
andaresevereskin,eye,andrespiratory
tract irritantsaswellassytemicallytoxic.
Someof theaminesareimplicatedin skin
andrespiratorytractsensitizationresponses.
Theskin reactionsymptomsaresimilar
enoughto thosefrom epoxyresinthat they
cannotspecificallybeattributedto either
constituenVTL
Observations:

(1) General Comments: A total of 51

responses were received from 7 companies/

subsidiaries. In summary, some companies

reported complaints of odor and headache

when the product was heated or sanded.

One company reported swelling around eyes
and another reported yellowing of hands.

When comparing these observations with

those from epoxy resin systems, it should be

noted that many epoxy resin systems

contain aliphatic amine curing agents.

(2) Odors: Twelve percent of responses

reported that some employees complain of

odors, compared to 11 percent for epoxies.

(3) Sensitization: Sixteen percent of

responses indicated that some employees

experienced sensitization to aliphatic amine
curing agents, compared to 15 percent for

epoxies.

(4) Dermatitis: Twelve percent of

responses reported that some employees

experience dermatitis as a result of working

with aliphatic amine curing agents, com-

pared to 20 percent for epoxies.

(S) Personal Protective Equipment:

Ninety-six percent of the responses indi-

cated that gloves are required, compared to

72 percent with epoxy resins, 73 percent

provide barrier creams (optional use) and 9

percent require use of coveralls/smocks over
street clothes when working with these

materials, compared to 25 percent for epoxy

resins.

(6) Ventilation: Fifty-nine percent of

responses reported that they utilize good

general ventilation when using aliphatic
amine curing agents, compared to 44

percent for epoxies, 23 percent use
downdraft ventilation and five percent use

slot hood ventilation. Use of ventilation

systems is more common when handling

aliphatic amine curing agents than when

handling epoxies.

(7) Medical Monitoring: Eighty-four

percent of responses reported that

pre-placement medical evaluations are

performed on employees, compared to 67

percent for epoxies, and 84 percent indi-
cated that periodic follow-up exams are

provided, compared to 65 percent for

epoxies.

Recommendations:

Toxicological information indicates that

aliphatic amine curing agents are corrosive
and are considered primary irritants. -Expo-

sure to these resins may result in dermatitis
and sensitization. The industry experience

survey indicates that employees complain of

odors, dermatitis, and sensitivity when

working with these materials. Additional
recommendations are the same for aliphatic

amine curing agents as were noted in the

second paragraph of recommendations for

phenolic resin systems.

(g) Aromatic Amine Curing Agents

Description:

Aromatic amine curing agents are typically

used to cure epoxy resin systems. They

provide the product with superior tempera-
ture-resistance properties where service

temperatures may reach 300-350 degrees F.

Aromatic amines include aromatic hydro-

carbons where at least one of the hydrogens

has been replaced with an amino group.
Aromatic amine curing agents (part B) are

mixed with a resin (part A) to create a
reactive mixture that results in cross-linking

of polymer groups.

Toxicology:

Aromatic amine curing agents are generally

considered systemic toxics because some are

readily absorbed through the skin and react

with internal systems, such as the liver and
bladder. "The most dominant toxic effects

are methemoglobin formation and cancer of

the urinary tract. Other toxic effects include

hematuria, cystitis, anemia, and skin sensiti-
zation."(7)

Aromatic amines are used in epoxy resins

as curing agents and as reactants in some

polyimide resins. The amines may be mono
or diphenyl compounds, with the latter
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being separated by either an aliphatic chain
or a sulfone (S=O).

The potential health effects presented by
this class of chemicals is somewhat depen-
dent on the chemical structure of the

members. Certain characteristics are exhib-

ited. Most are mild irritants and may pro-

duce liver damage. Some aromatic amines

may produce irreversible retinal degenera-

tion upon overexposure. All members are

absorbed well through the skin and are not

appreciably volatile except when subjected

to elevated temperatures, and therefore skin

exposure is critical.

Some of the members of the class, most

notably 4,4 - methylene dianiline (MDA),
are similar to their structural analog benzi-

dine in being classified as a potential blad-

der carcinogen.

The primary concern with this group of

chemicals is their potential to be absorbed

through the skin. It is not surprising that

airborne monitoring of worker exposure has
not been considered an accurate estimate of

worker uptake of the chemical. Instead,
biological monitoring is prescribed_26L

Observations:

(1) General Comments: A total of 45

responses were received from six companies/

subsidiaries. In summary, one company

reported complaints of odor during
exotherm, one reported nausea and vomit-

ing and one reported that medical monitor-

ing includes biomonitoring. As is the case

with aliphatic amines, aromatic amines are

used in many epoxy resin systems.

(2) Odors: Nine percent of responses

reported that some employees complain of

odors, compared to 11 percent for epoxies.

(3) Sensitization: Five percent of re-

sponses indicated that some employees

experienced sensitization to aromatic amine

curing agents, compared to 15 percent for

epoxies.

(4) Dermatitis: Five percent of responses

reported that some employees experience
dermatitis as a result of working with

aromatic amine curing agents, compared to

20 percent for epoxies.

(5) Perse_al Protective Equipment:

Eighty-nine percent of the responses indi-

cated that gloves are required, compared to

76

72 percent with epoxies, 70 percent provide

barrier creams (optional use), and 26 percent

require use of coveralls/smocks over street
clothes when working with aromatic amine

curing agents, compared to 25 percent for

epoxies.

(6) Ventilation: Fifty-three percent of

responses reported that they utilize good

general ventilation when using aromatic

amine curing agents, compared to 44

perecnt for epoxies, 21 percent use
downdraft ventilation and 11 percent use

local exhaust ventilation.

(7) Medical Monitoring: Eighty-two

percent of responses reported that

pre-placement medical evaluations are
performed on employees, compared to 67

percent for epoxies, and 84 percent indi-

cated that periodic follow-up exams are

provided, compared to 65 percent for

epoxies.

Recommendations:

The industry experience survey indicates
that companies receive moderate amounts

of feedback from employees concerning

odor, dermatitis, and sensitivity as a result
of working with aromatic amine curing

agents. Toxicological data indicates that the

primary effect of many aromatic amine

curing agents is that they are readily ab-

sorbed through the skin and have an ad-

verse effect on internal organs. Additional
recommendations are the same for aromatic

amine curing agents as were noted in the

second paragraph of recommendations for

phenolic resin systems.

(h) Thermoplastics

Description:

Thermoplastics are used where weight

savings is desirable, and they provide the

product with superior toughness and impact
resistance. Materials are more expensive

than conventional composites but process-

ing time is significantly less.

"Thermoplastics" refer to a group of

plastics that can be softened with heat and
hardened on cooling, such as vinyls, acryl-

ics, and polyethylene_4L

Toxicology:

Thermoplastics typically do not cause skin
irritation or toxic effects. Some are so inert,

such as fluoroplastics, that they are used for



humanorganprostheses.Otherthermoplas-
tics,suchasacrylics,cancauserespiratory
andcutaneousirritation but donot cause
cumulativeor chronictoxic healthaffects.
Fumesfrom moldingoperationshavebeen
reportedto causeeyeirritation.

Sincethermoplasticresinsaregenerally
processedfrom fully polymerizedmaterials,
the hazardsto workersmanufacturingparts
from theseprecursorsis limited to exposure
to polystyreneduringheatingandto
polyphenylenesulphide(PPS)breakdown
productsduringmoldingoperations(SL
Healtheffectsof styrenemonomerhave
beendiscussedin thetreatmentof polyester
resins(SectionIV.B.2.d).PPScanthermally
degradeto produceawiderangeof possible
gaseousbreakdownproducts,including
hydrogencyanide,sulfuroxides,andcarbon
monoxide,whichareall acutelytoxicupon
inhalationexposure.Controlof released
decompositionbyproductvaporsduring
heat/pressureformingof thermoplasticsis
important.
Observations:

Thermoplastic materials are sometimes

treated separately since the material form

and work process (i.e., thermoform opera-
tions) are somewhat different than that of

Operation

Reference (12))

mechanical or hand lay-up. The potential

for dermal and inhalation exposure may be

greatly reduced since the operation is
conducted with a minimum number of

employees in the immediate area around the
thermoform unit. Additionally, the fact that

the material is present as a pre-formed sheet
results in minimal dermal contact and

limited inhalation exposure in terms of the
number of individuals as well as the relative

level of airborne contaminants, assuming

that appropriate ventilation controls are in

place.

There were not enough responses on

thermoplastics to develop a profile of user

experiences. However, based on the toxico-

logical review, the following recommenda-
tions are provided:

Recommendations:

General recommendations are the same for

thermoplastics as were noted in th¢-_cond

paragraph of recommendations for phenolic

resin systems.

3) Operation-Specific Observations/
Recommendations

The following is a summary of observations
and recommendations based on the toxicol-

ogy review and the industry experience
survey on health effects of composite

materials reported by manufacturing opera-

tion. Percentages are based on the total
number of responses for each question and
indicate that one or more individuals

reported a given effect when performing a

given task. Table 1 illustrates potential
hazards and target effects by operation.

(a) Assembly

Description:

Includes joining pieces together to form
sub-assemblies, or joining sub-assemblies

together to form a finished product.

Observations (42 responses):

Twenty-nine percent of all responses
indicated that some employees experienced

dermatitis, 23 percent complained of odors

and 12 percent reported sensitization when

performing assembly work. Most other

complaints noted concern for dust
inhalation.

Recommendations:

It is recommended that gloves be worn

when manually handling uncured compos-



itematerials,andto preventskincontact
with compositedusts.Goodgeneralventila-
tion (3-5air changesperhour)isadequate
for mostassemblyoperationsbut if dustsare
generated,useof high-velocity,low-volume
localexhaustventilationisrecommended.

(b) Bagging

Description:

Uncured parts are covered with absorbent

matting to absorb excess resin bleeding from

the part during cure, and is sealed with a
vacuum bag to evacuate gases and help

retain product shape during the curing

process.

Observations (57 responses):

Nineteen percent of all responses indicated
that some employees experience dermatitis,

7 percent complain of odors and S percent
reported sensitization when performing

bagging work.

Recommendations:

It is recommended that gloves be worn

when manually handling uncured compos-

ite materials and bagging materials contain-

ing uncured resins to prevent skin contact

that may result in dermatitis and/or sensiti-
zation. Good general ventilation is recom-

mended for bagging operations.

(c) Curing

Description:

The bagged part is placed in an oven,

autoclave, or press and is processed over a

period of time to expedite the chemical
reaction between components of the com-

posite mixture.

Observations (85 responses):

Fourteen percent of all responses indicated

that some employees experience dermatitis,

18 percent complain of odors and 17 per-

cent reported sensitization when performing

curing work.

Recommendations:

It is recommended that gloves be used when

handling uncured composites, that ventila-

tion systems be used to exhaust gases from

autoclaves, and that good general ventila-

tion be provided in all other areas where

curing operations are performed. Ventilation

systems should be designed to effectively

remove decomposition products of
exotherms from the work area.

(d) Kitting

Description:

Frozen pre-peg is removed from a freezer
and cut to the desired size and shape re-

quired prior to pre-peg lay-up. For wet lay-

up applications, the cloth or fabric part of
the two-part system is cut and sized. Dusts

and fibers may be produced from both wet

lay-up and pre-peg operations, volatiles, and

possibly aerosols from the resin system may

be produced from pre-peg systems during

cutting as well as during removal of pre-peg

backing prior to lay-up.

Observation:

Information from this process is included in

the observations sections below for wet and

pre-peg lay-up.

Recommendations:

See sections (e) and (f).

(e) Wet Lay-Up

Description:

Uncured resins are applied to dry fibrous
materials in alternating layers in the desired

orientation on lay-up tools to obtain the

desired shape.

Observations (56 responses):

Fifteen percent of all responses indicated

that some employees experience dermatitis,

26 percent complain of odors and 18 per-

cent reported sensitization when performing

wet lay-up work.

Recommendations:

Odor was the most prevalent complaint

observed during wet lay-up operations and

the majority of those were reported in areas

where only limited ventilation was pro-
vided. It is recommended that good general

ventilation be used as a minimum and that

hood ventilation or downdraft tables be
used as needed to control odors. Use of

impervious gloves and coveralls/smocks are
also recommended to minimize skin contact

with uncured resins.

(f) Pre-Preg Lay-Up

Description:

Pieces of pre-preg cloth or tape (fibrous

materials impregnated with resin and

partially cured) are cut and placed in the
desired orientation on lay-up tools in

multiple plies to obtain the desired shape.
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Observations (131 responses):

Forty-four percent of all responses indicated

that some employees experience dermatitis,

25 percent complain of odors and 34 per-
cent reported sensitization when performing

pre-preg lay-up work.

Recommendations:

Dermatitis, odors, and sensitization were all

significant adverse reactions reported by

companies that perform pre-preg lay-up
operations. The fact that pre-preg operations

require intimate contact with uncured

composites and that the task requires

employees to perform this task for many

hours per day justifies the need for special

precautions.

It is recommended that employees use

impervious gloves when performing

pre-preg lay-up operations. Depending on

the scope of work performed, gloves should

be impervious to the resin and solvents used
in the process. Most lay-up operations also

involve cutting composite materials so the

cut-resistance of the glove should be consid-

ered when selecting an impervious glove, or

a cut-resistant glove should be worn over

the impervious glove. Use of good general
ventilation is recommended as a minimum

and use of downdraft tables should be

considered for composites that emit strong

odors or generate dust when cut.

(g) Rework

Description:

Repair of damaged or defective parts to

restore them to original specification.

Observations (62 responses):

Eleven percent of all responses ind!cated

that some employees experience dermatitis,

none complained of odors and 4 percent
reported sensitization when performing

rework operations. Most companies that

responded to this section utilized downdraft
tables to control airborne dusts and fumes.

Recommendations:

Rework operations are typically small-scale,

short-duration projects that, according to

responses, are well controlled with local
exhaust ventilation, downdraft tables, and

use of gloves. It is recommended that high-

velocity, low-volume local exhaust ventila-
tion be used to control dust-generating

operations at the point of operation and

that coveralls and gloves be used to prevent

skin contact that may result in dermatitis
from chemical and mechanical properties of
the materials.

(h) Sand/Machine/Trim

Description:

Cured parts are rough trimmed, net

trimmed, deburred, sanded, drilled or

processed via machining.

Observations (79 responses):

Six percent of all responses indicated that

some employees experience dermatitis, 6

percent complained of odors and 5 percent

reported sensitization when performing

trimming, sanding or machining operations.
Most companies that responded to this
section utilized local exhaust ventilation,

downdraft tables and gloves to control

personnel exposures.

Recommendations:

It is recommended that high-velocity, low-
volume local exhaust ventilation be used to

control dusts and that employees use

personal protective equipment, including

coveralls and gloves to prevent skin contact
that may result in dermatitis from the

chemical and mechanical properties of the

materials. Use of gloves and loose clothing is

not recommended near revolving equip-
ment.

(i) Research & Development

Description:

Research and development includes labora-

tory testing of new materials and processes

to determine optimum manufacturing
conditions.

Observations (85 responses):

Four percent of all responses indicated that

some employees experience dermatitis, 10

percent complained of odors and 6 percent

reported sensitization when performing

trimming, sanding, or machining opera-
tions. Most companies that responded to

this section utilized good general ventila-

tion, local exhaust, downdraft tables, and

gloves to control personal exposures. Most

complaints originated in areas where there
was less than good general ventilation

provided.
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Recommendations:

It is recommended that good general venti-
lation be used as a minimum for small scale,

low hazard tasks and that high velocity, low

volume local exhaust be used to control dust

generating operations. Downdraft ventila-
tion or booth/hood ventilation should be
considered to control odors. Use of personal

protective equipment including coveralls

and gloves are also recommended to prevent
skin contact that may result in dermatitis

from the chemical and mechanical proper-

ties of the materials.

(1) Tooling

Description:

Tooling includes preparation of the tool,
which is made of composite materials and

serves as a working surface and a master

model for the finished part.

Observations (36 responses):

Four percent of all responses indicated that
some employees experience dermatitis, 10

percent complained of odors and 6 percent

reported sensitization when performing

trimming, sanding, or machining opera-
tions. Most companies that responded to
this section utilized good general ventila-

tion, local exhaust, downdraft tables, and

gloves to control personnel exposures. Most
complaints originated in areas where there

was less than good general ventilation

provided.

Recommendations:

it is recommended that good general venti-
lation be used as a minimum for small-scale,

low-hazard tasks and that high-velocity,

low-volume local exhaust be used to control

dust generating operations. Downdraft
ventilation or booth/hood ventilation

should be considered to control odors. Use

of personal protective equipment, including
coveralls and gloves, are also recommended

to prevent skin contact that may result in
dermatitis from the chemical and mechani-

cal properties of the materials.

C. Information Needs

While gathering data on current knowledge

and industry experiences with composite
materials, information needs were also

identified. This section outlines the most

significant of these information needs and

provides recommendations on how to fill

these knowledge gaps to improve evaluation

and communication processes:

1) Toxicology of Raw Materials

A review of toxicological data pertaining to

composite raw materials indicates that
additional information is needed to provide

safety and health professionals with infor-
mation to better assess risk potential of

these products, particularly the new resin

systems, pre-pregs, and fibrous dusts. Prob-
ably the largest information gap is a lack of

data on the ability of resin components to

permeate the skin. This makes control of
exposure difficult, since it is not always clear
what control levels of airborne contamina-

tion are necessary or what level of dermal

protection to use. Secondly, there is a need
to facilitate communications between

manufacturers and users about known

hazards, such as those that are reportable to
the Environmental Protection Agency (EPA)

under the Toxic Substance Control Act

(TSCA), Section 8(e), because of the chemi-

cals' potential to cause significant adverse
effect on health or tile environment.

Recommendation:

Major toxicology data gaps relative to raw
materials should be identified by manufac-

turers and users, and a plan should be

established to provide funding for industry

and/or government to conduct additional
research, including epidemiological studies.

Additional emphasis should be placed on
the elimination of the sources of obnoxious

resin odors, if possible, to improve employee
comfort and increase productivity. Hazard

information pertaining to these materials
should be transferred to users via Material

Safety Data Sheets.

2) Occupational Exposure Monitor-

ing

New materials have been introduced into

the work environment and many of these

materials have not had sampling and

analytical methods or recommended expo-
sure limits established. As a result, several

different procedures may be used to collect
and measure the same analyte. This practice

makes it difficult to evaluate data

industry-wide and to determine if exposures

are within safe limits.

Recommendation:

Sampling and analytical methods and

guidelines for occupational exposure should
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beestablishedfor air,surface,andbiological
samples.Specificareaswhichcouldbe
addressedaresamplingof pre-pregsfordust
andfiberssincesomeof theseproductsare
beingfoundto generatedustduringprocess-
ing evenin the uncuredstate.Other areas
include sampling and analysis of pre-preg

solvents, resin raw materials, diluents, etc.

Air sampling procedures should include
measurement of volatile components of

resins, formulation byproducts, and com-

posite dusts.

For many pre-preg and resin products, the

amount of volatile materials present in the

products may not cause significant exposure
by the inhalation route. Skin contact is

often the major route of potential exposure,
and, as a consequence, surface sampling and

biological monitoring could be used to

better assess risk. Surface sampling proce-

dures include wipe tests of pre-preg to

identify the relative availability of a resin

component and wipe tests of work surfaces

are used to identify the extent of contamina-

tion. Biological sampling could serve a

useful purpose to measure relative exposures

via skin absorption or ingestion and he used

to prioritize corrective actions. Biological

monitoring techniques should be estab-
lished for composite components which are

of sufficient toxicity and are readily ab-

sorbed dermally.

3) Medical Surveillance

Medical monitoring protocols should be

established through review of the product

hazards combined with information regard-

ing relative exposure levels to which workers

are exposed, in many cases, neither of these

parameters are known and therefore, the
fundamental information needed to estab-

lish a medical monitoring program cannot

be readily determined.

Recommendation:

Definition is needed of medical monitoring

programs already in existence and those
which are planned in the composites indus-

try. Additionally, the manufacturers should

be encouraged to share toxicology informa-
tion about chemicals with occupational

medicine personnel representing the user

industry. Lastly, accurate exposure measure-
ments should be made.

4) Hazard Communication

Often, components are listed by generic
name or by general class of chemicals to
which they belong. The terms "epoxy resin"

or "amine curing agent" are not acceptable

to the product users. Users of composites are
unable to evaluate the potential health
effects of materials for which only general

chemical information is supplied. They are

also unable to provide employees with

effective guidance on appropriate personal

protective equipment without specific

information provided by the manufacturer.
Also, the formulated resin or partly cured

product may present a hazard much differ-
ent than tile reactant material.

At times, composite raw material labels
do not contain accurate information on the

manufacturer, tile product identification,

health hazard warnings or the repackaging

company name. This creates difficulties

identifying materials and making a link
between tile label and the MSDS.

Recommendation:

Appropriate health hazard information
should be notated on the MSDS. The MSDS

serves as an educational tool and should be

used to communicate specific and accurate

information to employees. There are only

two acceptable options for listing of materi-
als which are hazardous. The first is listing

tile specific chemical identity, including the
Chemical Abstracts Service (CAS) number,

and the second is a statement that the

identity of the chemical is proprietary.

The potential health effects of the mate-

rial should be clearly stated on ttle MSDS,

including appropriate methods to control

exposures. C-eneral statements such as "may
cause skin irritation" and "impermeable

gloves should be worn" should be avoided.

In terms of protective gloves, a specific type

of glove shown to be effective against

permeation should be designated. Details
about break-through times should also be

included. •

81



V Conclusion

Results of the AIA Composites Task Group

study indicate that some persons who work

with composite materials do experience
adverse reactions to these materials when

performing various manufacturing tasks.

The frequency of the complaints associated

with certain composite materials suggests
that there is an association between the

chemical/process and the source of

employee concern. However, the data also
indicates that there are effective controls

presently available that can significantly
minimize the risk of experiencing these
adverse effects. Based on the data presently

available, composite materials can be

handled safely if safe work practices are
observed.

Some composite operations will require

additional, more stringent controls than

others, depending upon the chemicals

involved, but technology is presently

available to address these special

requirements. Companies should respond to

employee concerns about new materials and

processes. Communication to the workforce
on new composite technologies should be
restructured when needed to provide

employees with the information and tools
to minimize health risk. Furthermore,

internal company enforcement policies

should be strengthened regarding the

wearing of gloves and other personal

protective equipment. Proper ventilation
systems should be designed, installed, and
maintained where appropriate.

As composite technology continues to
advance and mature, safety and health

professionals and manufacturing engineers
need to work together to provide employees
with a work environment that is both safe

and productive. •

82



VI References

1. MED-LINE, TOXoLINE, National Library of Medicine, DHHS, PHS (Bethesda, MD: National Institute of Health,
19921.

2. Bourcier, D.R., "Comments on the AIA Composite Task Group Health Hazards Study" (paper presented at the

National Center for Advanced Technologies and American Institute for Aeronautics and Astronautics
Symposium on Key Technologies for the Year 2000, Washington, D.C., December 1991).

3. U.S. Department of Defense, Conference on Occupational Health Aspects of Composites Vol. 1 and 2 (Washington,
D.C.: GPO, March 1989, Pub. No. AAMRL-TR-89-008), Executive Summary 61, Proceedings, 4 I0.

4. Applied Industrial Hygiene: Special Issue on Health Aspects of Composite Materials, American Conference on
Governmental Industrial Hygienists, (December 1989).

5. Luca, J., "Aerospace Industries Association Composites Health and Safety Study" (paper presented at American
Conference on Governmental Industrial Hygienists Conference on Advanced Composites, San Diego, Calif., 3
March 1991).

6. Cleghorn, R., "Utilization of Computer Data Bases to Evaluate Industry Experience with Composite Materials in
the Aerospace Industry" (paper presented at AIHCE, May 1991).

7. Borgstedt, H. and C. H. t-line, "Toxicity, Hazards and Safe Handling," in t.Spox), Resins: Chemistry and Technology
(New York: 1988).

8. Safe Handling of Advanced Composites Materials, Suppliers of Advanced Composite Materials Association, 2rid ed.
(Arlington, Va.: 1991), 52.

9. Fregert, S., "Contact Dermatitis from Epoxy Resin Systems," in Occupational and Industrial Dermatology, 2nd ed.
(Chicago: Yearbook Medical Publishers, Inc., 1987), 341-345.

10. Hine, C., et al., "Epoxy Compounds," in Patly's Industrial ttygiene and Toxicology 2A, eds. Clayton and Clayton

(New York:John Wiley and Sons, 1982), 2141-2158.

11. Kowalska, M., "Carbon Fiber Reinforced Epoxy Prepregs and Composites-Health Risk Aspects," SAMPE Quarterly,

January 1982, 13-19.

12. Bourcier, D. R., "Exposure Evaluation of Composite Materials With Emphasis on Cured Composite Dust," Applied
Industrial Hygiene: Special Issue on Health Aspects of Composite Materials (American Conference on Governmental

Industrial Hygienists, December 1989), 40-46.

13. Lutchel, D. L., "Carbon�Graphite Toxicology," in Fiber Toxicology, ed. I). Warheit, (New York: Academic Press,
1993), 493-521.

14. Kwan, J. K., "Health Hazard Evaluation of the Postcuring Phase of Graphite Composite Operations at the Lawrence

Livermore National Laboratory, Livermore, Calif." (Ph.D. thesis, UCP, I.-I.R-104684. NTIS, Springfield, Va., 1990).

15. Malten, K. E., "Old and New, Mainly Occupational Dermatological Problems in the Production and Processing of
Plastics," in Occupational and Industrial Dermatology, 2rid ed. (Chicago: Yearbook hledical Publishers, Inc., 1987),
290-340.

16. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to I lumans: Some Industrial Chemicals and

Dyestuffs 29 (WHO, International Agency for Research on Cancer, 1982), 203-212.

17. Bruze, M., "Contact Dermatitis from Phenol-Formaldehyde Resins," in Occupational and Industrial Dermatology, 2nd

ed. (Chicago: Yearbook Medical Publishers, Inc., 19871, 430-435.

18. Bruze, M., Persson, L., Trulson, L., and Zimmerson, E., "Demonstration of Contact Sensitizers in Resins and
Products Based on Phenol-formaldehyde," Contact Dermatitis 14:(1986), 146-154.

19. Documentation of the Threshold Limit Values and Biological Exposure Indices, 5th ed., American Conference of

Governmental Industrial Hygienists (Cincinnati: 1988).

20. Criteria for a Recommended Standard, Occupational Exposure to Phenol, (Washington, D.C.: National Institute of

Occupational Safety and Health, 1976, Doc. #76-196), 23-69.

21. Finkel, A.J., ed., Hamilton andHardy's Industrial Toxicology, 4th ed. (New York:John Wright-PSG, Inc., 1983), 270-
272.

22. Proctor, N. H., Hughes, J. H., Chemical Hazards of the Workplace (Philadelphia: J. B. Lippincott, 1978), 225-226.

23. Key, M. M., Konzon, J. L., and Devitt, G. E., "Polyester Resins," in Encyclopedia of Occupational Health and Safety
Vol. 2 (1983) 1760-1762.

24. Zuskin, E., Saric, M., and Bouhuys, A., "Airway Responsiveness in Workers Processing Polyester Resins," Journal

O_cupational Medicine 21, no. 12 (1979) 825-827.

25. "The Halogens and the Non-Metals Boron and 5ilicone," Patly's Industrial llz_iene and Toxicology, 2B (19(1), 3039-41).

26. MDA Final Rule, 29 CFR 1910 Section 1050 (General Industry) and 29 CFR 1926 Section 60 (Construction), 10

August 1992.

83





N95- 23030

DERMAL EXPOSURE:

e ASSESSING THE HAZARD

-e EMERGING REGULATORY ISSUES

Kevin Cummins

Senior Industrial Hygienist

OSHA Health Response Team

Salt Lake City, UT.

;__ PAGE _; "' .......' _'...... 85



WHY IS SKIN EXPOSURE IGNORED?

O Problem doesn't exist, or magnitude of

problem overestimated

0 Lack of tangible evidence of exposure

0 Little historical evidence indicative of

problem

• No solution
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IS SKIN EXPOSURE A PROBLEM?

• Dermatitis

O Skin Absorption Compared to Lung

• Reviews of Literature
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DERMATITIS

0 Second leading cause of Occupational

Illness 1

0 11% of Working Adults, or 13.

experienced dermatitis. 2.8%

specifically cited chemicals 2

7 million,

O
25% of all occupational illnesses are
skin exposures 3

1989 BLS Statistics

1988 Occupational Health Supplement to the National

Health Interview Survey

3 "PPE for General Industry; Final Rule", Federal

Register, April 6, 1994, pp. 16334-16364.
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SKIN VS LUNG ABSORPTION

COMPARE:

AMOUNT ABSORBED VIA

EXPOSURE

SKIN

O Amount Absorbed - (Surface Exposed

in cm 2) x ( Absorption rate in mg/cm2/hr)

x (Time Exposed in hrs)

TO:

AMOUNT ABSORBED BY THE LUNG

O Amount absorbed = (Concentration in

air in mg/m 3) x (Breathing Rate in

m3/hr.) x ( Time Exposed in hrs.)
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GLYCOL ETHERS

(2-ethoxyethanol and 2-ethoxyethyl acetate)

Amount absorbed by skin = (900 cm 2)

(0.8 mg/cm2/hourl)(8 hours)

= 5760 mg.

Amount absorbed from Air at TLV = 18

mg/m 3 x 10 m 3

= 180 mg.

Dose to the skin exceeds the TLV dose by a

factor of 32 times!

Recommended BEI, Appl. Occup. Envir.

Hyg. 8(5), May 1993.
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ACRYLAMIDE

Amount absorbed by skin =

mg/cm2/hourl)(8 hours)

(900 cm 2) (1

= 7200 mg.

Amount absorbed

mg/m 3 x 10 m 3

from Air at TLV = 0.038

=0.38 mg

Dose to the skin exceeds the PEL dose by a
factor of 19,000 times!

1 Absorption rate for DMF, Bergerova, Appl.

Occup. Envir. Hyg. 4(8) 1989.

91



FACTORS WHICH AFFECT

SK1N ABSORPTION

O OCCLUSION

O TEMPERATURE

* PRESSURE

O PRESENCE OF OTHER SOLVENTS

O AMOUNT OF EXPOSED SKIN

O CONDITION OF SKIN
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EXAMPLES OF SKIN EXPOSURE

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

_B,,_iiiiiNi_iii!miiiii_s___siiiiiiiiiiii(Lees,Corn, and

Breysse, AIHA, 49(3) 257-264 (1987):

"The author's concludethat exposure by the

dermal route (i.e. skin absorption) is

considerable (especially when compared to

respiratory exposures), whatever the job task."

___ i_ __................iiiii_iiiiili""_iii_iii'iiiiiiiiiiiiiiiiiii_i_ii_iii_iii!_ii_i!iii_i!iiiiiil_!ii_iiiiiiiiiii'iiiii!_i;i';!i_i"-ii!iiiiiii_iiiii":_ii::iiiii::i::iii::iiiiiiiiiiiiiiiiiiiiiiiiiiii::""":ili::_iiiiii::iiiiiiii!iii!iii_i_iii_i!iiiii!i;_iiiiiii_iiliii::_iiiiii::::iiiii::i::iii_ii_iiiii::iiii_iiiiii::iiiiii_ii:"____ _:::::ii_iiiiii_iiili_iiiiii_i_iiiii_i_i_i_i_i_iii_ii::_ii::i::i""iiiii_i

(Daniell, Stebbins, Kalman, O'Donnell, and

Horstman, AIHA, 53, (1992) pp. 124-129.):

"Air sampling will substantially underestimate a

worker's total solvent dose in the setting of

moderate or high skin exposure. "
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EXAMPLES CONTD.

Jongeneelen,

632):

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::================================================================================================================================

_ (VanRooij, Bodelier-Bade, and
r. J. Ind. Med., 1993, 50, 623-

Pyrene: avg.
dose via skin

75% (range 28%-95%) of total

Benzoapyrene: avg. 51% (range 8%-92%) of

total dose via skin

"Our results indicate that preventive measures to

reduce exposure to PAHs should be focused
more on the reduction of dermal contamination

with PAHs than on the reduction of the inhaled

dose."
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EXAMPLES CONTD.

Riley, and Magren, Tox.& Appl. Pharm., 58,

221-230, (1981):

"... 1 drop (50uL) 100% TDI applied to the skin

in the absence of any adjuvant caused antibody

production in 100% of animals and pulmonary

sensitization in approximately 30-40% of
animals".

McDiarmid, Guidera, Humphrey, and Schaefer,

JOM, 35, (1993), pp. 701-706.:

"A total of 253 exposures occurred during a 3

years period .... Exposure by the dermal route was

most common (37.9%)."
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GLOVE PERMEATION IN

SEMICONDUCTOR

INDUSTRY 1

O GLYCOL ETHERS EXPOSURES

POSSIBLY LINKED TO EXCESS

SPONTANEOUS ABORTIONS

O RE-USE OF GLOVES RESULTED IN

RAPID BREAKTHROUGH

O PERMEATION RATES OF GLYCOL

MIXTURES GREATER THAN

PREDICTED FROM PURE

COMPONENTS

1 Zellers, et al, AIHA, 53,

116.

(1992), pp. 105-
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REVISIONS TO THE PPE

STANDARD

• 1910.138 HAND PROTECTION

(a): (General requirements) Employer shall

require use "appropriate hand protection

when employees' hands are exposed."

(b): (Selection) Employers shall base
selection on "an evaluation of the

performance characteristics of the hand

protection relative to the task(s) to be

performed, conditions present, duration

of use, and the hazards and potential
hazards identified."
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WHAT MEANS SHOULD BE USED TO

ASSESS SKIN EXPOSURE AND THE

EFFECTIVENESS OF PPE?

O MONITOR SURFACE

CONTAMINATION

O MONITOR SKIN EXPOSURE

O BIOLOGICAL MONITORING
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O SAFETY AND HEALTH PROGRAM

STANDARD

Emphasis will be shifted to the

enforce Safety and Health

employer to

O EXPOSURE ASSESSMENT

STANDARD

Items being considered as acceptable means

of ensuring that exposures are minimized:

Skin exposure Monitoring

Biological Monitoring
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WHAT CAN WE EXPECT? (or at least:)

WHAT CAN WE HOPE FOR?

A future in which OSHA stops being simply a

policeman (albeit one who was rarely present) ...

To a future in which responsibility lies with the

employer. OSHA's role may very well be one

of an auditor, rather than an enforcer in this new

OSHA.
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SO WHAT DO WE DO ABOUT IT?

O Provide testimony in support of these

changes

0 Provide examples of successful programs for

controlling skin exposure.
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file:skintlk.kc

Slide 1" Title

Slide 2: Why is skin exposure ignored?

Why is skin exposure ignored. Let's first explore some possible answers to this question, before
further discussing this issue.

Problem doesn't exist, or magnitude of problem overestimated

Obviously, if this the case then we shouldn't dwell on the issue. Although, I believe that skin

exposui-e is a significant problem, we cannot expect action on this matter until we have convinced

ourselves and others of the extent and magnitude of the problem. Later on I'll present some

evidence to indicate that it is a problem, but for now let's assume that the problem is real. What

other reasons could explain the lack of inaction?

Lack oftan_ble evidence

We human beings are rather simple creatures. We seem to deal effectively with tangible

problems, but are less responsive to problems with which we have not had direct experience.

Skin exposure to toxic chemicals which are not strong irritants may be like this. Because we

cannot smell, taste, see, or feel them, we do not perceive that there is a problem, despite the fact

that absorption of significant levels of chemical through the skin may be occurring.

Little historical evidence indicative of problem

Industrial hygiene has traditionally focused on air exposures. Obviously, this was because many

classic forms of occupational illnesses occurred via exposure to the lung. Silicosis and asbestosis

are two classic examples which come to mind. However, even a historical re._w brings to mind

the story of Percival Potts who recognized scrotal cancer as an occupational iilness of chimney

sweeps caused principally, if not entirely, by skin exposure to carcinogenic polynuclear aromatics

contained in the chimney soot. Thus even history is not devoid of some evidence that skin

exposure is a problem.

No solution

This response is the opposite of the first one. If our perception of the problem is that there are

no solutions, then it is understandable that we might choose to ignore the problem. Our fear of

the unknown may has cause us not to act on the problem because if appears to be insurmountable.

Thus it seems important for us to really answer the question: Is skin exposure a problem?
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Slide3: Is skin exposure a problem?

What evidence is there to support the contention that skin exposure is a significant problem?

Let's examine these three potential areas to determine the magnitude of the problem.

Slide 4: Dermatitis

Dermatiti_

First of all there is the obvious one, dermatitis. Estimates of the extent of dermatitis in the

workforce vary greatly. Prior to the recognition ofergonomic problems, dermatitis was

recognized as the leading reported occupational illness. In a 1988 Occupational Health

Supplement to the National Health Interview Survey it is reported that of 11% of working adults

(3.7 million workers) surveyed experienced dermatitis. 3.1 million cases, or 2.8% attributed their

exposures to the workplace. Higher estimates of the magnitude of the problem were reported to

OSHA on the hearings regarding.revisions of the PPE standard. In this testimony it was reported

that occupational skin disease accounted for 25% of all reported cases of occupational illnesses.

Additionally, BLS statistics for the construction industry indicate that 37% of all reported
occupational illnesses from 1973-1984 were dermatitis.

Slide 5: Skin Absorption Compared to Lung

Skin Absorption Compared tO Lung

For chemicals which may not cause dermatitis but which might be systemic poisons, then

comparing the potential amount of chemicals absorbed via skin contact with the amount absorbed

through the lung is instructive. For the case of skin exposure we will assume that the hands are

exposed to a pure or "neat" solution of the chemical for eight hours. For the lung exposure we

will use the allowable air exposure level and assume that the average workerfbi-eathes 10 m3 of air
in an eight hour shift.

Let's apply these formulas to a chemical which has gotten a lot of attention lately, ethylene glycol:

Slide: Glycol Ethers

Let's consider another example, in this case a chemical which is recognized as a potent skin
absorber and a neurotoxin, acrylamide.

Slide: Acrylamide
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Obviously,by comparisonto theallowablebodydose, it seems evident that skin exposure is not

to be ignored. But aren't we "stacking the deck" to represent the worst case for skin absorption?

Atterall the absorption rates shown above are for hands immersed in a neat (pure) solution of the

substance. In the real world, workers don't submerge hands in chemicals for 8 hours a day,

however they certainly do "submerge" their bodies in air which may be over the PEL.

This is true, but I think a couple of things should be pointed out before we assume that the skin

values are gross overestimates of the problem.

Slide: Factors which affect skin absorption

Occlusion: Skin protected by a glove becomes hydrated, this process is called occlusion an is

known to enhance the absorbitivity by a factor of 10.

Temperature: Increased surface temperature of skin enhances absorption..

Pressure: The pressure exerted While gloved significantly enhances absorption.

Pro_¢nc¢ of other solvents: Many solvents enhance the rate of absorption. (e.g.s glycol ethers)

Amo_nl; of exposed skin: The amount and type of skin exposed will obviously influence the

absorption rates. Many areas of the body have a thinner stratum corneum, which increases the

absorption rate.

Condition of skin: Damaged skin no longer provides a barrier to the absorption process.

Finally a number of studies have confirmed the importance of skin absorption:

Slide: Examples of Skin Exposure

And there are further examples of potential problems in this area:

Slide: More Evidence

This study demonstrates that diisocyanates upon skin contact can induce hypersensitivity. The

last example in a medical setting further indicates the wide-spread nature of the problem.

Thus it seems evident that not only do estimates of the potential for skin exposure support the

need for more attention in this matter, studies of exposed workers for PCB's, diisocyanates,

PNA's, solvents, in occupations ranging from steel mills to hospitals demonstrate that skin

exposure is a problem! SO THE ANSWER OBVIOUSLY IS SIMPLY PPE!
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Wrong, O learnedone! Permeationratesthroughgloves andprotectiveclothingcanbeso
rapid,suchthatwith occlusion,absorptioncanevenbeenhanced.What isreallyneededis
assessmentof the effectivenessof PPE. Theneedfor this isvery evidentin the semiconductor
industry.

Slide:Semiconductorindustry

Obviouslythis is not awork environmentinwhichair exposureswork routineoperationsare
significant.Yet despitelow air exposures,excessspontaneousabortionshavebeenobserved.
Thefocushasbeenon theglycolethersusedin thephotoresistprocess.Re-useof glovesandthe
effectsof othersolventsgreatlyreducedthebreakthroughtimesfor mostglovesusedin this
industry.

Thusit seemsobviousthat it is essentialthattheeffectiveness,( or theapplicability)of PPEbe
verified. In thisarea,I amproudto saythat OSHAhasacted:

Slide: Revisionsto thePPEStandard

Thelanguageof thisstandardstronglysuggeststhat theemployermustmakesome
determinationsregardingthepotential for skin exposure and also some determinations that the
selected PPE is effective.

Slide: What means should be used to assess the effectiveness of PPE?

IS THIS SOME "PIE IN THE SKY" IDEA?

Maybe, not. In fact OSHA is drafting several "building block" standards which may have an

impact on how skin exposure is assessed in the future:

Slide: Safety and Health and Exposure Assessment Standards

SAFETY AND HEALTH PROGRAM STANDARD

This standard will require that employer develop their own safety and health program. The

emphasis (or burden depending upon your perspective) will be on the employer to provide a safe

and healthful worker. This is a shift away from the current emphasis on complying with OSHA
standards.

EXPOSURE ASSESSMENT STANDARD
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Theintentof this standard is to specify for the employer methods to assess worker exposures.

Hopefully, the emphasis will be exposure assessment methods which truly characterize worker

exposure, rather than simply focusing on air exposures.

Items being considered in this standard:

Skin exposure

Biological Monitoring

Slide: What can we expect?

WHAT CAN WE EXPECT? or at least: WI-IAT CAN WE HOPE FOR?

A future in which OSHA shifts beirig a policeman (albeit one you was rarely present because of

the limited numbers of compliance officers) ...

To a future in which responsibility ties with the employer. OSHA's role may very well be one of

an auditor, rather than an enforcer in this new OSHA.

SO WHAT DO WE DO ABOUT IT?

The we includes concerned occupational health specialist and industrial hygienist from both the

private_and the public sector.

Provide testimony/input on several key pieces of proposed OSHA legislation.
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ABSTRACT

Although advanced aerospace materials and advanced composites provide

outstanding performance, they also present several unique post-mishap
environmental, safety, and health concerns. The purpose of this paper is to

provide information on some of the unique hazards and concerns associated
with these materials when damaged by fire, explosion, or high-energy
impact. Additionally, recommended procedures and precautions are
addressed as they pertain to all phases of a composite aircraft mishap
response, including fire-fighting, investigation, recovery, clean-up, and
material disposal. Due to the infinite variability of mishap scenarios, the
guidelines are general in nature and not application-specific. The goal of
this project is to provide factual and realistic information which can be
used to develop consistent and effective procedures and policies to
minimize the potential environmental, safety, and health impacts of a
composite aircraft mishap response effort.

DEFINITIONS

Composite: A physical combination of two or more materials.

Examples: Fiberglass (Glass/Epoxy, Glass/Polyester)
Advanced Composite: A Composite Material made with high strength/high
stiffness reinforcement (i.e. fibers) in a matrix (i.e. resin).

Examples: Graphite/Epoxy, Kevlar/Epoxy, Quartz/Cyanate Ester,

Boron/Epoxy
Advanced Aerospace Material: A highly specialized material fulfilling
unique aerospace construction, environment or performance requirements.

Examples: Radar Absorbent Material (RAM), Beryllium, Depleted
Uranium

Advanced Composites are distinguished from traditional Composites by
their increased relative performance, cost, complexity, and mishap hazard

potential. It is absolutely essential that a clear distinction be made between
Advanced Composites and Advanced Aerospace Materials.
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SCOPE

This 'report will focus on the hazards and risks associated with exposure to
a significant release of damaged Advanced Composite/Aerospace Material.
Specific emphasis is placed upon carbon/graphite reinforcement and

polymer matrix (thermoplastic and thermoset) advanced composites. Other
specific advanced aerospace material issues, including beryllium, Radar
Absorbent Material (RAM), and depleted uranium, are lightly addressed.

INTRODUCTION

Advanced composite materials are pressing the envelope of technology by

providing design flexibility and superior performance advantages for both
military and civilian aerospace vehicles. Distinguished by high-strength,
high-stiffness, low weight, and corrosion resistance, these materials are
responsible for significant gains in speed, range, payload, agility,
efficiency, and low observability. Not only are advanced composites being
used on almost every major new aerospace vehicle, including the B-2
Stealth bomber, F-22 Advanced Tactical Fighter, Delta Clipper launch

vehicle, and Boeing 777, but they are also used as repairs and modifications

on existing systems as well.

Applications have steadily progressed from early minor control surface
applications to recent use in secondary and primary structure. However,
the inherent diversity of advanced composites/aerospace materials,

underscored by the varied chemical mixtures, constituent materials,

processing methods, application environments, and mishap scenarios, has
limited our understanding of these materials in a mishap event. In the past,

a sharply focused emphasis upon performance has been the driver behind
technological advancements in materials and applications that have outpaced
our ability to fully understand and support them. Society is no longer
willing to accept the benefits of technology without careful observation of
the human and environmental effects, both on a short- and long-term scale.

Tremendous liability, skyrocketing health and disability costs, increased
environmental responsibility, and loss potential concerns in this area make

risk control absolutely essential.

In their cured or final form, advanced materials/composites are generally

considered safe, inert, and biologically benign; however, when damaged by

fire, explosion, and/or high-energy impact in a mishap, these materials can
present envirom'nental, safety, and health hazards that need to be dealt with

appropriately. The material hazards are dependent upon the type, amount,
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damage extent, and mishap scenario. In all cases, concentrations drive the
level of risk.

BACKGROUND

The relative "infancy" of advanced composite materials combined with the
lack of detailed mishap information have contributed to the current level of
understanding and often times, misunderstanding, of composite mishaps.
Early aircraft fire and crash studies on advanced composites such as the
Air Force CORKER program (1975) and HAVE NAME program
(JTCG/HN 1 May 81) have incorrectly led to several fallacies conceming
mishap hazards, including:

•Release of material will cause widespread electrical blackout.
•Dispersed composite material is biologically malignant and should be
treated like asbestos.

•Large concentrations of particulates can be carried very long distances
downwind in the smoke plume.

•Fractured composites are all deadly razor sharp
•Extreme protection is always required

In fact, these claims have proven to be over-reactive or inaccurate by new

research and experience. Although on-going research has often been
inconclusive, evidence shows that bumed or exploded advanced composites
DO cause personnel health and safety problems IF they are not properly
protected. Although generally conflicting in nature or narrowly focused,
all of the health studies recommend caution and state that unknown health

hazards do exist. It should be emphasized that advanced composites are
comprised of a complex mixture of materials whose composition,
concentration, and toxicity may be unknown, especially in a synergistic
mishap environment. For this reason, a high degree of precaution with
conservative protection is recommended until the hazard exposures can be
characterized for an "optimal" response.

DISCUSSION

A hazard is defined as "a condition or changing set of circumstances that

presents a potential for injury, illness, or property damage." Likewise, it
can be described as "the potential or inherent characteristics of an activity,

condition, or circumstance which can produce adverse or harmful
consequences." In this light, the hazards associated with mishap damaged
advanced composites/aerospace materials need to be addressed with a risk
control mindset. Essentially, risk control is the process of minimizing
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accidental and other extraordinary losses by anticipating and preventing

unplanned events. It emphasizes the complexities of exposures and
encompasses broad areas of risk, which are indicative of a mishap scene.
Additionally, risk control is based on the control of exposures through
knowledge and preparation. It is both a pre- and post-loss effort. With
this fundamental basis intact, the specific hazards can be addressed and

minimized.

Damage to advanced composites materials caused by fire, explosion, and/or

high-energy impact in a mishap presents unique environmental, safety, and
health hazards. In typical aircraft fires of 1000 to 2000°C, organic matrix
materials, or polymers, burn off around 400°C, creating toxic combustion

or pyrolysis products and liberating the reinforcement, or fibers.
Depending on the fiber, the reinforcement dynamics can vary. Glass or
aramid fibers tend to melt under extreme heat, whereas carbon or graphite

fibers are oxidized by the heat, thereby altering their size, shape, porosity,
and other characteristics. The intense themaal and mechanical forces in a

mishap generally cause "explosive" fracture or debonding and degradation
of advanced composite structures. While absorbing this energy, the
reinforcement, usually stiff and strong, may be broken into particulate

fibers, turned to dust, or protruding from the vehicle structure. Because
of their stiffness, carbon fibers can readily penetrate the skin. Boron

fibers can penetrate bone. Furthermore, the absorbed and adsorbed

pyrolysis and combustion products (assumed toxic) on activated, oxidized
fibers can be an important injection or inhalation hazard. These types of

wounds readily inject the toxins into the body. This phenomenon could be
especially critical in mishap scenarios where bloodborne pathogens may be

present on damaged debris. In all cases, the type, amount, and extent of
damage to advanced composites drive the level of health hazard because

concentrations are key.

Coupled with tleat, shock, and fragmentation, several different types of
damage occur. The effects can range from a simple reduction in strength
on one end of the spectrum, to a loss of Low Observable (LO)

performance, delamination, debonding, charring, melting, burning, and
vaporization at the other extreme. Although advnanced
composite/aerospace materials represent only one of the many hazards
associated with an aerospace mishap (fuel, weapons, metals), they do merit
increased awareness because of their hazard potential and persistence.

Exposures to the potentially harmful vapors, gases, composite particulates,
and airborne fibers generated in a composite mishap need to be controlled
because of the symbiotic effect of the dispersion forces and complex
chemical mixtures.
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Exposure routes for the safety and health hazards of damaged advanced
composites/aerospace materials include absorption (contact), inhalation,
injection, and ingestion. The toxicology of respirable particulates (3-5
microns) and the disease-producing potential associated with them is a
function of: 1) the dose or amount of particulates in the lung; 2) the
physical dimensions of deposited particulates; and 3) the particulate
durability (lifetime) in the lung. Fire-exposed carbon fibers tend to break
into shorter lengths and split into smaller diameters, thereby affecting the
aspect ratio. In tum, this increases the probability for respiration and ease
of transport. Dry and windy conditions at a mishap site increase dispersion
of liberated particulates. Whether inhaled or injected, advanced composites
(because of their stiffness) are not easily removed or expelled efficiently.
This is especially true for brittle, oxidized fibers. Potential health and
environmental effects from damaged advanced composites include dermal
and respiratory problems, toxic products, contamination, and, in the case
of advanced aerospace materials, radiation. Exposure of unprotected
personnel may lead to acute or chronic respiratory and dermal problems.
Mechanical injection or cuts are the most common skin hazard, although
sensitization (local and systemic) can occur. Off-gassing, toxic products in
the smoke plume, smoldering debris, and airborne fire-damaged
particulates are the primary respiratory hazards. Examples of combustion
products include: Hydrogen cyanide, sulfur and silicon dioxide,
formaldehyde, hydrogen fluoride, ammonia, hydrochloric acid, hydrogen
sulfide, isocyanates, halogenated compounds and aromatics.

Mishaps involving advanced composites that are electrically conductive (i.e.
graphite or carbon fiber) may present electrical shorting or arcing
problems if very high concentrations exist (usually at the immediate mishap
site only). This may result in electrical equipment degradation or failure,
including communication interference, although this is rare. Tests have
shown that widespread electrical failure due to environmental release and
plume dissipation is highly unlikely, except for the immediate mishap site.
Despite the low probability of failure, the risk is always present. Carbon
fibers are also influenced by the presence of electrostatic fields, causing
them to settle in high voltage areas and reduce the local dielectric
properties of free air. This may cause equipment malfunction or failure.

Given the existing and projected increases in advanced composites usage
for aerospace applications, realistic policies and procedures that focus on

minimizing the safety and health hazards of advanced materials are needed.
As the knowledge base grows and the mishaps are characterized, the
procedures can be situationally optimized in terms of cost and performance
while still maintaining a safe public environment.
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Based upon the basic hazards already know to exist, and the fact that there
are still unknown risks, personnel safety and health precautions are

necessary. Administrative controls, including adequate personal protective
equipment (PPE) and worker safety practices need to be immediately
implemented because the field environment is no___.!tconducive to engineering
controls. Risk control biased towards conservative measures is essential.

The major issues currently
advanced composites are:
1.

affecting mishap response for damaged

Fiber dispersion and re-dispersion
- Including an understanding of the mishap dynamics, effective
response procedures and holddown material (fixant) suitability

2. Synergistic material and combustion effects
- The combined effects of varied materials and their damage extent

3. Concentrations and compatibility
- Exposure limits and necessary protection measures, also includes
equipment, procedural, and suppression agent compatibility issues

4. Adsorbed arid absorbed pyrolysis products
- The impact and extent of the toxin hazard

5. Site and equipment contamination
- Including the type and extent of contamination

6. Clean-up and disposal complications (Haz-Mat)
- Evaluate decontamination methods and determine proper disposal

methods and classifications of the waste debris

7. Peripheral Issues (Bloodbome Pathogens)
- The potential for multiple injections of Hepatitis B and HIV caused

by infect,'d remains on damaged advanced composites
These issues are compounded by non-existent or inconsistent material,
medical, fire/combustion, environmental, disposal, and operational
information. The solution lies in continued research, testing, and the

application of experience to provide a knowledge base from which

operational guidance may be based.

Because aircraft crashes occur under a diverse assortment of weather and

terrain conditiGns, with widely varying degrees of airframe destruction, a

universally applicable set of risk control precautions is not practical. The
complex and often times unknown hazards, diverse locations, and infinite
variables of a mishap involving advanced composites require conservative

protective measures. This includes all phases of a mishap response ranging
from first response and firefighting, to investigation, clean-up, recovery,

and disposal. A complete "Cradle-to-Grave" mentality must be adopted.
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Firefighters (first responders) are considered the primary response group
and are subjected to the greatest material hazards; however, they are the
best protected in all but the most extreme cases with Self Contained
Breathing Apparatus (SCBA) and their bunker or proximity suits.
Protection should be worn until the composite fires have been completely
extinguished, cooled to a temperature of 300°F (149°C), and no intense
smoldering exists. The potential exposure to composite mishap hazards
may be more severe for secondary exposure groups, including all of the
subsequent response operations, than for initial fire fighting activities

because of the duration of exposure and reduced levels of protection. In
any case. the hazards exposures are minimal if Personal Protective
Equipment (PPE) and proper procedures are used, including:

Advanced Composite Mishap Response PPE Guidelines
A. Burning or Smoldering Composites

1. Self Contained Breathing Apparatus (SCBA)
2. Full protective clothing (NFPA 1971/76)

3. Do NOT use rubber gloves
B. Broken or Splintered Composites (Post-Fire or Explosion)

1. Full-face respirator w/dual cartridge filters: High
Efficiency Particulate Air(HEPA) and organic dust/mist

2. Coated, hooded Tyvek disposable suit with booties
3. Leather work gloves (outer)

4. Nitrile rubber gloves (inner) [No surgical gloves]
5. Hard-soled work boots (Steel toe/shank are best)

C. Peripheral Area Composite Exposure
1. Long-sleeve work clothing
2. HEPA filtered respirator
3. Adequate eye protection (Goggles, or safety glasses)
4. Leather work gloves (outer)
5. Nitrile rubber gloves (inner)
6. Hard-soled work boots (Steel toe/shank are best)

All affected personnel need to know both the hazards and the proper
response for mishap risk control. This makes coordination and
communication among all groups absolutely essential. Likewise,
knowledge and training, accompanied by common sense and good
judgment, is key. In order to maximize response effectiveness and
minimize hazard exposures, risk control must be exercised using the most
current and factual information obtained from all sources, including the
military, government, private, industry, academic, and international
sectors. This must then be universally applied in operational guidance and
constantly updated to reflect revised knowledge.
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MISHAP RISK CONTROL GUIDELINES

The following guidelines are recommended:

1. First Responder(s) [Firefighters] shall conduct an initial survey for:
a. Signs of fire damaged composites
b. Presence of loose/airborne fibers and particulate

c. Prevailing weather conditions/wind direction
d. Degree of site exposed to fire/impact/explosions
e. Local/proximal equipment/asset damage and hazards

f. Exposed personnel

2. Establish control at site.

3. Evacuate areas in the immediate vicinity of the mishap site affected by
direct and dense fallout from the fire/explosion generated smoke plume,

along with easily mobile and critical equipment. Alter/move aircraft and
flight operations exposed to the immediate fallout area. Restrict all

unprotected personnel from assembling downwind of the site.

4. Extinguish fire and cool composites to below 300 ° F (149 ° C). ONLY
fire fighters equipped with self-contained breathing apparatus (SCBA) are
authorized in the immediate vicinity of a burning/smoldering mishap site
until the fire chief declares the area fire safe. If possible, care should be

taken to avoid high-pressure water break-up and dispersal of composite
materials.

5. No ground or flight operations are to be permitted within 500 feet above

ground level (AGL) of the site and 1,000 feet horizontally.

6. Cordon off the mishap site and establish a single entry/exit point. Only

sufficiently protected individuals are authorized in the immediate mishap
site and peripheral area (contamination reduction zone). The peripheral
area is designated in a coordinated effort by the fire chief and bio-
environmental zngineer and/or the on-scene commander. As a guide, the
peripheral area should be defined as more than 25 feet away from damaged
composite parts, although it may vary depending upon environmental
conditions (rain, dry, high winds, remote site, etc.).

7. If personnel other than those at the accident site have been directly and
significantly exposed to material and smoke hazards, the medical staff will
be consulted for evaluation and tracking. Advise the otherwise

unthreatened populace in affected or fallout areas of precautions.
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8. Access to the crash site to conduct a more thorough survey will be
coordinated with the Incident Commander (IC).

a. Identify specific aircraft hazards by inspection and consulting with
crew chiefs or weapons system manager, reference documents, contractor,
or aircraft specialists. Indicate composites and other hazardous materials
to response personnel.

b. Minimize airbome particulates/fibers by avoiding excessive
disturbance of the dust by walking, working, or moving materials at the
crash site to minimize airbome particulate fibers and dust.

9. Entry/exit from the Entry Control Point (ECP) will be monitored. The
following guidelines apply:

a When exiting the crash site, personnel should use High Efficiency
Particulate Air (HEPA) filtered vacuums, if available, to remove advanced

composite contaminates from their outer clothing, work gloves boots,
headgear, and equipment. If unavailable, efforts must be made to wipe or
brush off as much contamination as possible.

b. Clean sites (i.e., tent or trailer) for donning/removal of PPE

should be set up as practical.

c. No eating, drinking, or smoking is permitted within the
contamination reduction or exclusion zone of the crash site, or as other

wise determined by the on-scene commander. Personnel must be advised
to wash hands, forearms, and face prior to eating, drinking or smoking.

d. Wrap and seal contaminated protective clothing and dispose of
properly.

e. Personnel should shower (in cool water) prior to going off-duty to

preclude injury from loose fibers. Portable showers may need to be
provided for this.

f. When practical, remove contaminated outer garments of
victims/response personnel at the scene to protect the medical staff. Advise
the local medical staff of any ill effects believed to be related to exposure
to the advanced composite materials. All contaminated footwear should be
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cleaned to limit the spread of debris in the area and inside support vehicle.

Symptoms of effects include, but are not limited to:
(1) Respiratory tract irritation and reduced respiratory capacity
(2) Eye irritation
(3) Skin irritation, sensitization, rashes or infections

Material safety data sheet (MSDS) information should be made available to
qualified personnel. Security restrictions may require additional control
measures during emergencies.

CONTAINMENT

10. Secure burned/mobile composite fragments and loose ash/particulate
residue with:

a. Plastic

b. Firefighting agent
c. Fixant material
d. Tent

Carefully wrap the coated parts and/or material with plastic sheet/film or
place in a plastic bag that is minimum of 0.006 inches (6 mils) thick.
Generic garbage bags are generally inadequate unless several are used as

plies.

NOTE: Fire fighting equipment should be available during fixant/stripper

application, aircraft break-up and recovery.

CAUTION: Fire must be completely out and the composites cooled to

below 300 ° F (149 ° C).

11. Consult specific aircraft authority and the investigators before applying
fixant. Safety concerns may override any delayed application. Two types
of fixants are used: one for burned composites and debris, and the other
for land surfaces. Fixant is usually not needed for open terrain and

improved surfaces (concrete or asphalt) unless high concentrations exist.

a. Obtain a fixant or "hold-down" solution, such as Polyacrylic acid

(PAA) or acrylic floor wax and water. Light oil is not recommended
because it may become an aerosol and collect on equipment, hamper
material investigations, and present a health hazard. Generic acrylic floor
wax, available at a wide variety of stores, should be mixed in a 10:1 water

to wax ratio, although this may vary.
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b. Apply (preferably spray) a heavy coating of the fixant solution to
all burned composite materials and to areas containing scattered/settled
composite debris. Completely coat the material until wet to ensure the

particulate fiber/dust is immobilized. Allow the coating to dry.

NOTE: Strippability of the fixant coating is required where coatings are
applied to debris that must later undergo microscopic analysis by incident

investigators. Care must be exercised in the use of the stripping solutions
since they can react with some materials and the process of stripping may
damage the parts. PAA may be removed by a dilute solution of household
ammonia (about 1% by volume of ammonium hydroxide in water) or
trisodium phosphate (approximately one 8 ounce cup trisodium phosphate
per 2 gallons of water).

12. If deemed necessary, agricultural soil tackifiers may be used to hold
materials on sand or soil. Most solutions can be sprayed onto the ground at
a rate of 0.5 gal/sq, yd.

13. Improved hard surfaces (i.e. concrete, asphalt) should be vacuumed
(with an electrically protected vacuum). The effluent should be collected
via plastic or burlap coated trenches or drainage ditches. Sweeping
operations should be avoided as they disseminates the particulate debris.

14. Immediately flush/clean fixate-application equipment with a dilute

solvent to avoid clogging.

15. Pad all sharp projections from damaged composite parts to prevent
accidental injuries.

NOTE: The entire impact or accident site must be diked to prevent run off
of AFFF fire fighting agent (to avoid additional clean-up and fines).

16. Fire fighting vehicles and equipment must be decontaminated at the
accident site by washing with water or use of vacuums.

CLEAN-UP AND DISPOSAL CONCERNS

17. Conduct material disposal according to local, state, federal, and
international guidelines. The nearest DoD, government, or private

environmental management office should be contacted for relevant disposal
procedures for the advanced composite parts/materials which do not
require accident investigation evaluation, repair, or are not needed.
Ensure the parts are released before disposal is authorized.
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18. Place hazardous waste material in containers and disposed of

appropriately as hazardous waste. If possible, a HEPA vacuum should be
used to clean-up the local area. All crash debris, vacuum bags, coverall,
gloves, and any other contaminated materials should be properly disposed
and labeled appropriately with the following: "Composite Waste. Do Not
Incinerate. Do Not Sell For Scrap. Composite Waste".

19. For open terrain mishap areas, the appropriate soil and surface

restoration will be completed.

20. If aircraft were subjected to the smoke and debris of the immediately
affected area, the following should be undertaken:

a. Vacuum the air intakes with an electrically protected vacuum
cleaner.

b. For internally ingested smoke, visually and electronically inspect
all compartments for debris and vacuum thoroughly.
c. Prior to flying, perform electrical checks and engine run-up.

21. For significantly affected structures and equipment:

a. Thoroughly clean all antenna insulators, exposed transfer
bushings, circuit breakers, etc. Inspect air intakes and outlets for signs of
smoke or debris and decontaminate, if necessary.

22. Continue to monitor affected personnel, equipment, and mishap site.

CONCLUSIONS

Advanced composites/aerospace materials are the driving force behind the
materials enhancements in speed, range, payload, and performance of the
worlds most techfiologically advanced aerospace vehicles. Yet, when

damaged by fire, explosion, or high-energy impact, these materials pose
unique environmental, safety, and health hazards in all phases of a mishap
response. As the usage of these materials steadily increases and the
application mediums proliferate, it is absolutely essential to know,
understand, and respond appropriately to the hazards they present. The
variability in weather, terrain, location, type, amount, and damage extent
of mishaps make universal risk control protection and procedures essential.
The bottom line is to protect people, property, and the environment with a
realistic and optimal mishap response. Knowledge and training are the
fundamental cornerstones of employing realistic, although conservative,

personal protection and procedures. Risk Control is THE solution.
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Sampling and Analytical Methods
for Aromatic Amines
(MDA Replacements)

James C. Peterson

Pacific Toxicology Laboratories

1545 Pontius Ave.

Los Angeles, CA 90025

Tools for Monitoring Exposure

Air monitoring

• Exposure by
inhalation
route

Surface
monitoring

• Dermal
exposure

Biological
monitoring

• Exposure by
all routes

-Inhalation

-Dermal

-Ingestion
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Major Urine Metabolites
of Aromatic Amines

Benzidine

MOCA

MDA

TDA

Hydroxy-, mono- and diacetyl-
benzidine (+ N- glucuronides)

(+ N-glucuronide)

mono-acetyl MDA (+ N-glucuronide)

mono- and diacetyl TDA

Comparison of Aromatic Amine
Structures
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Air Monitoring

• Indicates level of potential exposure by
inhalation

• Does not monitor exposure by other
routes

• Currently no proposed airborne limit (TLV
or PEL) for DETDA

• Currently no NIOSH analytical method for
DETDA (Ethyl Corp. has method)

Comparison of Silica Gel Sorbent Tubes
with Acid-Treated Fiber Filters

DETDA in Air (Personal Samples)
7O

60

50

<

_ 3o
a

20

10

= Silica Gel ppb

Acid Treated

filter ppb

SAMPLE IDENTIFICATION
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Surface Monitoring
Wipe Testing

• Use to identify potential sources of dermal
exposure

• Tests the effectiveness of decontamination
procedures

• Can be used to test the effectiveness of
personal protective gear

• Spot tests are non-specific. All primary amines
will respond to some degree

• Lab analysis necessary for identification

• Does not necessarily correlate with actual
exposure

Biological Monitoring

• All routes of exposure are monitored

• Level of physical activity is reflected in the
measurement

• Tests the effectiveness of personal
protective equipment

• Assumptions are made to set exposure
limits
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Biological Monitoring
Single ring aromatic primary amines

DETDA, TDA, PPD
Collection

End of shift urine

Handling/storage

No preservatives

Freeze

Shipment

Overnight delivery

Analysis of Aromatic Amines
in Urine

• Base hydrolysis-converts metabolites
back to parent compound

• Solvent extraction- high solvent to urine
ratio

• Derivatize amine with heptafluorobutyryl
chloride

• Analyze by GC/MS in the negative
chemical ionization mode
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Fire Hazard Considerations for

Composites in Vehicle Design

Rex B. Gordon, P.E.

N95- 23032

ABSTRACT

Military ground vehicles fires are a significant cause of system loss, equipment

damage, and crew injury in both combat and non-combat situations. During combat,
the abi:ity to successfully fight an internal fire, without losing fighting and mobility
capabilities, is often the key to crew survival and mission success. In addition to

enemy hits incombat, vehicle fires are initiated by electrical system failures, fuel line
leaks, munitions mishaps and improper personnel actions. If not controlled, such fires

can spread to other areas of the vehicle, causing extensive damage and the potential
for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability,
flame spread and decomposition products) of polymerics located within internal
compartments of these vehicles play a major roll in determining rather a newly started
fire becomes a fizzle or a catastrophe.

This paper addresses a systems approach to assuring optimum vehicle fire safety

during the design phase of complex vehicle systems utilizing extensive uses of
composites, plastics and related materials. It provides practical means for defining the
potential fire hazard risks during a conceptual design phase, and criteria for the
selection of composite materials based on its fire safety characteristics.

THE FIRE SAFETY DILEMMA

Ground combat vehicle designers find many potential advantages in selecting
composites and other polymeric materials in place of traditional metals. These include
enhanced crew protection from external ballistic hits in addition to reduced weight and
manufacturing costs advantages. However, such usage may inadvertently create
additional fire safety related hazard risks which need to be properly managed during
the design process.

Today, most U.S..Army and Marine ground combat vehicles are equipped with
electronic infra-red (IR) hydrocarbon fuel fire detection and fuel-mist fireball explosion
suppression systems. During live-fire testing, these automatic fire suppression
systems (AFSS) have been able to detect a growing fuel mist fireball resulting from a
shaped charge penetration of a diesel fuel tank, and release pressurized Halon 1301
agent, in a manner that often suppresses the fireball in less than a quarter of a second
- quick enough to prevent serious burns on exposed skin of passengers and crew of
the vehicle. Although essential in crew protection from the penetrated fuel cell / fuel
mist fireball scenario, these AFSS units are not fully optimized for other, more frequent
fire scenarios such as accidental fuel line leakage in engine and crew heater
locations. In addition, when used to extinguish a fire, high concentrations of acid
gases are formed from the decomposition of the Halon agent. These vapors are very



irritating and toxic, and must be evacuated quickly, to provide survivable breathing air
for crew members and troops unable to quickly leave the vehicle.

Army Safety Center reports indicate that during the 10 year period 1974 -1984, some
213 non-combat tracked vehicle fires occurred, resulting in 2 fatal and 30 serious

injuries. The material losses were estimated at 12.7 million (1984 dollars) Army safety
investigators have indicated that these reported accidents represented perhaps only a
fourth or less of the actual (i.e. reported and unreported) fire incidents occurring in the
field. Sampling of the accident data base subsequent to the 1984 report indicates that
the frequency and cost impact of these non-combat fires are increasing as more
sophisticated and expensive vehicles are entering the inventory. A non-combat
vehicle fire incident occurring in South West Asia, involving multiple parked vehicles,
accounted for equipment damage which was estimated to be some 4 to 5 times that
reported during the entire ten year period of 1974-1984. From the data reviewed, non-
combat fire continue to constitute a significant safety concern, in fielded tracked
vehicles.

In the opinion of this author, the proper utilization of the systems engineering approach
in the area of an integrated passive and active fire safety is the most cost effective
approach for improving fire safety in new or modified ground combat vehicles. It is
suggested that this goal should receive a higher priority for development funding in
this time of ever reduced combat vehicle resources. Vehicles which are able to avoid
severe damage due to onboard fires, for their entire military life, are available for
essential unit training to engage in critical combat when called upon. It is generally
agreed that crews that have confidence in the safety features of their vehicles typically
perform better in hazardous situations. Trained troop and crews are valuable combat
assets which must be protected from accidental injury where ever feasible.

In view of these factors, it would be expected that combat vehicle developers would
have an increased interest to improve fire safety through inherent design (passive)
and in the research and development of improved AFSS that do not relay on the use
of environmentally harmful Halon, a chemical which has been ordered to be phased
out of use by DoD policy. Unfortunately, Army activities having primary technical
expertise in this area have been limited in effectiveness due to shortage of funding
earmarked for this area. The limited research conducted in the passive fire safety area
have not been initiated under a long range systematic plan, but primarily to address a
limited specific one time issue for a specific project.. Consequently, there is only very
limited data available for formulating detailed design oriented fire safety criteria which
can be provided to the designer, even if such action were to be given priority by the

system developer.

Traditionally, ground combat vehicle designs have emphasized mobility, offensive
firepower, hit avoidance and armor protection, rather than behind armor / fire safety
characteristics, during conceptual design phases. This weighting in system design
priorities is consistent with the typical overall mission objectives as defined by the
using activity when a new or improved weapon system is being developed. Although
safety and crew survivability is often given a high weighting in a list of desirable
objectives that the design is to provide, there are usually limited "hard" requirements
that accompany this general statement of desirability. Thus, in practice, design
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development teams often find they must compromise on the "softer" safety related

design requirements (i.e. minimize hazards to crew) in order to satisfy the more readily
quantifiable hard requirements (i.e. speed, range, time on target, etc.)

What then are ways to resolve this dilemma? The author suggests that a more
focused attention to the systems engineering aspects in this area is the best solution.
Certain new vehicle development activities have incorporated such efforts as an
integrated aspect of those analyses and technical trade-offs typically occurring as part
of the design process. This approach involve system oriented fire risk assessments for
defining effective design approaches, material selection criteria and effective fire
safety requirements for integrated passive and active of fire safety for new and
modified vehicles In its more effective implementation, this approach includes: (1) the
conceptual layout of the various vehicle compartments so that ammunition, liquid fuel
tanks and lines are separated from crew areas, (2) selection of the optimum fire
detection / suppression system for each compartment, based on the significant fire
scenarios applicable for al I life cycle phases, and (3) the selection of materials to be
incorporated into the vehicle design with fire safety considerations a paramount
consideration.

The remainder of this paper will be primarily oriented toward this last noted systems
engineering fire safety approach, i.e. the proper selection of fire safe, non-metallic
materials in vehicle design activities.

COMPOSITES, PLASTICS AND VEHICLE FIRE SAFETY

Traditional fuel sources for vehicle fires include heated fuel and hydraulic fluids,

electrical motors and wiring, on-board munitions, personal gear and other stored
combustibles. As their application increases, polymers will become a significant
addition to this listing of potential fire related fuel sources. Plastic components and

composite material systems, comprised of high strength fibers in organic resin
matrices are finding increasing acceptance as viable solutions to demands for
improved battlefield performance. Vehicle development efforts are now focusing on

hulls and turrets made primarily of composites. Such vehicles can provide significant
weight savings, as well as improved ballistic protection, reduced radar signature, and
other desirable survivability characteristics.

Given sufficient oxygen and heat input, most organic polymers will burn more readily
than metal Since full avoidance of fire risk concerns is not feasible, intelligent
trade-offs between safety, utility, and costs are necessary during the material selection
process of the design phase of a project.. It is primarily when polymers are applied in
an enclosed environment, where the increased fuel loading is provided in a small
inhabited spaces, does the fire safety issue become acute. In addition to ground
combat vehicles, such acute fire safety concerns exist in certain buildings, submarines,
manned space craft, ships, rapid transit vehicles, and aircraft. Lessons learned from

bad experiences and successful design approaches in these other acute fire safety
buildings and systems should be utilized be those assigned fire safety responsibility in
the developmental phases of a new or modified ground combat vehicles - if potential
fire safety risks to be cost effectively controlled.
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As previously noted, the most effective approach to fire safety during vehicle design to
address this issue in a total systems (i.e. an integrated passive and active fire safety
approach) rather than as separate, unrelated elements. The selection of a non-
metallic material needs to suitably consider the fire safety aspects of the material, but
this consideration needs to influenced by the size, shape location and adjacent
ignition potentials of the compartment in which it is to be used in the vehicle.

FIRE SAFETY CONSIDERATIONS IN MATERIAL SELECTION. =

When addressing the fire safety concerns presented from the introduction of a new
polymer into a vehicle or component design, the typical approach taken by material
experts (and / or Military Specifications) is to specify one or more standard laboratory
flammability test method to be performed on a designated sample of the candidate
material. It is obviously less expensive and quicker to specify and conduct sample
size testing, rather than conduct a full scale vehicle fire testing. The fire safety concern
is related to the appropriateness of this type testing to actual hazard reduction during
vehicle operations when human lives are at risk.

Most standard flammability test methods involve repeatable, small scale material
sample testing in a laboratory apparatus designed to reduce potential environmental
variables. A typical flammability test involves preparing a strip of material sample in a
prescribed orientation (horizontal, vertical or at an angle), placing a controlled heat
source at one end for a specified time and noting the burn length, duration, and
melting characteristics of the sample. In some test methods, (i.e. the UL 94 series) the
accept reject criteria is included, but in most ASTM test methods this is an open issue,
which must be specified by some one for the specific application.

Although repeatable and fairly inexpensive, there is a serious shortcoming of these
types of test methods. They are not able to fully predict or describe with certainty the
burning characteristics of plastics products under actual fire conditions in the vehicle
The size, location, ratio of exposed surface, and relation to adjacent fuels and fire
threats are systems issues that need to be addressed during the material selection
process.. A key factors in this area is the energy feedback issue. In the combustion
of a polymeric material, the thermal energy feedback from any adjacent fire or other
high temperature source can result in pyrolysis of the material surface to provide a
continuing supply of gaseous fuel to the flame.

Ambient temperature sample testing may not adequately address this thermal
feedback risk issue. In actual fire scenarios, the rate of burning is directly related to
the magnitude of this energy feedback and the intensity of combustion. In the typical
small scale test method (such as the UL 94 series), most of the energy of combustion
is dissipated in the rising convective plume and through radiation to the cool
surroundings. In a real fire, on the other hand, energy exchange between adjacent
fuel surfaces and radiation from the heated surroundings greatly increases the
energy feedback and the intensity of combustion.
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Another concern in evaluating small scale flammability testing results is the
interrelated safety issue of the decomposition products. These issues include reduced
visibility due to smoke (hamper safe vehicle operations and exiting hazard area) and
the health hazard issues. There are many references in the fire safety literature that
relate these combustion product risk factors as the leading cause of injury and
fatalities in fires involving polymerics

To overcome this inherent shortcoming, activities concerned with establishing
specific fire safety material criteria for a given application are tending toward testing
methods that provide a radiant flux input, combined with combustion product

evaluations. Another key factor is the utilization of full scale fire scenario testing
results to better evaluate the effectiveness of the small scale acceptance criteria
selection criteria.

A revision to the Federal Aviation Administration (FAA) air worthiness standards for
materials used in aircraft interiors (14 CFR 25.853) provides a good illustration in an
application somewhat related to fire safety issues associated with ground combat
vehicles. In this example, the selection of an improved flammability test method was
made from correlation studies of data from candidate material testing and full scale
fire testing. Studies of actual aircraft fire incidents indicated that a post crash landing
fuel fire located external to an opening in the aircraft passenger cabin provided the
most likely severe fire accident scenario.

Full scale testing of alternate composite interior surface materials (partitions,
sidewalls, stowage bins) was conducted in a C-133 wide body crew compartment
converted for fire testing use. A large fuel fire was initiated external to the cabin and
cameras monitored that reaction of the composite test panels. It was found that the
different composite materials presented significant differences in both delay times to
flash-over and toxic gas levels. This was not as evident from the normal laboratory
burn rate testing results.

Experimentation showed that the best correlation between actual full scale fire testing
findings and laboratory testing methods was through use of a modified version of the
Ohio State Univ. (OSU) rate of heat release apparatus used in ASTM E 906, Test
Method for Heat and Visible Smoke Release Rates for Materials and Products. This is

basically a flow through device that measures the heat release rate produced as a
function of time by a material subjected to a preset level of radiant heat flux. A

significant lessons learned in this activity was the desirability of utilizing results of even
limited the full scale testing, when selecting sample testing methods and pass-fail
criteria..
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FIRE SAFETY PRINCIPLES IN MATERIAL SELECTION

To help satisfy client requests for fire safety guidelines in the selection of polymeric
material being considered for application into combat vehicles, the author has
formulated the following basic principles in this specific area of concern:

.

.

.

.

The complex interactions between real life vehicle fire scenarios, the specific

application of a given material, and fire safety characteristics of the vehicle design
dictate that material selection criteria in this area cannot be treated solely in a

cookbook manor, but rather by professional prescription, based on systems
oriented hazard risk analyses. The common design engineering practice of

noting some mil spec reference on the drawing, - in anticipation that it will
provide adequate flammability criteria requirements, without further analysis,
should not be allowed by program management.

Fire safety criteria must carefully address the necessary balance between
essential performance characteristics (i.e. mechanical loads, durability, etc.)
producibility, and flammability. This balance needs to consider the potential
product liability risks inherent with the design process (primarily assumed by a
private contractor preparing the design) and combat mission requirements of the
military customer. Resolution of the often severe conflicts occurring between
these two concerns, should involve representative of all parties involved with
clear documentation on the technical (not just cost) rationale used.

Fire safety criteria formulated for use in material selection during design must be
based, to the degree feasible, on the best possible estimate of the most severe
credible fire accident scenarios applicable for both combat and non-combat
situations. This evaluation is to consider (and influence where possible) all

aspects of both the active as well as passive fire hazard reduction provisions of
the vehicle system, The material selection criteria thus established should
include suitable rationale as to how the criteria is oriented to minimizing the

specific risks identified in the worst case fire accident scenario assessments.

To reduce the costs associated with performing the fire safety assessments,

selected generic material selection criteria should be defined which differentiate
between low, mid and high hazard risk applications. The low risk applications can
use less extensive small scale tests than the high risk applications. For each type

of vehicle system, some standard categories material selection criteria can be
established to expedite the design process One example of this "category by
hazard risk of the material application in the system" approach is as follows:

132



Low Risk Applications - The polymeric material, when assembled into the
vehicle, will have no exposed surface which will be

a. located in any occupied compartment with a total surface area over 5 cm 2 ,
or

b° subject to thermal flux environment (from maintenance process, equipment,
combat threat, or accidental mishap ) which could heat surface to over 500
degrees F., or

C. used to cover electrical wires subject to carrying <30 volts, or otherwise
presents more than a low fire safety risk due to some unusual application
consideration...

Moderate Risk Applications - The polymeric material, when assembled into
the vehicle, will have no exposed surface which will be:

a. located in any occupied compartment with a total surface area over 500 cm2,
or,

b. subject to a thermal flux environment (from maintenance process, equipment,
combat threat, or accidental mishap ) which could heat surface to over 1000
degrees F., or

C" used to cover electrical wires subject to carrying <140 volts, or otherwise more
than a moderate fire safety risk due to some unusual application
consideration..

High Risk Application -The polymeric material, when assembled into the
vehicle, will present potential fire risks which exceed those defined as low or
moderate, or has significant uncertain fire risk considerations which preclude
proper assessment without further research and testing..

5. To date, the only end product use oriented material selection fire safety criteria
directly applicable to ground combat vehicles is found in MIL-STD-1180(AT)
"Safety Standards for Military Ground Vehicles" dated July 1976. This references
Federal Motor Vehicle Safety Standard (FMVSS) No. 302. "Flammability of
Interior Materials". This was issued by the DOT in 1975 to provide a minimum
standard for interior materials used in passenger vehicles. It was based on a
scenario in which a seat cover fire was initiated by a dropped cigarette, and all
passengers exit the vehicle within a minute or less. The test will pass a material
sample strip, which when held horizontal in a holder, and contacted with a flame
at one end, burns no more than 4 inches a minute. It is suggested that this criteria
be considered only as an initial screening test requirement, and for low risk
applications.
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FIRE SAFETY TESTING GUIDELINES AND CRITERIA

With a suitable risk category system established, it is then feasible to define some
basic material testing procedures and evaluation guidelines for each risk category.

Using the example risk categories noted above the following is one proposed
approach:

. Material testing for fire safety acceptance, are to be performed in accordance with
an established fire safety plan, that considers the findings of a vehicle oriented
fire risk assessment. Screening test results for selection of polymeric materials
shall be evaluated based on fire safety risk categories and how close the

samples used for the testing are representative of the actual polymeric item when
assembled in the vehicle:

. Other than for low risk applications, materials being considered for use inside

the crew compartment are to be evaluated, using existing data, for potential of
toxic gas generation upon combustion in worst-case operating scenarios
environments. To the extent feasible, materials should be selected which have

the least potential health hazard characteristics, using ASTM E-800 as a guide.
Where a trade-off between alternate material candidates is involved, weighting

should be given to ignition and low flame spread, over smoke and toxic gas
characteristics. This weighting approach is based on the fact that since most all
plastics release some smoke and toxic decomposition products, the bast way to
control these hazards is to reduce the potential for the material to ignite and burn.

. Material samples or coupons used for fire safety testing should be as
representative as feasible of the end use configuration. This includes any surface
finishes, thickness, bonding to other materials, configuration orientations, etc. The

test plan (as noted above) should always define the detailed description and
source of all needed test specimen samples. Where feasible, the manufactured

components should be utilized as the source of test samples, rather than a

vendor supplied specimen.

. The following fire safety testing and evaluation criteria developed by the author
for a client company's use in this area is summarized below to serve as an
example format. The values selected for the accept criteria were adapted from
Federal Transit Administration's "Recommended Fire Safety Practices for Transit

Bus and Van Materials Selection",. (This document provides one of the most

directly related, government agency published fire safety selection criteria, to
combat vehicle applications):
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FIRE RISK CATEGORY TEST METHOD ACCEPT CRITERIA

LOW FMVSS 302 PASS

UL94 OR ASTM 635 V-1 OR EQUIVALENT

MODERATE ASTM E-2863

ASTM E-662

LOI .21 AT 25° C

<200 DS (100 sec)
<400 Ds (240 sec)

ASTM E-162 <35 FLAME SPREAD INDEX

HIGH ASTM E-2863

ASTM E-662

UL 746A (IF MATERIAL IS
USED AS ELECTRICAL
WIRE / COMPONENT
PROTECTION)

LOI .>27 AT 25° C

<100 DS (100 sec)
<200 Ds (240 sec)

PARA 24,25,42, OR 43
AS APPLICABLE

5. The above criteria is an interim guide - developed for use when an immediate
design decision is needed. It is recommended that those in the military and
industry having fire safety responsibilities for combat vehicle development
continue to evaluate the material selection criteria issue through a formal joint
DoD / Industry working committee. This committee should be the focal point for
summarizing lessons-learned information from existing fire accident reports, and
establishing requirements for additional full scale testing in the combat vehicle
area to provide better benchmarks for validating any proposed laboratory level
sample test accept / reject criteria points. This committee should also have
provisions for establishing a database of fire safety testing results by material
formulation, so that this information can be used by other making similar material
selection trade-offs. In time the data collected from both full scale and laboratory
scale testing of polymeric materials being considered for combat vehicle usage
could organized in a systematic manor, which would lead to a more standardized
and universally applied testing criteria established within the combat vehicle
development community - than now exists..
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Potential Errors in

Respirable Fiber Measurements of Dusts

from Composite Manufacturing

Edmund A. Merriman

Product Steward,

DuPont Advanced Fibers Systems

Joseph F. Viskocil
Certified Industrial Hygienist

DuPont Haskell Laboratory for
Toxicology and Industrial Medicine

Introduction

• Need Validated Measure of Airborne Respirable Fibers in
Composite Plants

• Composite Dusts Have Few Fibers, Much Particulate

• Size, Shape, Conductivity, Density of
Non Asbestos Fibers Vary

• Regulators Question Use of Asbestos Methods

• Aim: Validate NIOSH 7400 for Para-Aramids

• Surveying Para-Aramid Fibril Exposures in
Composite Workplaces

• Significant for Composite Dust Research
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Overview

• Introduction

• Standard Fiber Counting Method- NIOSH 7400

• Valid for Studying Composite Dusts?

• Sources of Errors

• Potential Magnitude of Errors

• Significance for Composite Workplace Surveys

• Continuing Studies

NiOSH 7400

• Designed for Asbestos- Straight, Dense,

Rod-Like Fibers

• Draw 2 Liters/Min Workplace Air Through

25mm Diameter Filter

• Filter Segment Mounted on Slide, Cleared to

Show Particles

• Respirable Sized Fibers Counted Microscopically for

Airborne Fiber Concentration

• Statistically Designed, But Highly Variable (Cv = 40%)
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Validity of NIOSH 7400 for Para-Aramids

• Lower Density (1.45 vs. 2.6g/cc)

• Complex Shape- Branched, Ribbon-Like, Curled

• Electrostatically Negative, Easily Charged

• More Likely to Agglomerate

Potential Sources of Air Sampling Error

• Cassette Cowls Could Contribute Non-Aramid Fibrils

-Known to Contain Fibrils of Countable Size

-Would Give Positive Bias- Measurements Too High

• Cassette Cowls Could Capture Incoming Fibrils

- Higher Fiber Charge and Shape Might
Favor Adhesion

-Would Give Negative Bias-
Measurements Too Low

• Laboratory Tests Designed to Measure
Potential for Both
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Cowl Study Test Method

I New25ramCassette"] I

I i Remove Filter and Analyze I

Iwashcowll I
i I Filter Rinsate and Analyze Filter !

IUItrasonically Clean Cowll--- !

I I Filter Rinsate and Analyze Filter I

I Reassemble Cassette with New Filter and Twice Washed Cowl I

lAir sample with Reassembled Cassette I

I
IWashCowq

I Remove Filter and Analyze I

I Filter Rinsate and Analyze Filter !

From 1st Wash

Cowl Rinsing Test Results

(Fibers Per Field)

Cassettes A

avg/med

Cassettes B

avg/med

Cassettes C

avg/med

1.80 1.30 0.80

0.36 0.90 0.17

From 2nd Wash

(After Ultrasonic)

2.15 3.61 1.14

1.23 1.70 0.39

Conclusion" • Ultrasonic Rinsing Needed to Clean Cowls

• Levels Equivalent to >1 Fiber/cc in a 1-hr Test

(10 Cassettes Per Set)
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Percent of Sampled Fibrils Caught by Cowl

Ranked by Total Fibrils

% Fibrils Filter % Fibrils Filter
on Cowl f/cc on Cowl f/cc

315 0.005 84 0.095
4975 0.005 7 0.374
3932 0.005 16 0.309
2546 0.005 13 0.779

219 0.006 7 0.831
883 0.015 28 0.609

91 0.058 11 0.769
13 0.170 4 6.030

Conclusion: Fibrils Trapped on Cowl More Significant at Lower
Airborn Fibril Concentration

Average Respirable Fiber Counts from
Fabricating Para-Aramid Composites

Composites Fabrication

Operations

Personal Area Samples
f/cc f/cc P A

Prepreg Cutting & Laying Up 0.02
Molding 0.01

Trimming, Drilling 0.03

Sandblasting 0.02
Reworking 0.02

Waterjet Cutting 0.03

Maximum (Between Work and Hood) 0.25
Field Blanks

m 20
0.01 11 2
0.01 33 13
0.01 4 3

0.02 5 3

1.88 1 2

0.007 97 Samples

Conclusion: Para-Aramid Fibril Exposures Well Below 2 f/cc Limit
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Significance of Errors for
Workplace Monitoring

• Cowl Contributions Can Be Significant at Low Fiber Counts

- For Research on Fiber Dust, Cowls Must Be Washed

- Field Blanks Indicate Few of Many Cowl Fibers Reach Filter

• Cowl-Captured P-Aramid Fibrils Significant Only at Low Levels

-Insignificant Near DuPont Acceptable Exposure Limit (>2 f/cc)

- Could Slightly Alter Levels Typical of Composite Shops

• No Apparent Effect of Humidity, Though Expected

• NIOSH 7400, Method B Remains Acceptable Monitoring Method

Research Program Continuation

• Examine for Size Bias in Captured Fibrils

• Measure Aerodynamic Diameter of Kevlar _ Fibrils

-Use for Inhalation Deposition Modeling

• Characterize Fibrils and Dust from Composite Operations

(with AIA/SACMA ?)
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ABSTRACT

The feasibility of biologically degrading prepreg wastes was studied.

The work was conducted with the intention of obtaining baseline

data that would facilitate the achievement of two long-range goals.

Those goals are; 1) the biological remediation of the hazardous

components in the prepreg wastes, and 2) providing the potential for

recycling the prepreg waste fibers. The experiments examined a

prepreg that employs an bismaleimide resin system. Initial results

demonstrated an obvious deterioration of the prepreg material when
incubated with several bacterial strains. The most active cultures

were identified as a mixture of Bacillus cereus, and Pseudomonas

Gas chromatographic analyses of the total organic components from

the prepreg material revealed seven primary compounds in the resin

mixture. Biotransformation studies, using the complete prepreg

material, demonstrated an obvious loss of all seven organic

compounds. Gas chromatography-mass spectrometry analyses

resulted in structure assignments for the two primary components of

the resin. Both were analogs of Bisphenol A; one being bismaleimide,

the other being Bisphenol A containing a diglycidyl moiety. The

"diglycidyl analog" was purified using thin-layer chromatography

and the biotransformation of this compound (at 27 ug/ml bacterial

culture) was monitored. After a seven-day incubation,

approximately 40 % of the organic compound was biotransformed.

These results demonstrate the biotransformation of the prepreg resin

and indicate that biological remediation of prepreg wastes is feasible.
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INTRODUCTION

Disposal of industrial wastes is an issue that encompasses both
environmental and economic concerns. The traditional means of
disposal by land filling wastes is becoming more restricted due to the
limitation of reasonable landfill sites and the potential for release or
leaching of toxic materials from the burial sites. Alternate protocols
for waste disposal, such as incineration, have also come under
scrutiny, and the expense associated with incineration has increased
substantially. Modern waste disposal problems require solutions
that address not only the environmental concerns, but also provide
answers that are economically viable.

Microbial remediation systems represent a potential means for
reducing and/or eliminating the hazard associated with a variety of
industrial wastes and accidental spills. Notable applications of such
bioremediation systems are aimed at hydrocarbon and halogenated
organic wastes (1-9); however inorganics have also been targeted (2).
With the anticipation of tighter restrictions on waste disposal,
microbes that can remediate wastes hold great promise. An
attractive aspect of the microbial systems is the ability to manipulate
metabolic capabilities of bacterial cultures. These techniques include
forced selection and genetic manipulations using modern molecular
biology. Collectively, these laboratory procedures present the
possibility of developing a variety of microbial processes or products
to address given waste problems (2,9-11). Development of a
microbial system targeted to a particular waste stream and
installation of the processes at the waste generation site increases
the potential value of such remediation systems.

The primary aim of the work described in this communication
was to determine the feasibility of developing a microbial system for
biologically degrading the resins used in composite materials. The
investigations targeted an uncured bismaleimide prepreg material.
The work was guided by the long-range goal of developing a
microbial remediation system for the prepreg wastes produced
during molding and manufacturing processes. The results presented
in this communication demonstrate that biotransformation of organic
components in a prepreg resin mixture can be accomplished.
Furthermore, the results suggest that biologically degrading the
resins may render the fiberous materials reusable.
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METHODS AND MATERIALS

Solvents and Materials. All solvents were "reagent" or

"HPLC" grade and were purchased from Mallinckrodt (Paris, KY) or

EM Science (Gibbonstown, NJ). Thin-layer chromatography (TLC)

plates (silica gel G) were supplied by Analtech (Wilmington, DE).

Medium for bacterial culture was purchased from Difco (Detroit, MI).

Bismaleimide (4,4'-Bis(maleimidodiphenyl)methane; CAS # 1376-54-

5) was purchased from Lancaster Synthesis, Eastgate, England. The

prepreg material is a bismaleimide resin-graphite composite

manufactured by BASF/Narmco, and was supplied as an uncured

prepreg sheet. The prepreg material was stored at -20 ° C prior to

use.

Prepreg Extractions The prepreg material was routinely

extracted using 2 ml water and 2 ml ethyl acetate in an 8 ml glass

vial (teflon-lined caps) with vigorous mixing on a vortex mixer (60

sec). The vials were centrifuged to break phases and the upper

organic layer was removed and saved. The remaining prepreg

material and the aqueous phase were re-extracted with a second 2

ml of ethyl acetate. The two ethyl acetate extracts were pooled and

the solvent was evaporated at room temperature. For tests designed

to evaluate the extraction system, the residual prepreg material left

after the first two ethyl acetate extractions was extracted a third

time. This third extraction was achieved by adding 2 ml of methanol

and 2 ml of chloroform to complete the aqueous vs. organic

extraction described by Bligh and Dyer (12).

Bacterial Culture and Identification. The prepreg

materials were placed into 500 ml flasks containing TGY media (5.0

g/L Tryptone, 2.5 g/L Yeast Extract, 1.0 g/L Dextrose, pH 7.2) with

various cultures of organisms. The cultures were incubated at room

temperature (25°C) with constant shaking (-200 rpm). After visual

inspection for apparent changes in the prepreg materials, portions of
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active cultures (100 _tl) were plated on TGY agar (1.5% agar) plates

and incubated at room temperature, 30° C, or 37° C. Unique colony
types were restreaked on TGY plates until the pure bacterial strains

were isolated. The strains were then characterized by standard
biochemical procedures (13,14). These tests included, Gram reaction,

oxidase reaction, motility, flagellar staining, and carbohydrate
utilization as described in the "Results".

Leaching Experiments. Experiments designed to investigate
the leaching characteristics of the prepreg material were performed
using 2.5 g of the prepreg (in -1 cm2 pieces) in 250 ml of water (500

ml flasks) shaken at -200 rpm. At various time points, small aliquots
of the aqueous portion of the mixtures were removed and extracted

with ethyl acetate as described above. The organic extracts were

evaporated to dryness and the residue was analyzed using
quantitative gas chromatography (described below).

Analyses of Prepreg Components. The ethyl acetate

extractable material was concentrated by evaporating the solvent

and the dried residue was resuspended in known volumes of either

ethyl acetate or chloroform. For thin-layer chromatographic (TLC)

resolution of the ethyl acetate-extractable materials, a solvent

system of hexane/chloroform/ethyl acetate/acetic acid (30/10/5/5;

v/v/v/v) (TLC System 1) was used. Subsequent recovery of the

resolved compounds permitted recovery of "TLC fractions". This

TLC-fractionation was achieved by scraping specific areas of the

silica gel off of the plate, eluting the compounds from the silica gel

with chloroform or chloroform/methanol (1/1; v/v), and evaporating

the solvent. Exposure to iodine vapor or acid charring (15,16) was

used for visualization of resolved compounds on the TLC plates.

TLC with a solvent system of hexane/chloroform/ethyl

acetate/acetic acid (30/5/1/1; v/v/v/v) (TLC System 2) was used to

purify a component of the resin mixture. In this system GC Peak 4

(see Figure 2 for GC peak number assignments) migrates to an Rf of

-0.65 and is well resolved from other components of the resin
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mixture. The resolved Peak 4 band was scraped from the TLC plate,

and eluted from the silica gel using chloroform. The chloroform was

evaporated at room temperature and the residue was used for

further analyses. Subsequent GC analysis (see below) of the purified

Peak 4 component showed the purity was > 96 %.

Gas chromatography (GC) analyses used a Hewlett Packard

5890 gas chromatograph fitted with a HP-1 (methyl silicone gum;

Hewlett Packard) capillary column (5 m; x 0.53 mm x 2.65 um film

thickness) and fitted to a flame ionization detector. Resin

components were routinely resolved using a temperature program

of: 150 ° C for 2 min, then increasing the oven temperature at a rate

of 15 ° C/min to 295 ° C. Quantative analyses were performed using a

"solvent flush" injection technique that routinely provided peak area

sample means (n=3) with standard deviations that were less that 2.5

% of the mean. Gas chromatography-mass spectrometry analyses

were performed with a Hewlett Packard 5890 GC interfaced to a

model 5971 mass selective detector. Compounds were resolved on a

DB-5 capillary column (Hewlett Packard; 30 m; x 0.23 mm). All

spectra were collected at 70 eV.

RESULTS

Initial Characterization and Extraction of the Prepreg

Material. Initial tests, using 1 cm 2 sections of the prepreg material

in 8 ml glass vials, were conducted to examine the behavior of the

prepreg resins in various organic solvents. These tests showed that

the prepreg material readily released materials to ethyl acetate,

chloroform and methylene chloride. When exposed to these solvents,

the prepreg materials "melt" leaving a disorganized lump of fibers in

the vial. Less polar solvents, such as hexane, showed a reduced

ability to pull materials out of the prepreg. When dry, the ethyl

acetate-extracted resin was a viscous, amber colored material.
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Tests studying the capability of ethyl acetate to provide

quantitative extractions were performed using comparisons of the
residues collected with the usual protocol of two repeated extractions

vs. the usual extraction protocol that was followed by extraction with

a different organic vs aqueous extraction system described by Bligh

and Dyer (12). The resin material collected after the usual protocol

vs. the thrice extracted material were evaluated, using quantitative

GC of Peak 4 (see Figure 2 below for GC Peak assignments). These
analyses indicated that 95.3 +5.7 % (n = 3) of the recovered material

was collected with the routine protocol that employed two ethyl

acetate extractions. Subsequent testing examined the ability of the

ethyl acetate to extract the prepreg resin from a bioreactor mixture.

These tests employed 2 ml of bacterial culture (OD595 > 1.0) and

approximately 132 mg of the prepreg material (in 8 ml vials; n=4).

Extraction of prepreg only "controls", as well as prepreg+bacteria

"test cases" was followed by quantitative GC analyses. These tests

showed that >96 % of the resin collected from the control samples

was collected from the prepreg+bacteria samples. Further analyses,

using purified Peak 4 (see Figure 2 for peak numbering), showed

that the extraction protocol provided a quantitative recovery of the

purified Peak 4 component from concentrated bacterial pellets.

When comparing the ug Peak 4 recovered vs. ug Peak 4/vial, the

results revealed a quantitative extraction when using 100-25 ug

Peak 4/vial (Peak 4 plus water "control"; y = 0.032+0.022x; r 2 =

0.992; Peak 4 plus water plus bacteria "test case"; y = 0.087+0.021x;

r 2 = 0.996; recoveries were all > 95 % of control). Additional

examinations, using gravimetric analyses, found that the ethyl

acetate-extractable materials represented 28.7 + 2.8 % (n = 4) of the

total prepreg mass. These results demonstrate that the ethyl acetate

extraction can provide a quantitative recovery of the resin in the

presence of bacteria, and that the extractable resin represents

approximately 28 % of the prepreg mass.

Initial Exposure of Prepreg to Bioreactor Conditions.

Experiments to examine the possibility of microbial transformation

were conducted using 500 ml flasks containing approximately 250 g
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of the prepreg material (2.5 cm x 2.5 cm squares) and various

proprietary bacterial cultures. Abiotic cultures ("negative controls"),
were employed to monitor the the possibilty of breakdown due

solely to mechanical agitation. After shaking at room temperature

for approximately 2 weeks, the prepreg material placed in several of
the microbial cultures showed obvious signs of degradation. This

visible degradation was characterized by an "unraveling" on the

fibrous components that gave the previously smooth-surfaced

prepreg sample a frayed appearance. After 55 days of exposure to
the bacterial activity in one of the initial bioreactors, the composite

fibers exsited as a jumbled lump from which the fiberous materials

could be easily pulled apart.

A sample of the frayed prepreg fibers was removed from the

55-day bioreactor, rinsed 3 times in water, dried, and weighed. A
mass of the parent prepreg material, similar to that of the frayed

biodegraded prepreg material, was also collected. Each of the "equal

mass" samples were extracted with ethyl acetate. The ethyl acetate-
extractable material from both the "parent" and "biodegraded"

samples were air dried and resuspended in ethyl acetate. The
volume of ethyl acetate was manipulated to achieve equivalent

concentrations of prepreg material/ml of solvent based on the dry

weight of the prepreg samples used in the extractions. Equal
volumes of the ethyl acetate extracts were spotted on a TLC plate

and resolved (TLC System 1). Figure 1 illustrates the resulting

chromatogram and demonstrates obvious loss of organic materials

from the prepreg material collected from the bioreactor. Subsequent

GC analysis of the same samples also showed a dramatic loss of
materials in the prepreg sample exposed to the bacterial activity

(Figure 2). The major peaks of the gas chromatogram were
"numbered", according to relative retention times, as illustrated in

Figure 2. Collectively, these TLC and GC investigations indicate a loss
of organics from the biologically treated prepreg material. The

results also suggest that a component of the resin mixture, observed
as Peak 4 in the gas chromatogram and at -Rf of 0.65 on TLC, is more

resistant to degradation than are the other resin compounds.
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Characterization of Bacterial Cultures. Bacterial growth, as

assayed by turbidity and microscopic observation, was observed

after several days incubation in the cultures containing the prepreg

materials. In an attempt to ensure recovery and identify all the

organisms contained in the original cultures, several different media

bases (agar solidified medias) were used for isolation of the

organisms. Two different colony types were consistantly isolated

from the cultures, and these isolates were tested for substrate

utilization. The results of theses tests are listed in Table 1, and

indicate that one of the isolates was Bacillus cereus and that the

other was a Pseudomonus sp.
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Leaching of Prepreg Resin Components. In an attempt to

ascertain the disposition of the resisn components, experiments

investigated the solubility of the prepreg resin components when

subjected to an aqueous environment. These experiments revealed

that many components of the resin mixture could leach out of the

prepreg when exposed to an aqueous environment. Figure 3

presents the GC data obtained from the leaching experiments, and

clearly shows that certain resin components are readily soluble in

water. The data also demonstrate that specific components

apparently leach at different rates relative to other resin

components. Under the conditions used, leaching of GC peaks 1, 2, 4,

and 7 are obvious (Figure 3). Only insignificant levels or trace levels

of the other components were found in the leachate (data not

shown). The data show an obvious release of components to the

water after only 60 rain in the aqueous environment (Figure 3). The

leaching of Peaks 1 and 4 increased throughout the time period

monitored by the experiment. Peaks 2 and 7 leached for

approximately 10-24 hrs. However, after the 24 hr time point, the

levels of Peaks 2 and 7 decreased. This result suggests that, over

time, Peaks 2 and 7 degrade in the aqueous environment. The levels

of Peak 4 remained relatively constant from the 24 hr time point for

up to 14 days. The results showing that the levels of Peaks 1 and 4

increased over the time course of the experiment (Figure 3) indicate

that these components are stable in water.

Because of the results that indicated biotransformation as well

as leaching of materials from the prepreg samples, we examined the

ability of the bacteria to "sequester" the leached resin components.

Using a theoretical bioreactor environment, these experiments

examined samples from a bioreactor (approximately 20 days) that

were centrifuged to provide a bacterial pellet as well as an aqueous

portion of the sample. The bacterial pellets were washed twice with

water and each of the pellet and the aqueous samples were

extracted with ethyl acetate. Subsequent GC analyses of those ethyl

acetate extracts showed that approximately 50 % of the recovered

resin material (primarily GC Peak 4) was found associated with the
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bacterial pellet. The remainder was found in the aqueous
supernatant. These results indicate that a substantial portion of the

leached resin material is closely associated with the bacterial cells,

and also suggests that this solubolized portion of the resin material
exists as a "cell associated substrate".

Collectively, the results thus far indicate that the resin

components can leach into water, that certain resin components are

labile in water while others are relatively stable, that the leached
components can be closely associated with bacterial cells, and that

exposure to bacterial action results in a loss of the parent resin

components. At this point it is reasonable to suspect that the loss of

the labile components from the bioreactor samples may be due to the
inherent instability of those components. However, the more stable

compounds (GC Peaks 1 and 4) may be lost from the bioreactor

mixture as a result of the biotransformation/biodegradation

activities of the culture.

Characterization of Prepreg Resin Components. TLC

fractionation of the resin mixture provided five crude fractions

defined by Rf as follows: Fraction A, Rf= 0.0-0.12; Fraction B,

Rf = 0.12-0.25; Fraction C, Rf = 0.25-0.55; Fraction D, Rf = 0.55-0.75

and Fraction E Rf = 0.75-front. Subsequent GC of each of the TLC

fractions revealed chromatographic behaviors listed in Table 2.

These findings indicated that the two primary components observed

in the gas chromatograms (Peaks 4 and 7) possessed very different

"polarities" as defined by the specific TLC system used to resolve the

components.

To elucidate the structures of the resin components, the ethyl

acetate-extractable material was subjected to GC-MS analyses. This

work provided data that permitted structure assignments for the two

predominant components of the parent resin material (GC Peaks 4

and 7). Based on the GC-MS data, resin components were assigned

structures as follows: Peak 4; Benzene, 1,1'-(methylethylidiene)bis[4-
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(2-propenyloxy)-; and Peak 7; 4,4'-Bis(maleimidoiphenyl)methane.

The mass spectral data and the supporting chromatographic
information that define and corroborate the structure assignments

are presented in Table 2.

Given the structure assignments derived from the GC-MS data,

the mass of the resin represented by the gas chromatograms of

Peaks 4 (weighed after bulk purification by TLC) and 7 (from a

commercial source) was calculated from quantitative GC analyses.

These tests found the following GC detector responses: Peak 4 = 2.5
x l0 6 integration units/ug; -26 % of the mass of the parent resin

mixture; -7.5 % of the total mass of the parent prepreg, and Peak 7 =
1.1 xl06 integration units/ug; -29 % of the mass of the total parent

resin; -8.4 % of the total mass of the prepreg material.

The initial degradation studies and the subsequent

chromatography and structure elucidation indicate that, of the resin

components, GC Peak 4, (Benzene, 1,1'-(methylethylidiene)bis[4-(2-

propenyloxy)-), is the most recalcitrant to the biotransformation

activities. Therefore, with the intention of testing the most

"resistant" of the potential resin substrates, Peak 4 was purified

using preparative TLC (TLC System 2), and then used as a substrate

in subsequent biotransformation studies. The purified peak 4 was

weighed, resuspended in chloroform, aliquots were added to 8 ml

vials, and the solvent was evaporated. A mixed culture of Bacillus

and Pseudomonus (333 ug dry weight/ml) was added to the vial to

give a total volume of 2 ml and a Peak 4 concentration of 27 ug/ml.

The vials were incubated at room temperature for 7 days. After the

7 day test period, the entire sample was extracted with ethyl acetate.

The solvent was evaporated and the quantity of Peak 4 in the

residue was assessed using GC. Figure 4 illustrates the findings of

this experiment and provides comparisons with "time 0" and "sterile

aqueous" controls run in parallel. The results of this experiment

clearly show a 38 % loss of the Peak 4 component from the bioreactor

(27 ug vs. 16.7 ug; Figure 3), and thus demonstrate the

biotransformation of the Peak 4.
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DISCUSSION

The analytical data demonstrates that the prepreg resin

material is composed of a variety of components. The two most

prominent compounds were identified as Benzene, 1,1'-

(methylethylidiene)bis[4-(2-propenyloxy)-; (GC Peak 4) and 4,4'-

Bis(maleimidoiphenyl)methane (GC Peak 7). Collectively these two

compounds represent approximately 55 % of the total ethyl acetate

extractable material or approximately 15 % of the total mass of the

prepreg material.

The investigative studies revealed several characteristics of the

prepreg resin components. These include: 1) the resin components

can leach into water; 2) certain resin components are labile in water

while others are relatively stable, 3) the Benzene, 1,1'-

(methylethylidiene)bis[4-(2-propenyloxy)- (GC Peak 4) is apparently

the most resistant to biotransformation, and 4) the biotransformation

of the resin mixture as well as purified Benzene, 1,1'-

(methylethylidiene)bis[4-(2-propenyloxy)- is possible.

The Benzene, 1,1'-(methylethylidiene)bis[4-(2-propenyloxy)_

was identified based on the mass spectral characteristics. All

spectral aspects of this resin component, including fragment ion

pattern and isotope peaks are consistent with the structural

assignment given. Furthermore, the TLC and GC chromatographic

behavior is consistent with the assigned structure. However it

should be noted that the isometric configurations presented (Figure

3) are "likely" but that other isomers are possible. The spectra of

"minor peaks" in the ethyl acetate extract (GC Peaks 1, 3 and 5)

suggest the presence of such isomers. The identity of the 4,4'-

Bis(maleimidoiphenyl)methane was determined with GC-MS and TLC

of the resin material and was confirmed by comparisons with a

commercial standard.
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From the TLC (Figure 1) and the GC (Figure 2) studies, Benzene,

1,1'-(methylethylidiene)bis[4-(2-propenyloxy)- is the resin

component that is most resistant to biotransformation. However,
when purified and subjected to the activities of the proprietary
bacterial culture, the substrate was biologically transformed. Finding

a 38 % reduction in the Benzene, 1,1'-(methylethylidiene)bis[4-(2-

propenyloxy)- after a 7 day incubation indicated that even the most
resistant resin component could be biotransformed.

While not a primary objective of these initial studies,
observations of the biotransformed fibers were made at various

intervals. These observations suggested that the prepreg resins were

being removed from the composite fibers. In the original cultures
that showed potential for biotransformation (55 days in the

bioreactor; see Figures 1 and 2) the residual fibers appeared to be
free of the resin, the fibers were present in the bioreactors as lumps

of disorganized fiber, and the fiberous lumps could be dissociated
with minimal swirling in water and teasing. We have interpreted

these findings as an indication that, when exposed to the bioreactor
conditions, the resins can be removed from the prepreg fibers, and

that it may be possible to use a biotreatment process to clean the
resins from waste prepreg materials. Such a process could render
the fibers reusable. Definitive results showing the recycleability of

the fibers will require further work, and will quite likely depend on

the particular fiber and manufacturing processes.

Many investigations have been conducted with the intention of

using biodegradation processes to treat polymeric wastes. Although
researchers have generally found the development of microbial

remediation systems for treatment of industrial and natural

polymeric wastes to be a frustrating endeavor, there are some
encouraging results. Biodegradation of polymeric materials such as

specific plastics, cellulose and lignins have been studied, and under

various laboratory conditions, biodegredation has been reported (17-

19). In a previous study we have found evidence of a microbial

transformation of paint waste components (20). While this work did

156



not specifically document the degradation of the paint polymer, it did

indicate a microbial activity against specific, unidentified,

components in the paint mixture. These results are encouraging

when considering that they represent initial attempts to degrade a

recalcitrant polymeric material in complex mixtures, In addition, the

results have lead to conclusions that biotransformations have

occured.

An advantage of the strategies that target bioremedation of

prepreg waste materials is the possibility of working with the

unpolymerized resins, and thus avoiding subsequent treatment of

the polymeric matrix that is designed to resist microbial activity.

Toward this end it should also be noted that investigators are

working on the development of polymers that are more susceptible

to attack by microbial enzymes. These polymers are designed to

possess the desired physical properties, but also contain specific

biodegradable sites (19).

We are presently involved in studies to determine the optimal

reaction conditions for complete biodegradation of the prepreg resin

material. Concurrent investigations are studying the metabolic

pathways involved in the biotransformations. These studies will

include investigations of the relative toxicity of the resin components

in the bacterial culture, and will determine if the resins can be used

as a sole carbon source. Collectively, this work is expected to provide

the baseline data needed to build bioreactors that will remediate the

resin components of the prepreg materials, and will allow for the

routine burial of the waste prepregs and/or recovery of the fibrous

components.
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Figure Legends

Figure 1. Thin-layer Chromatography of Resin Recovered

from a Parent and Biotransformed Bismaleimide Prepreg.

Ethyl acetate extractable resin materials were resolved by thin-layer

chromatography using hexane/chloroform/ethyl acetate/acetic acid

(30/10/5/5; v/v/v/v). Equivalent masses of the "parent" and the

"biotransformed" (55 days in a bioreactor) prepreg samples were

extracted, the solvent was evaporated to dryness, the residue was

redissolved in 500 ul of ethyl acetate, and 10 ul were applied to each

lane. After resolution of the resin components, the solvent was

evaporated from the plate and the compounds visualized after

spraying with acid and charring.

Figure 2. Gas Chromatography of Resin recovered from a

Parent and Biotransformed Bismaleinide Prepreg. T h e

"parent" and "biotransformed" samples were the same samples used

for the chromatography in Figure 1. Chromatographic resolutions

were achieved on a methyl silicone gum capillary column (5 m; x

0.53 mmx 2.65 um film thickness) coupled to a flame ionization

detector. The temperature program was: 150 o C for 2 min, then

increase the temperature at a rate of 15 ° C/min to :295 ° C. The

chromatographic peaks of interest are numbered according to
relative retention times.

Figure 3. Leaching of Resin Components from a

Bismaleimide Prepreg. Leaching characteristics of the prepreg

material were determined using :2.5 g of the prepreg in 500 ml

flasks, containing 250 ml of water, that were shaken at -200 rpm. At

the given time points, aliquots of the aqueous portion of the mixtures

were removed and extracted with ethyl acetate. The organic extracts

were evaporated to dryness and the residues were analyzed with

quantitative gas chromatography.
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Figure 4. Biotransformation of Benzene, 1,1'-

(methylethylidiene)bis[4-(2propenyloxy)-. The substrate,

Benzene, 1,1'-(methylethylidiene)bis[4-(2propenyloxy)-,(27 ug/ml)

was incubated with a mixed bacterial culture (333 ug dry weight/ml)

at 25 ° C for 7 days. The entire culture was extracted and the level of

substrate was assessed by quantitative gas chromatography as

described under "Methods and Materials". Data points are the means

+ SD of triplicate determinations, t-Tests showed no statistical

difference between "time zero" and "negative control", however the

"time zero" and the "biotransformed" samples were statistically
different at P < 0.001.
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Table 1. Biochemical and Growth Analyses for Bacterial

Characterization.

Parameter Pseudomonas sp. Bacillus cereus

Colony

Morphology smooth, yellow

Gram Stain

Motility +

polar flagella

Cell

Morphology rods

An/Aerobic aerobe

Spores

Oxidase +

Catalase + +

Urease + +

Arginine

Dihydrolase - +

Gelatinase - +

Denitrification - I_D

Fluorescent Pigments + I_D

large, white

+

Utilization of:

Glucose + +

Lactose - -

Mannose + -

Arabinose + -

Xylose + -

Cellulose - -

Citrate + +

Maltose ND

rods

facultative

anaerobe

+

+ = growth and/or acid production, - = no growth or acid production
ND = not determined
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Hazardous Waste Determinations for Partially

Cured Prepreg Composite Materials

Roark Doubt, Boeing

Hazardous Waste Characterization of Partially-Cured Prepreg

Issues to be Addressed at Boeing Defense and Space Sites

• Free up limited hazardous waste landfill resources
Verify designation of waste stream

Reduce hazardous waste disposal costs at Puget Sound facilities

Investigate methods of reducing costs

Substitutes for materials that designate as Dangerous Waste

Treatment by generator for Dangerous Waste materials that cannot be substituted

Hazardous Waste Characterization of Partially-Cured Prepreg

Composite Waste at Puget Sound Defense and Space Group Sites

Boeing Waste Description Formulators Description Disposition of Waste Rel. Cost a

Uncured - frozen - on roll

Scrap due to time and temp
expiration or program
reduction

Partially-cured - exposed to
ambient
Scrap primarily hand trim

B Stage WSDW - conservative 19
disposition - send to
secured Landfill

B+ and C Stage Non hazardous - disposed 17
of conservatively in secured
landfill

Fully-cured -processed
through heat cycle

Cured Non-hazardous - disposed 1
in municipal landfill
(waiver required by County)

a Cost based on 1991 estimate, presented as multiple of disposal costs for fully-cured composite



HazardousWaste Characterization of Partially-Cured Prepreg

Waste Designation Background

RCRA Designation Criteria

D001 - Ignitability
D002 - Corrosivity
D003 - Reactivity
List for Toxicity

WDOE Designation - Same as above plus (173-303-100)

Toxicity
Book Designation
Bioassay

Persistence

Halogenated Hydrocarbon
Polycyclic Aromatic Hydrocarbons

Carcinogenicity
WAC List

Hazardous Waste Characterization of Partially-Cured Prepreg

Waste Designation Background (continued)

Washington State Toxicity Designation

Book designation
Available data
Constituents - MSDS
Toxicity - SAX

Equivalent Concentration determination (for mixtures)
EC(%)= X%+ A%/10+ B%/100+ C%/1000+
(where X,A,,B,C& D are Toxic Categories)

Chart (WAC 173-303-9906)

D%/10,000

Testing
Bioassay

- 100 ppm - EHW
- 1000 ppm - DW
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Dangerous Waste Regulations 173-303-9906

WAC 173-303-9906 Toxic dangerous waste mixtures graph.

WAC 173-303-9906 : Toxic Dan L,erous Waste Criteria Graph

100,000

10,000
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100

10
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Hazardous Waste Characterization of Partially-Cured Prepreg

Sample Conditions and Preparation

• Choose representative material from each category

• Representative of waste
at point of generation - 7 days (quazi-arbitrary)

• Preparation of sample
Eliminate potential physical affects to aquatic life, i.e. fibers, dust

Hazardous Waste Characterization of Partially-Cured Prepreg

Experimental Methods for Hazardous Waste Characterization Using Fish Bioassay

• Sample Preparation- rotary agitation method

-Sample placed in 1000 ml extraction vessel

-Add 200 ml of extraction water (solution) to the extractor bottle

-Mix on rotary agitation apparatus for six hours

-Rinse all loose material from the flask into test fish tank

and place bottle into tank so that it is laying on its side and filled with water

-Chemical criteria for test water must be met and water monitored throughout test

• Fish Selection

-Test Species: Rainbow Trout (Oncorhynchus mykis), all of the same age

-Water Temp in Tanks: 12° C _+1

-Fish Acclimation Required: 14 days on-site prior to testing
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Hazardous Waste Characterization of Partially-Cured Prepreg

Experimental Methods for Hazardous Waste Characterization
Using Fish Bioassay (continued)

Test Procedure

- 30 fish total per test, 10 fish per tank using 3 tanks

- 96 hour test, determine fish mortality at 24 hours intervals

- Positive and negative control tanks required

- EHW = > 10 deaths at 96 hr, at 100 mg/l, (>33.3% mortality)

- DW = > 11 deaths at 96 hr. at 1000 mg/I, (>37% mortality)

Hazardous Waste Characterization of Partially-Cured Prepreg

Results

• Fish mortality varied across prepreg samples

• Relatively wide range of test results

-DW testing ranged from 0 to 100 percent mortality
-EHW testing resulted in all 0 mortalities

• Increased mortality noted with elevated resin/fiber ratio
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Hazardous Waste Characterization of Partially-Cured Prepreg

Fish Bioassy Results for Epoxy-Based Composites

Sample # Fabric Curing Agent Test Results a
DW EHW

1. Film Adhesive Aromatic amine b F (100) c P (0)

(graphite/glass scrim)

Graphite P (10) NT

Graphite P (0) P (0)

.

3.

Aromatic amine

Aromatic amine b

4. Fiberglass

5. Nickel-coated

Graphite

6. Graphite

7. Fiberglass

NA (BF3) d P (30) c P (0)

Aromatic amine b P (0) NT

Aliphatic amine F (100) P (0)

NA (Antimony oxide) de P (0) NT

a Pass (P) or Fail (F) and percent mortality ( ) in test fish per WDOE 80-12 Test Procedure;
DW, Dangerous Waste; EHW, Extremely Hazardous Waste; NT, not tested

b Identical base resin system
c Retest resulted in identical results
d NA, information not available, specific additive noted ( )

e This system is 250 o F cure, all others are 350 ° F

Hazardous Waste Characterization of Partially-Cured Prepreg

Conclusions

Differences in potency of materials exisits within specific
types of resin systems and possibly among materials meeting
the same performance specifications

Contribution of pretest leacheate vs 96 hour test
leachaete to potency is not known

Relative conc. of resin in composite may be factor in potency
determinations

Based on results of bioassay test, estimation of potency
of new or untested materials based on resin or fiber system is not feasible
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Hazardous Waste Characterization of Partially-Cured Prepreg

Actions Taken

TSCA Reporting , Section 8 (e)

WDOE

Update generator notification

Notify factory and Environmental Services of changes in waste
management requirements

Segregation
Collection

Disposal

Hazardous Waste Characterization of Partially-Cured Prepreg

Future Research

Verify results consistent within matrix category

Determine cost of segregation

Methods of screening in coming materials

Test prior to production approval

Correlation of waste designation based on constituents
(preferred to extensive testing)
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Ronald E. AIIred and Richard M. Salas

Adherent Technologies
9621 Camino del Sol NE

Albuquerque, NM 87111

ABSTRACT

There are no well-developed technologies for recycling composite materials

other than grinding to produce fillers. New approaches are needed to reclaim

these valuable resources. Chemical or tertiary recycling, conversion of polymers

into low molecular weight hydrocarbons for reuse as chemicals or fuels, is

emerging as the most practical means for obtaining value from waste plastics

and composites. Adherent Technologies is exploring a low-temperature

catalytic process for recycling plastics and composites. Laboratory results show

that all types of plastics, thermosets as well as thermoplastics, can be converted

in high yields to valuable hydrocarbon products. This novel catalytic process

runs at 200°C, conversion times are rapid, the process is closed and, thus,

nonpollutmg, and no highly toxic gas or liquid products have been observed so

no negative environmental impact will result from its implementation. Tests on

reclamation of composite materials show that epoxy, imide, and engineering

thermoplastic matrices can be converted to low molecular weight hydrocarbons

leaving behind the reinforcing fibers for reuse as composite reinforcements in

secondary, lower-performance applications. Chemical recycling is also a means

to dispose of sensitive or classified organic materials without incineration and

provides a means to eliminate or reduce mixed hazardous wastes containing

organic materials.

INTRODUCTION

Fiber-reinforced composite materials offer high strength and stiffness, low

weight, corrosion and fatigue resistance, and tailorability of properties to the

structural designer. This unique combination of properties are used to increase

the performance profile of military and civilian aircraft and vehicles, and the

composite material content of these systems is increasing dramatically as each

new generation is introduced. Recent additions to the Air Force inventory, the

B-2, Fll7A, and F-22 (under development), are approaching the definition of

"all composite aircraft" [1]. Increasing composites use in military and space
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systems is expected to continue far into the next century [2,3] as is their use in

commercial applications such as aircraft, recreation, and infrastructure

components.

The vast majority of composites used today and projected for the future are

polymer based. Most of those composites use thermosetting (crosslinked)

polymers such as epoxies, phenolics, bismaleimides, polyesters, cyanate esters,

and polyimides. Engineering thermoplastic matrix composites are beginning to

be introduced and should see increased use in the future. Once a thermoset

part is cured, it cannot be changed. Production parts with delaminations, high

void content, or lack of dimensional control must be scrapped. Uncured or

prepreg materials are also scrapped in large quantities from cutting losses and

expiration of shelf life. There is currently no process available for recycling

these materials, so they are landiS]led with little regard for environmental

effects or considerations for reuse.

The majority of high-performance composites have been developed to be

temperature-resistant, stable structures. Their intractable nature makes them

even more difficult to recycle or reuse than commodity plastics because of their

cross-linked or thermally stable structures. Primary recycling (reuse in

equivalent performance applications) of these materials is certainly unlikely,

even with engineering thermoplastic-matrix composites. Thermoset-matrix

composites cannot be changed once molded to shape because of their cross-
linked chemical structure. Thermoplastic-matrix composites can be reformed;

however, the severe processing conditions and ply orientation control required

in high-performance applications make it unlikely that primary recycling will

be applicable to most of those materials.

Secondary recycling (reuse in lower performance applications) approaches can

be envisioned for both thermoset and thermoplastic composites. The majority of

work on composites recycling that has appeared in the literature is concerned

with grinding, chipping, or flaking the composite into suitable size to be used as

filler in new molded composite parts [4,5]. Usually, the composite is ground

into a fine powder with this approach. While that approach may be satisfactory

for automotive sheet molding compounds, which are mostly filler to begin with,

it will not provide the full value from the expensive fibers and resins used m

high performance composites that may be achievable using other recycling

processes. Other processes such as acid digestion or incineration in the case of

glass-reinforced composites could be used to reclaim the fibers from some

systems [6]. Those approaches generally appear impractical from an environ-

mental point of view. Acid digestion uses harsh chemicals and conditions and

creates a hydrocarbon/acid mixture that will require further processing.

Incineration (quaternary recycling) is an option for carbon- and aramid-

reinforced composites, but destroys what are valuable materials in the process

and can be a source of pollution.
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Chemical recycling [7,8] appears to be the most economical recycling method for

high performance composites. A chemical recycling process separates the

polymer from the valuable fibers as low molecular weight hydrocarbons. The

fibers may then be reused as molding compounds, and the hydrocarbons reused

as chemicals or fuels. Initial laboratory feasibility studies on chemical recycling

of a variety of common consumer plastics, composites, and other organic

materials show that this recycling process has the potential to economically

recycle all types of polymer matrix composite materials. Results from those

feasibility studies on composite materials are given in the following sections.

EXPERIMENTAL PROCEDURES

The composite chemical recycling studies were conducted in a prototype

continuous feed reactor shown schematically in Figure 1. Catalyst composition

and process parameters are proprietary and are not covered in this paper. Each

composite feedstock was converted using an identical set-up and amount of

catalyst. Gas samples were collected in gas sampling tubes.

Conversion products were analyzed using gas chromatography/mass

spectroscopy following the procedure specified in EPA Method 8270 for

semivolatile analysis. The conversion products were dissolved in methylene

chloride before introduction into the gas chromatograph. Elution peaks were

analyzed by mass spectroscopy and identified by matching with a library of"

50,000 compounds.

P P

T T

FeKIstock

J

T

.__...i.__.£

Auger Drive

Solid
Residues

Figure 1. Schematic Tertiary Plastics Recycling System

RESULTS AND DISCUSSION

Two types of epoxy matrix laminates were studied with the ]ow-temperature

catalytic conversion process. The first composite was a sample of boron-
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reinforced epoxy from an F-15 tail rudder. Samples from the tail rudder skin

were pried from the honeycomb core and most of the paint removed before the

conversion process. The F-15 boron/epoxy was converted in four minutes

leaving 56 weight percent of fiber and glass scrim cloth residue. Separate

weights were not obtained for the boron and glass. The epoxy appeared to be

completely removed from the composite laminates leaving behind only fibers.

The boron fibers were a loose unorganized mass. No evidence of epoxy could be

found upon microscopic examination of the fibers.

The chemical composition of the composite used in the F-15 empennage

structure has been published by the Air Force [9]. The composition and

chemical structures in the Boron/Avco 5505 (now Textron) are given in Figure

2. Major conversion products (>4%) from the F-15 boron/epoxy sample and

their chemical structures are given in Figure 3.

Analysis of Avco 5505

Composition Weight Percent

Boron Fibers 60.1

Fiberglass Scrim Cloth 4.1

Resin Matrix

Ciba ECN 1280

Ciba 0510

Digiycidyl Ether Bisphenol A

Dicyandiamide
Crosslinked Elastomer

70.0 It30.0

3.05.4

? •

35.8

I ] /o\/O \ o/CHz-- CH CH 2
o/CH2-- CH-- CH 2

CH3"-_ _ 4.1 CH2_-'1_

glycidyl ether of a cresol formaldehyde novolac
(CIBA ECN 1280)

O 0
/\ /\

H2C-CH-CH 2\ /CH 2-CH- CH 2
N

+
o /0\

\CH 2- CH-- CH 2

n, n-diglycidyl-p-aminophenylglycidyl eth

(ERL 0510, TGPAP)

Figure 2. Composition of Avco 5505Boron/Epoxy Used in F-15 Tail Rudder [9]
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Comparison of the major conversion products from the boron/epoxy F-15 rudder

(Figure 3) and the starting epoxide structure shown in Figure 2 shows that the

conversion process scissions the methylene and ether linkages to form valuable

low molecular weight hydrocarbons from what was an retractable cross-linked

epoxy. A high concentration of ethyl ester of 3-ethoxy-propenoic acid is seen.

This compound was also seen in the conversion products from other epoxies [10]

and appears to be a recombination product from the glycidyl groups found in all

epoxy resins.

o

C2 HB--O--CH2--CH2-- C --O--C 2 H 5
ethyl ester 3-ethoxypropanoic acid

(32.4%)

CH 3

methyl phenols
cH3 (5.0%)

OH 3

OH OH OH

[_ cH3 /_/"CH3 CH3"_ t"cH3 dimethyl phenols
CH 3 (7.8%)

CH 3

HO\ c//O
(_O ___ CH3 O /'OH

2-(4-methylphenoxy) benzoic acid
(7.9%)

2-hydroxy-1,4-naphthalenedione
(12.4%)

4-methyl/crysene
(5.4%)

Figure 3. Chemical Structures ofF-15 Boron�5505 Epoxy Major Conversion

Products
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The second epoxy matrix laminate studied was a unidirectional 24-ply carbon

fiber-reinforced system from Hexcel Corporation designated F584. The

carbon/F584 conversion reaction was complete after 4.5 minutes. The

remaining carbon fibers represented 69 weight percent of the original com-

posite. No other residues were observed. On a volume basis, 69 weight percent

carbon fibers corresponds to 61 volume percent, which is the normal fiber vol-

ume range for this type of composite.

The carbon fibers remained as single-ply sheets that could easily be spread

apart. In that form, the carbon fibers are readily reusable as reinforcements for

molding compounds. Major conversion components of the F584 epoxy system

are given in Figure 4.

NH2

NH2 [_

CH 3

aniline 4-methylbenzeneamme"

(5.4%) (5.1%)

3-phenoxy benzaldehyde

(17.4%)

NH2 ___- NH2

4,4'-diamino- 1, l'-biphenyl

(8.3%)

O
H

C 2 H 5-'- O--CH2--CH2-- C --O--C 2 H 5

ethyl ester 3-ethoxypropanoic acid

(34.8%)

Figure 4. Conversion Products from F584 Epoxy

The starting epoxy components in the Hexcel F584 matrix system are proprie-

tary and unknown to the authors. Examination of the major products for the

F584 epoxy (Figure 4) shows that there are several aromatic amine compounds

(_nfline, methyl _nfline, diamino biphenyl), which likely indicates that this

epoxy is an aromatic amine-cured system.
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Analysis of the gas fraction given off from carbonfF584 epoxy conversion

showed 98.4% propylene. Propylene likely comes from the glycidyl groups that

have been scissioned from the ether linkages during conversion.

The third composite studied is a high-temperature polyimide matrix system.

Polyimide and bismaleimide matrix composite materials are preferred for high-

temperature applications near engine ducts and for future aircraft such as the

high-speed civil transport. The most common polyimide matrix system in use is

PMR-15, which is formed by a condensation reaction between the dimethyl

ester of 3,3',4,4'-benzophenonetetracarboxylic acid, 4,4'-methylenedianilme, and

the monomethyl ester of 5-norbornene-2,3-dicarboxylic acid [11]. The resultant

structure is shown in Figure 5.

o o o o
f c

\N-_H 2-_ N/ _i
o L o o

0
II

il

x 0

Figure 5. Chemical Structure of Cured PMR-15 Polyimide

The Carbon/PMR-15 composite was converted only very slowly. A yellow gas

evolved three minutes into the reaction. After 20 minutes, enough tar coated

the reaction vessel to take an analysis sample, but the composite was not com-

pletely broken down. The persistence of the PMR-15 is a further demonstration

of the high thermal stability of these materials. Analytical results for the PMR-

15 conversion products are shown in Figure 6.

Comparison of the product structures shown in Figure 6 with the PMR-15 struc-

ture (Figure 5) reveals that the catalytic conversion reaction is scissioning the

imide rings to make a variety of substituted phenyl compounds and recombiha-

tion structures. This is an encouraging result and may indicate that even these

very stable polymer structures can be broken down completely ff the conversion

process parameters are optimized.
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H_ jCH 3
N

N-methylbenzeneamine

(**)

<_NH2

_LUme

(13.3%)

(_N =C =O

isocyanatobenzene

(10.5%)

OH CH3

4-methyl-2,6-dihy&roxyquinolin e

(5.7%)

H _ /CH 3
N

_ CH3

CH
3

2,6-dimethyl-N-

(methyl)benzeneamine

(**)

OH

phenol

(3.5%)

NH2_CH 3

4-methylbenzamine

(11.9%)

CH3..

CH3- --(('_"_/--N =C =O

1-isocyanato-3 or 4-methylbenzene

(5.8%)

2-methyl- 1, l'-biphenyl

(4.4%)

**Combined total is 28.6%.

Figure 6. Chemical Structures of PMR-15 Conversion Products

The last example is an engineering thermoplastic matrix composite:

polyetheretherketone (PEEK) reinforced with carbon fibers. Analysis of the

clear liquid evolved from the carbon/PEEK sample and the structure of PEEK

are given in Figure 7. Ninety-nine percent of the liquid conversion products

from PEEK are phenol and hydroqumone. These are two common and valuable
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organic compounds. Producing these compounds in such high yields and

purities will likely result in good economics for recycling of PEEK matrix waste
components.

Polyetheretherketone (PEEK)

OH

OH

1,4-benzenediol
phenol (hydroquinone)

(91.8%) (8.0%)

4-phenoxy- 1-phenol
(0.2%)

Figure 7. Chemical Structure of PEEK and its Conversion Products

PROCESS ECONOMICS

The economics of low-temperature, catalytic conversion of high performance

composites is difficult to assess accurately at this early stage of development.

There are numerous unknowns such as gathering and transportation costs for

the waste, volumes of waste available, and markets for the conversion products

and reclaimed fibers. Nevertheless, it is beneficial to ignore these unknowns

and perform an elementary economics analysis to show the economic viability of

the tertiary recycling process.

A 10-ton/day unit operated 330 days per year can recycle 6.6 million pounds of

composite or about 15% of current DoD production. Such a plant could be

expected to be highly profitable if the hydrocarbons were sold at a price

equivalent to that of crude oil and the carbon fibers were sold for use in molcling

compounds at $2.00 per pound, which is equivalent to the cost of buying virgin

glass with the superior properties of carbon fibers.
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Assumptions: ****Fiber yield

*:* Resin yield

****10 ton/day capacity

****330 days/year

0.6 @ $2.00/pound

0.4 @ $0.08/pound

Projected Revenues:

Fibers (3.96 x 106 lb @ $2.00)

Hydrocarbons (2.64 x l06 lb @ $0.08)

Total

$7,920,000.00

$ 211,200.00

$8,131,200.00

Operating Expenses:

$1,500,000 plant operation

$ 660,000 shredding operation ($0.10 per pound)

$2,160,000

Gross Profit: $5,971,200

Capital Requirements: $6-8,000,000 (reactor, shredder, site preparation)

Figure 8. Carbon/Epoxy Composite Recycling Economics Projection

CONCLUSIONS

The low-temperature catalytic conversion process under development has been

shown to be extremely versatile for breaking down all types of organic materials

into low molecular weight hydrocarbons for reuse. Even high thermal stability

thermosetting polymers have been converted to valuable low molecular weight

organic compounds without producing any highly toxic byproducts. By
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removing the polymer from the composite mixture, the expensive reinforcing

fibers are recovered in a form that allows their economical reuse in molding

compounds. This versatile process may be used to solve many current and

future solid and hazardous waste problems with organic-based materials.

Because the conversion process is totally closed, no adverse environmental

effects are produced. In addition, a preliminary economic analysis shows that

recovery of valuable hydrocarbons and fibers from these wastes could be highly
profitable.
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ABSTRACT

A significant increase in the use of composite materials has occurred during the past 20 years. Associated with this

increased use is the potential for employees to be exposed to offgassing components from composite systems.
Various components in composite systems, particularly residual solvents, call offgas under various conditions. The

potential for offgassing to occur increases as a composite material is heated under either during cure or during lay-up
operations. Various techniques can be employed to evaluate the offgassing characteristics of a composite system. A

joint effort between AIA and SACMA resulted in the drafting of a proposed test method for evaluating the offgassing

potential of composite materials. The purpose of testing composite materials for offgassing is to provide the

industrial hygienist with information which can be used to assess the safety of the workplace. This paper outlines
the proposed test method and presents round robin testing data associated with the test method. Also in this

presentation if a discussion of classes of compounds which require specialized sampling techniques.
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11 Relevance of plastics industry
research to aerospace
composites

At first view, plastics process emissions research may not seem to have much

bearing on outgassing considerations relative to (advanced) composite materials,

as discussed by other speakers in this session. We believe several parallel issues

and cross-currents are of mutual interest, however, and that different perspectives

among the audience will identify these for themselves. At the very least, many

within the aerospace industry and NASA use plastics and fiberglass articles in

non-structural roles. Familiarity with topically-driven research in those areas may

prove useful within readers' organizations.

Figure 1 illustrates topics of concern to plastic processors in the context of"off-

gassing" as that term is used on the shop floor. Compliance requirements range
from observation of OSHA's Hazard Communications Standard, through TSCA,

various industrial hygiene standards, to EPA's environmental regulations.

Today's summary is concerned only with the effort to quantify volatile organic

compound (VOC) emissions within the meaning of Title I of the Clean Air Act,

and the effort to characterize and quantify hazardous air pollutants (HAPs) within

the meaning of Title III.
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II. Impact of Clean Air Act
Amendment Requirements

A new regime of Federal air quality laws are to be implemented this fall and early

in 1995 by the states. Over 34,000 facilities which use chemical compounds will

eventually be affected. Some local air pollution control districts have already

begun to notify stationary sources of new filing requirements. There will be

considerable variation between local requirements. Many manufacturers

previously exempt from air pollution permits will now need to conduct
measurements or otherwise secure data to determine how their state's rules apply

to their facility. Even small air pollution sources will need to do considerable

research to document that their activities are below the threshold of regulation.

The Society of the Plastics Industry (SPI) activities have concentrated on Titles I,

III, and V of the Act. Title I, among other subjects, regulates volatile organic

compound (VOC) emissions depending on a metropolitan area's ozone attainment

status. Title III proposes regulation for 189 specific air toxics, listed as

"hazardous air pollutants" (HAPs). Some HAPs are ozone precursors, and

therefore potentially regulated under VOC provisions in Title I, as well as the

HAP provisions of Title III. Styrene is an example. Title V of the Act describes

minimum criteria for the states' air permit programs. Because of the

unprecedented complexity of the permit process, SPI is very active with

compliance alerts and as a guidance source on Title V.

In particular, students of the CAAA are following states' efforts to provide certain

sources with means to "opt out" of the full Title V Permit process. This option is

available to sources which are classified as "major" by their theoretical "potential

to emit" but in fact have a much smaller release of tons per year of air pollutant.
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Suchsourcescanaccepta "Federally-enforceable"(sometimes"FESOP")
limitation suchasarule limiting volumeof materialsusage,aceiling on their
operatinghours,or someothermeasurablelimitation.

Theintermittentor batchprocessnatureof polymercompositesproduction
suggeststhatsuch"FESOPs"maybeviable for manyaerospacecomponent
producers.Othersmayneedto identify MACT -- MaximumAchievable Control

Technology -- for their process and build or retrofit their facility accordingly.

A full analysis of the CAAA, particularly M_ACT analyses, is beyond the scope

of this presentation. But it was foreseen as early as 1989 that processors would

need more refined tools simply to identify and quantify environmental emissions

from their facilities, even before translating this information to permit applications

and prior to considering process controls.

Unlike traditional permit programs, Title V puts the burden on the applicant -- not

the regulatory agency -- to specify all applicable requirements, and to show how

control strategies will be implemented and compliance will be proven. In addition

to all applicable air-quality regulations (including those promulgated but not yet

in effect), permit applications must describe products and processes produced at a

site, and identify fuels and raw materials, pollution-control and monitoring

devices, and data-collection procedures.
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III. Scope of the Society of the
Plastics Industry, Inc. activities

The Society of the Plastics Industry, Inc. (SPI) is the major national trade

association for the U.S. plastics industry. SPI is comprised of more than 2000

member companies, representing approximately 75% of the dollar volume of

plastics sales in the United States. SPI is organized to provide general "core"

services which benefit all segments of the industry. But, reflecting the diversity

of the use of plastics, it also operates units or committees organized along

materials, process, or market lines. These committees include resin

manufacturers, distributors, machinery manufacturers, plastics processors, model

makers and other industry-related companies and individuals. Founded in 1937,

SPI serves as the "voice" of the plastics industry.

A. Thermoplastic process emissions

1. University of Lowell research

Research was commissioned in 1991 by the Society of the Plastics Industry's

(SPI) Occupational Health and Environmental Issues Committee (OHEIC) at the

University of Lowell, Massachusetts. The objectives of this work were several: to

establish a protocol for identifying and quantifying polymer off-gasses, and to

ascertain whether there were constant ratios between off-gasses at the work station

and emitted pollutants from the facility. The study is in the literature, as a poster

paper given at the 1993 meeting of the American Industrial Hygiene Association:

"Thermal Emission Identification of Organic Vapors Generated During Plastic

Processes," C.W. Lu, R. Moure-Eraso, M.J. Ellenbecker, Department of Work
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Environment;N.R. Schott,J.C.Huang,Departmentof PlasticsEngineering
Department,Universityof Massachusettsat Lowell, Lowell, MA 01864.

Organicvapors,andin somecasesbenzenesolubleparticulate(BSP)andtotal
particulate,weresampledfrom thehotmelt industrialprocessingof plasticand
analyzedto measurevaporandparticulateemissions.Organic vapor samples

were collected on charcoal tubes and analyzed using gas chromatography/mass

spectrometry. Four plastic processes were studied using industrial size

machinery: injection molding, extrusion strand, extrusion sheet, and

thermoforming. Nine organic vapor samples were taken six inches from the

melted plastic output. Five particulate samples and five BSP samples were taken.

Organic vapor samples were 2 to 6 liters, and particulate and BSP were 60 to 150

liters.

In the processing of medium-impact polystyrene, for example, nine major organic

compounds were found, i.e., 1) benzene, 2) toluene, 3) acetophenone, 4) styrene,

5) benzaldehyde, 6) ethyl benzene, 7) alpha methyl styrene, 8) isopropyl benzene,

9) C16H12 isomer.

Percentages of organic compounds emitted were calculated by dividing the

amount of each component by the total mass of all collected emissions.

Emissions were detected for each plastic process cited above. The emissions

actually sampled were a fraction of the total emitted since the conditions of

industrial production preclude the stoichiometric capturing of all emissions at

steady state. The focus of the study was the emissions generated by plastics

processing at industrial operating temperatures. Emissions from additives or

purging operations were beyond the scope of this study.

Essentially, this research effort became confused by the diversity of objectives,

the discrepancy of interest between analytical chemists and industrial hygienists,

and disagreement between the academic and industrial participants on how to

simulate industrial production. The work was therefore useful in revealing the

complexity of the off-gassing issue. It set the stage for more appropriately-
controlled research elsewhere.

2. Polymer processing research at Battelle Institute

The unsuccessful work at Lowell moved supplier members of SPrs OHEIC to

refine objectives and separate into task groups based on materials composition.

Through proprietary research experience it was determined that facilities and

expertise exists at the Battelle organization, Columbus, Ohio. Thus far

polycarbonate, acrylonitrile butadiene styrene (ABS), and polyethylene resin

systems have been evaluated. Nylon, polypropylene, and additional task groups

are forming in line to have analysis performed through this facility, using

appropriate variants of the basic protocol.

The fume generation facility at Battelle is used to generate and capture fumes

produced during the processing of resins and composite resin systems. This

facility was specifically designed to perform safety evaluations of fumes produced
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duringplasticprocessingundercontrolledconditionswhich modelindustrial
practice.

The program consisted of the following two phases: 1) development and

validation of a fume sample collection and analysis method, and 2) collection and

analysis of fumes emitted from selected production processes. The experimental

design was developed by Battelle.

A method was developed which used stainless steel canisters treated by the

Summa passivating process to collect the VOCs in fumes generated, for example,

from the extrusion of ABS resins. The canister samples were analyzed

concurrently by a gas chromatography system equipped with parallel flame

ionization detection (FID) and mass selective detection (MSD). A similar method

was successfully used in past studies characterizing aircraft engine emissions for

the U.S. Air Force. (Aircraft Emissions Characterization from selected engines,

Reports ESL TR 87-27 and 87-63 Tyndall AFB, Florida, March 1988. Available

through NTIS.)

The characterization of process off-gasses in the Battelle research is

comprehensive. Table I illustrates the range of compounds identified during the

extrusion of ABS. Despite its complexity, the value of the work at Battelle is

proving very practical for plastics processors. The research has documented that,

in common production, 180 micrograms of VOC emission are generated for every

gram of representative compound. In other words, a processor of 1 million

pounds of ABS annually will emit only 180 pounds of VOCs, well below the

threshold of regulation even in severe non-attainment zones. As to

characterization, ethylbenzene was the largest component of the VOCs, with an

emissions rate of 50 micrograms per gram of ABS.

The data indicates that a facility will process a great deal of this family of resin to

reach any of the thresholds. A typical high-volume plastics processor, finding

emission rates in the part-per-million range, will calculate to less than a ton of

annual VOC emissions in this particular scenario.

Polyolefin manufacturers now have followed the ABS lead to calculate emissions

rates, while Dow Chemical has calculated polystyrene emissions independently.

Suppliers who have done such research are at a competitive advantage when they

can supply emission rate data to processors applying for Clean Air Act permits.

3. Revision of EPA Manual AP-42

SPI OHEIC's research was given new impetus by a contract let from EPA's Office

of Air Quality Planning and Standards in 1993. EPA selected contractor MR/Inc.

to review the existing AP-42 Manual's chapter on plastics process emissions and

propose a "Development of Test Strategies for Polymer Processing Emission

Factors" if any gaps in the existing emission factor guidance were found.

SPI was dismayed to learn that EPA even tentatively considered using the 1985

AP-42 in the context of the Clean Air Act Amendments. The chapter in question

is very faulty, based on lost references or a cursory and outdated study performed
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TABLE I

TARGET ANALYTES AND TENTATIVELY IDENT12:IED COMPOUNDS FOUND EN

PHASE 1 AND 2 FUME (CA.N'ISTER) SAMPLES

Peak Number

m

2"

3*

4*

5

6"

7

8"

9

10"

11"

12

13"

14

15

16"

Compound Name

1,3-Butadiene

Acryionitrile

4-Vinyl-l-Cyclohexene

Ethylbenzene

m and p-Xylene

Styrene

o-Xylene

Isopropylbenzene

Benzaldehyde

n-Propylbenzene

Methyl styrene

1-Methyl-2-isopropylbenze ne

Acetophenone

p-Ethylstyrene

1-Methylene-4-isopropyle ne cyclohexane

2-Phenyi- 1-propanol

* Target analytes
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in 1978by aresearchorganizationwhichno longerexists. Moreover,MRI's
subsequentreportrepeatedunrealisticallyhigh emissionfactors,in therangeof
2.1%to 7.5%by weight,for thermoplastics.And, it proposedusingpyrolysis
with gaschromatography/massspectroscopyasalaboratorysimulationof
polymerprocessing.ThermogravimetricAnalysis(TGA) techniquewasproposed
asappropriateto concludeprocessemissionevaluations.SPIbelievesthis
approachis seriouslydeficientfor thepurposeintended.

• PyrolysisGC/MSprovidesfor abrutaldestructionof thepolymeranddoes
not reflectthechangesin thepolymerwhichoccurduringactualprocessing.
GC/MSmayprovidedata,butwe suspectit is verydifferentfrom what is seen
in industrialprocessing.Relativesurfaceareais likely to bemuchsmallerand
thehot air exposuretimemaybemuchshorter.Additionally, pyrolysis
GC/MSwould providenoshearof thepolymerandpotentiallyhigh oxygen
levelsversushigh shearandlow oxygenlevelsin, for example,anextruder.

• Typically, TGA methodsinvolve heatingthepolymersamplefrom ambientto
high temperaturesat afairly slowrate(e.g.,10°C/min). To achievesimulated
polyethylene(PE)processingtemperatures(e.g.,260°),aresidencetime of
morethan20minuteswouldberequired.NormalPEprocessingresidence
timesareonthe orderof secondsto afew minutes.

• TheTGA measuresonly overallweightloss. If coupledwith FTIR thedata
would givegeneralqualitativeidentificationof emissions.TGA shouldbe
usedonly to identify substancesof potentialinterest.

• TheTGA methodis designedto measureweight lossatpercentagelevels
versustraditionaltrappingindustrialhygieneequipmentwhichcanroutinely
measureto ppm levels. Analysisof thetrappedcomponentsalsocanbe
compound-specific.

• TheTGA methodmaynotduplicateactualatmosphericconditionsduring
processing.Most thermalprocessingstepsresultin very low levelsof
entrainedair. TGA analyses run under an inert atmosphere (e.g., nitrogen)

may underestimate the emissions, while analyses run under an oxidative

atmosphere (air or oxygen) would overestimate them. Researchers have

commented on TGA data's showing "creation of matter."

SPI believes these methods are suitable, at best, for qualitative identification of

process emission compounds. They cannot generate quantitative emission factors.

For this phase of the technology, SPI recommends conducting pilot scale tests

using conceptual emissions models. The development of such models to a

reliable level, however, will arise from successive pilot studies, not laboratory

research. In the final assessment of emissions, the information must be checked

in actual plant situations.

Polymer structure (molecular weight, its distribution, degree of unsaturation, and

catalyst residuals) will affect emission types and levels. In addition SPI

processors have assembled a shopping list of variables affecting a given facility's

emissions:
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• humidity

• availableair volume

• air movement

• mold releaseused

• conditionof processequipment

• aerosolcontent

• additivecontent

• filter media

• polymersprocessedatadjacent
equipment

• polymersstructure

• molecularweight

• branching

• other reactive gas present

• its own volume/other gas' volume

• cleaning solvent present

• vapor pressure

• thermal history

• comonomer type and level

• compound purity

B. Reinforced plastics/composites process emissions

1. Pultrusion

Pultrusion processing of unsaturated polyester reinforced with continuous glass

fiber is potentially a significant styrene emission source, to the extent that the

glass passes through an open resin bath on its way to the shaping tool. Research

by the Pultrusion Industry Council, a unit of SPI's Composites Institute has

demonstrated that emissions at this work station are directly proportional to warm,

unrestricted, airflow over wet surfaces. Re-engineering measures to minimize this

feature of uncontrolled process emissions are relatively obvious in concept. The

Council has recently joined with the SMC/BMC Environmental Committee

described below to have an environmental engineering firm document MACT for

the pultrusion process.

2. SMC/BMC emissions studies

The processing of sheet molding compound (SMC) and bulk molding compound

(BMC) would appear at first glance to rank low as an emission source relative to

other fiberglass composites manufacturing methods. Both prepreg-like materials

are processed by closed molding methods, i.e. in compression presses or by

injection molding. The mixing process, however, in which the resins are

combined with fillers, pigments and other additives to make the "B-staged"

molding compound can be a significant emissions source. SMC/BMC operations

also tend to process relatively large amounts of material, since their major market

by far is the automotive and light truck sector. Within the Composites Institute of

SPI, an active SMC Environmental Subcommittee has shared within its

membership the results of in-house emissions evaluation at members' own

facilities. This group has also awarded a contract recently to an independent

environmental engineering firm to perform an analysis of "Maximum Available

Control Technology" (MACT) for their category of operation.
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It might bementionedherethatSMC/BMC compoundersandmoldersarehigh-
volumeusersof VOC-generatingcleaningsolvents.While substitutecleanersare
on themarket,thesedonot appearcapableof replacingaggressivesolvents
neededto cleanmoldsandequipmentwherethecontaminationis out of line-of-
sightor inaccessibleto pressurecleaning.RecentlyaNationalEmissionStandard
for HazardousAir Pollutants(NESHAP)hasbeenpublisheddescribingM.ACT
for theaerospaceindustryusingsuchcleaners.Thetechnologiesspecifiedappear
to havetransfervalueto otherindustries.

3. "Open molding" processing: CFA styrene emissions protocol

Another research project should be brought to your attention, if for no other

reason than its appearance in future databases as a "composites" study. The

research has additional relevance to the polymer composites audience in the event

interest groups wish to undertake emissions testing which will be submitted to

EPA. The agency has high interest in monitoring the quality of such research, and

cannot be counted on to accept it outright. In fact, it is possible that industry or

academic-initiated research, when intended to establish a protocol, may not be

acceptable to EPA if it does not follow EPA's Quality Assurance procedures.

This test method development program is initiated by the Composites Fabricators

Association. CFA is the trade association, with over 700 member companies,

which serves the interests of small manufacturers who typically process

unsaturated polyester or epoxy vinyl ester resins reinforced with glass fibers.

(More of these companies are beginning to handle "advanced" materials, and

certain advanced composites molders have joined CFA for its small-business

program benefits.) CFA fabricators normally supply the recreational boating

industry, the automotive and heavy truck aftermarkets, and both the residential

and architectural construction industries. They are present as suppliers to general

aviation, and as builders of prototypes and short-ran orders for the commercial

aircraft market as well.

CFA's program is driven by current state regulators' demands for Reasonably

Available Control Technology (R.ACT) assessments. Also, the development of

the Clean Air Act Amendment (CAAA) regulations, and in particular the

Maximum Available Control Technology (MACT) standards for the reinforced

plastic composites industry, will require definitive baseline data on styrene

emissions from the open molding process.

The purpose of the CFA/EPA study is to measure styrene emissions from

polyester resin spray application, polyester gel coat spray application and resin

hand batch application. The accurate characterization of styrene emissions from

this project will establish a background for subsequent studies, which will explore

emissions reduction methods. Faulty conclusions from this study may lead to

incorrect methods of addressing emissions reduction in subsequent studies.

Therefore, a comprehensive Quality Assurance Plan will be in effect to support

the testing program.
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Investigationsof availableliteraturerevealthatstyreneemissionstestingwhich
hasbeendonein thefield presentsanerraticandunacceptablerangeof results,
whichmaybedueto theuncontrolledenvironmentsin which thestudieswere
conducted.This studywill controlenvironmentalvariablesin orderto isolate
baselineemissionsfrom theprocess.

The Process and Test Facility

The open molding application methods included in this experiment are

polyester resin spray application, polyester gel coat spray application and

polyester resin hand batch application. The testing will be carried out at the

Dow Chemical Composites Laboratory in Freeport, Texas. The test area is

a 10' X 14" exhaust hood. Natural draft openings (NDO's) are arranged in

accordance with EPA Method 204. See attached Sketch No. 1.

Airflow in the temporary enclosure will be maintained at 1500 cfm and

ambient air temperature will maintained at 70°F. Sampling ports will be
located in the exhaust duct. A three-sided mold of 30 ft2 will be located in

the center of the test enclosure at a height of 1 ft. above the ground.

The design of this experiment is intended to fulfill the requirements of a

USEPA Category II Quality Assurance Project Plan (QAPP). The purpose

of the Category II QA Project Plan is to present the data generated to the

USEPA in an acceptable and standard format, in addition to maintaining a

high confidence level in the development and handling of data.

This program is planned with a pretrial to verify the design of the

experiment and to debug the emissions measurement procedures. Some of

the details of the experiment may be altered as a result of the pretrial,

however the basic protocol will remain the same.

Preliminary results are expected about November 1. The experiments and

development of the procedure are likely to be discussed in both an EPA

Control Technology Guideline, and in a monograph for the Air and Waste

Management Association proceedings.

Emissions measurements will be made using both active and passive

sampling. A Varian 3700 gas chromatograph, equipped with a flame

ionization detector will be used. Passive dosimeter badges will be used in

conjunction with the active sampling of the GC. These 3M brand passive

dosimeters will be analyzed by the Dow Industrial Hygiene Services

laboratory. Mass balance calculations will be made using all material input

weights, minus cured test panel weight.

Statement of Project Objectives

The project objective is to measure baseline styrene emissions from the

open molding process. Air temperature and air flow will be held constant

throughout the modified Taguchi experiments, to reduce environmental

influences on emissions. The process will include resin spray application,

gel coat spray application and resin hand batch application. The methods,

materials and equipment used will represent a typical set of parameters
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commonlyfoundin theFRPcompositesindustry. In thePhaseI studyno
attemptwill bemadeto reducestyreneemissions.

Thermoset resin emissions

For surveycompleteness,it maybementionedthattheEpoxyResinSystems
Groupof theSPIis developinginformationto establishaMACT NESHAPfor
liquid epoxywetstrengthresins.At this timethe scopeof this researchis the
assessmentof air toxicsfrom theresinproductionfacilities. It remainsto beseen
whetherthisactivity will generateinformationusefulto prepreggersand
molding/fabricationusersof epoxycompoundsandprepregs.
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Utility of SPI research for
advanced polymer
composites audience

Users of chemical compounds, including wet resins and advanced polymer

composite prepregs, may be regulated under various provisions of the Clean Air

Act Amendments of 1990. Resin producers are normally familiar with the

intricacies of air pollution permit requirements, but small compounders, prepreg

manufacturers and contract molders, and the polymer composite production shops

of aerospace OEMs, will need to evaluate whether they are in the regulated

community. This determination, and the generation of environmental emissions

data for permit applications, is not easily completed. The numerous variables

inherent in producing composite articles make it difficult for suppliers to provide

users with useful emission factors valid for specific operating scenarios.

Research by polymer suppliers through their national trade association, SPI and

its several operating units, has begun to sort out the complexities of production

analysis. SPI has demonstrated that laboratory analysis by familiar analytical

chemistry methods is not appropriate either for the identification or quantification

of environmental air emissions from industrial processes which use polymer

materials. SPI recommends well-designed process simulations, at as full a scale

as possible to actual production conditions, and then verification of pilot-scale

results under production conditions specific to the operator's practice.

EPA and the State Implementation Plans (SIPs) it approves will not necessarily

accept industry-generated emission data from non-standard research

demonstrations. Trade or industry-specific coalitions should work with EPA's
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researchofficesat ResearchTrianglePark,NC to pre-qualitysuchexperiments.
This step,while time-consuming,will facilitateadoptionof industryevaluations
into EPA ControlTechnologyGuidelinesin thecaseof VOC control,and
NESHAPsin caseswhereMACT demonstrationisrequired.

Aerospaceend-usersof compositeswho donot themselvesmanufacturethese
goodshavea stakein monitoringtheir sourcesof supplyto determinethatthey
arepreparedto generatedatafor all permitswhich will berequired.
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OUTGASSING CONSIDERATIONS FOR COMPOSITES

IN SPACE APPLICATIONS

By

Petar Arsenovic and Huai-Pu Chu

Goddard Space Flight Center

Greenbelt, MD 20771

ABSTRACT

Composites have been increasingly used in the construction

of spacecraft. However, unlike metals, composites must be

used with particular discrection in space applications

because of their outgassing properties. For example, the

outgas materials may cause serious contamination problems

and affect the performance of delicate instruments. This

paper presents an overview of the testing procedure and

acceptance criteria for outgassing selection of spacecraft

materials. Since composites can contain and absorb moisture

which will outgas in space as water vapor, the test results

of moisture absorption and desorption of a composite

material are discussed also.

INTRODUCTION

The design of modern spacecraft has posed evermore

stringent demands on materials. Advanced composites

with unique properties have shown great promise to meet

such demands. For example, composites have been selected

for spacecraft structures, optical benches and instruments

due to their high modulus, high strength and dimensional

stability. Numerous successful applications of composites

in spacecraft have been summarized in Reference i.

However, it is important to note that certain composite

materials may be disqualified for space applications because

of their outgassing characteristics even though they do have

other desirable properties. Thermoset and thermoplastic

materials tend to be outgassers, especially at increased

temperatures or in vacuum. They may emit gases and water

vapors which would deposit, for instance, on lenses, mirrors

and other parts of optical instruments and advsersely affect

their performance. Therefore, all composites should be

tested for outgassing before they are selected for use in

spacecraft in order to prevent contamination. This paper

presents a general discussion on outgassing, and summarizes

the results of a recent study on moisture absorption and

desorption of a composite, which is closely associated with

the outgassing problem.
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OUTGASSING

Test Method

The ASTM Standard E595-90 (Ref. 2) is commonly used for

conducting outgassing tests for space applications.

Briefly, the test utilizes a "microvolatile condensable

system" which mainly consists of isolated sample chambers
and collector chambers. Samples are heated to 125 °C for 24

hours in a vacuum jar to accelerate the outgassing process.

Also, testing the materials in vacuum is compatible with

their use in space environment. The outgas products in each

sample chamber travel through a hole to a corresponding
collector chamber, wherein a portion of the outgas products

will condense on a collector plate which is maintained at

25 °C. Test results are determined from the condensed

materials and the total amount of outgas from the samples.

After testing in vacuum, the samples may be kept in 50%

relative humidity at 25 °C for 24 hours for an optional test
to determine the amount of water reabsorbed by each sample.

It is termed as water vapor regained (WVR) and expressed as

a percentage of sample mass before the test. Because of

the micro-quantities involved in the tests all procedures
detailed in the ASTM Standard should be followed closely so

as to obtain consistent and accurate results.

Acceptance Criteria

Referring to the above, the mass of condensate on the

collector plate is calculated as a percentage of the mass of

the original sample; and this is the collected volatile
condensible material (CVCM). Also, the total mass of

material outgassed from the sample is determined by

measuring the sample before and after the test. The total

mass loss (TML) due to outgassing is expressed as a

percentage of the initial sample mass. In general,
materials which have CVCM _ 0.10% and TML S 1.00% as

specified in ASTM E595-90 are acceptable for space

applications.

Outgassing Data

Goddard Space Flight Center (GSFC) has extensive experience

in the study of outgassing properties of materials for

spacecraft applications. A wealth of GSFC test data has
been made available to the space industry through a series

of NASA publications over a period of some 20 years. The
latest is NASA Reference Publication 1124, Revision 3, which

includes GSFC outgassing data on many materials generated

through July 1993 (Ref. 3). The data are also available

through the Materials and Processing Technical Information

Service (MAPTIS) data bank in Marshall Space flight Center,
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Huntsville, AI. There are other sources of outgassing data,

but they may not always conform to ASTM Standard E595-90.

Materials Selection

Although the outgassing data from Reference 3 or other

sources can greatly facilitate the selection of materials

for use in spacecraft, such test data should still be

examined for each application to make sure that they are

suitable for the particular functions and design

requirements of the spacecraft. For example, the data may

become questionable if a composite material is to be used at

a temperature below 25 °C, because the CVCM is determined

from outgassing products that are condensable only at or
above 25 °C in the ASTM Standard test.

Sometimes outgassing data from different sources on one

composite material may disagree with each other although

they all have used the same ASTM Standard test method. This

is quite possible for a number of reasons. For example, if

the samples were taken from different batches with some

slight variations in the manufacturing process they could

have different outgassing properties; and this could happen

even though the variations were all within the producer's

specifications. For this reason, after a composite is

selected for space application, it is still necessary to

perform outgassing test on each batch of the material for

quality conrol purposes.

In case a selected composite has all the preferred

properties for a particular application except for

outgassing, a thermal-vacuum treatment may be used to remove

its outgassing materials. Also, some modifications in

materials processing, such as a suitable change in the cure

cycle, may bring about enough improvement in the outgassing

property. If no method could sufficiently reduce its

outgassing the composite should be replaced by an alternate

material, or it may be used with some shielding or venting

devices to protect the instruments from outgassing
contamination.

MOISTURE

Experimental Procedure

The material tested was T50/ERLI962 graphite - epoxy

coupons. For moisture absorption, twelve samples were

thoroughly baked out at 90 °C for 120 hours and then placed

in different environments with respect to humidity in groups

of three. The mass of each coupon was measured periodically

over time at each humidity level with a high precision Ohaus

analytical microbalance having a readability to 0.00001

grams. The coupons were exposed to 21%, 38%, 65%, and 100%

relative humidity at 25 °C.
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Moisture desorption testing was accomplished by first
preconditioning a set of graphite - epoxy coupons at 80 °C

in an environment of 100% humidity for a period of 670 hours

to ensure that the specimens were fully saturated with

water. Following this, a Cahn vacuum balance was used to

recor__the mass loss over time of the samples under a vacuum
of 10 -= Torr at temperatures of 40, 60, and 90 °C.

Results and Discussion

Moisture Absorption

Experimental data on moisture absorption are summarized in

Figure i. The vertical coordinate represents the average

mass gains of specimans in three tests in each of the four
differet relative humidity levels. The mass gain is defined

as the measured increase in mass of a specimen during

exposure to controlled humidity and expressed as a

percentage of the initial mass of the dry specimen.
Figure 1 shows that moisture absorption started with high
rates which decreased quickly in low humidity and gradually

in high humidity. Each curve appears to level off

eventually toward a point of saturation which is dependent
on the relative humidity.

It is interesting to note that the mass gain versus time

curves become linear in log-log coordinates with

approximately the same slope as shown in Figure 2.

Therefore, an empirical equation can be established for the

tested composite as

M = kt 0"33 (I)

where M = mass gain, %

t = time, h

The quantity k is a function of relative humidity and is

equal to the mass gain at unit time. Figure 3 shows that a

plot of log H versus log k is linear. Thus,

k = (H/1238.40) 0"85 (2)

where H is the relative humidity. After substitution into

Equation i, the overall moisture absorption behavoir can be

described by

M = (H/1238.40) 0"85 t0"33 (3)

This equation is simple and accurate, and represents the

experimental data quite well, as seen in Figure I.
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Moisture Desorption

Test data for moisture desorption are presented in Figure 4.

The vertical coordinate represents the mass loss which is

expressed as a percentage of the initial mass of the

specimens after preconditioning in 100% relative humidity.

Figure 4 shows that moisture desorption started with high
rates which decreased quickly at high temperature and

gradually at low temperature. The curves appear to level
off eventually to a point when the coupons would be

completely dry. It is interesting to note that the maximum
mass loss is about the same magnitude of the mass gain shown

in Figure I. This indicates that all the moisture absorbed

in the composite could outgas as water vapor in vacuum.

The moisture desorption data can be analyzed by a diffusion

model (Ref. 4) as follows:

m = mt[l-exp(-7.3(t/tc) 0"75) ] (4)

Where m = mass loss, %

mt = total change in mass, %

t = time, h

tc = characteristic time, h

The change in mass, i.e. mass loss, is related to the
_characteristic _ time, which is in turn a function of the

diffusion parameters. Thus

tc = x2/(Doexp[-Q/RT]) (5)

Where x = thickness of the material

Do = diffusion constant frequency factor
Q = activation energy

R = gas constant

T = absolute temperature

Based on the test data, the activation energy associated

with the diffusion process is determined as Q=8.5 KCal/Mol.

The total change in mass m t is a parameter which is

determined as m t = -1.2% by its best fit to the experimental

data using Equation 4. The number mt is given a negative

sign to2account for moisture desorption. A value of D o =
0.85 in /hr is used. This value is also determined by the
best fit to the data and is typical for an epoxy compound of

this type (Ref. 5). The tc values are calculated for the

three test temperatures as follows:

T (OK) t c (hours)

313 402

333 175

363 62
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Figure 4 shows that there is a good agreement between

Equation 4 and the experimental data.

SUMMARY

The testing procedure and acceptance criteria for outgassing
selection of materials to be used in spacecraft has been

reviewed. Outgassing testing should be conducted according

to ASTM Standard E 595-90. In general, materials with

CVCM _ 0.i0 % and TML S 1.00 % are acceptable for space

applications.

Test data on a composite material T50/ERLI962 are presented

over time at various relative humidity levels at room

temperature for moisture absorption, and under vacuum at

several temperatures for moisture desorption (outgassing).
The data can be accurately represented by simple equations
which are useful for materials characterization.
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MODELING AEROSOL EMISSIONS FROM THE COMBUSTION OF COMPOSITE

MATERIALS

J.A. Roop, D. J. Caldwell, and K. J. Kuhlmann

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433°7400, U.S.

Army Medical Research Detachment, and ManTech Environmental, Inc.

The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle,

and F-22 advanced tactical fighter has rekindled interest concerning the health risks of burned or

burning ACM. The objective of this work was to determine smoke production from burning

ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method

developed at the University of Pittsburgh, and subsequently refined through a US Army-funded

basic research project, was used to establish controlled combustion conditions which were

selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied

with the combustion conditions. Previous work with this method showed that the combustion

conditions directly influenced the toxicity of the decomposition products from a variety of

materials.

INTRODUCTION

Introduced in the 1960s, advanced composite materials (ACM) are expected to compose 40-60

percent of future airframes. Figure 1 illustrates the increased use of ACM in US Air Force

aircraft. During the 1990s, several events focused attention on the human and environmental

consequences resulting from fabrication and incidental combustion of ACM. In addition, although

the fibers and epoxy resins of advanced composites appear to be safe in their original state, the

chemical transformation to a hazardous substance during combustion is not well characterized.

These resins, such as epoxies, polymides, phenolics, thermosets, and thermoplastics, may release

potentially lethal gases, vapors, or particles into the atmosphere when burned.
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As the use of composites increase, so do the potential risks to the environment and those exposed

to the smoke and combustion gases during aircraft mishaps. The objective of this work was to

determine smoke production from burning ACM and predict its toxicity.

The apparatus used to establish controlled combustion conditions is a commercially available
version of the cone heater combustion module of the UPITT II method developed at the

University of Pittsburgh. Previous work with this method showed that the combustion conditions

directly influenced the toxicity of the decomposition products from a variety of materials. Not

only will the toxic potency of the thermal decomposition products be determined, but the time to
toxic effect will also be obtained over a variety of combustion conditions selected to enable

evaluation of real-world exposure scenarios.

Development of test methods to evaluate smoke from burning materials has been an aspect of fire
science which has received much attention. Two approaches exist, the first is the analytical

approach which attempts to predict smoke toxicity based on the toxicity of each component found

in the smoke. The major drawback of this approach is that limited information exists for only a

few chemicals while many unknown chemicals are typically generated during combustion of most

materials. Even when the major toxicants in a combustion atmosphere can be identified, the

possibility of biological interactions between these chemicals would render any prediction of

toxicity speculative. For these reasons the second approach, the bioassay, is preferred. The use

of animals is necessary in combustion toxicity tests of materials to detect the presence not only of

unusual or uncommon toxicants but also of biological interactions between common gases. All

currently used test methods, including the UPITT II method, share lethality as the common

endpoint of toxicity and typically determine the LCs0 for a material. We have incorporated

alternate endpoints (such as incapacitation) into the UPITT II method. Thus, we not only

measure toxic potency in terms of smoke concentration, but also determine the time to effect, be

it lethality, incapacitation, or any other selected endpoint. This research will result in the selection

of safer materials for new and existing weapons systems.

DESCRIPTION OF EXPERIMENT

Materials

A carbon fiber/modified bismaleimide resin advanced composite material (approximate 2:1 ratio

by weight) was used in these studies. Specimens were 108 mm square by 2.5 mm thick with a

mass of 53.90 + 0.36 g.

Combustion Module

A commercial version of the UPITT II combustion toxicity apparatus (1) was used to establish

controlled combustion conditions selected to evaluate real-world exposure scenarios. For these

experiments the heat flux (Q) was set at 38, 44 57, or 84 kW/m2; the airflow was maintained at

19, 28, 35, or 41 L/min. The time to ignition (Ti_), duration of flaming (Tn), and mass loss rate

(th) were determined as previously described (1) except that a 10-minute period was used instead

of a 30-minute period. The smoke concentration (SC) was calculated by dividing the mass loss

rate by the airflow through the apparatus.
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Combustion Product Identification

A Perkin-Elmer Model 1600 FT-IR spectrometer was used to obtain transmission spectra of the

filtered smoke produced by the burning specimen. The major toxic species were qualitatively

identified from these spectra.

RESULTS

Results from experiments conducted under flaming conditions are presented in Table 1. The Ti_

decreased as Q increased, while the mass loss rate increased with increasing Q (2). Table 1

represents the time to ignition, and mass loss rate for 0.01m 2 ACM specimens irradiated for 10

minutes.

Table 1 Preliminary Experiment Results

Q 'Fig, m

kW/m 2 seconds g/min

38 255 1.2

44 60 1.2

57 35 1.5

84 15 1.7

Consolidated results of the coupon burn experiments find that the average mass loss of the ACM

is 29.1%. Further review of the results from these controlled experiments suggest that, at

constant air flow, the mass loss rate increases with heat flux. The graphical representation of

these data points and regression line are found in Figure 2. Conversely, Figure 3 demonstrates

that, at constant heat flux, the mass loss rate is not significantly related to increasing air flow.
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Smoke and Aerosol Characterization

The composition of the smoke and properties of the aerosol particles was evaluated. Initial

results find the smoke is composed of phenol groups, aniline groups, carbon monoxide, and

carbon dioxide. Major spectrum peaks from a representative FT-IR spectrum of smoke from an

experiment conducted at 50 kW/m 2 are identified in Table 2.

Table 2. Peak identification from representative FT-IR spectrum.

CM-1 Height

17.64

Identity

Aniline3708

3628 19.23 Aniline

3596 25.35 Aniline

3566 53.31 Aniline

3324 53.36 Phenol

2510 81.09 Carbon Dioxide

2174 50.68 Carbon Monoxide

2116 56.36 Carbon Monoxide

1526 10.45 Aniline

1304 29.53 Aniline

1164 47.28 Phenol

1138 53.65 Phenol

730 10.25 Phenol

Two samples were analyzed by GC/MS with the results summarized below in Table 3. The

quantitative figures were obtained by using the Response Factor = 1 approximation as specified in

the CLP Statement of Work. A vapor aliquot was collected using a cold trap. The collection

conditions were two runs at 30L/min for 10 minutes. The following compounds were qualified:
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Table3 Quantification of Identified Compounds

Identified Compound

Aniline

Soin Conc (lttg/ml)

342.4

Air Conc (Ittg/m _)

0.57

Phenol 961.8 1.60
63.7 0.11

4-methylphenol (o-cresol

2-methylphenol (p-cresol)

3-methyl- 1-isocyanobenzene

quinoline

74.7 0.12

5.9 0.01

24.9 0.04

6.8

114.0
Biphenyl
Dinhenvl Ether (diohenyl oxide)

0.01

0.19

The aerosol particle density (pp) was determined using standard laboratory practice and found to

be 0.29 mg/mL. The air samples, analyzed by electron microscopy identified a range of aerosol

diameters from 0.5 to 1.5 _tm. Given this density and the observed range of panicle diameters the

gravitational settling velocity ranged from 6.5 x 10 .6 to 3.8 x 10 -4 m/sec. Due to this small

velocity, the aerosol emissions were found to have no significant affect on the downwind

concentrations.

Approximately 1.4g of the soot was extracted with 50:50 Methylene Chloride:Acetone solution.

It was apparent, upon examination of the injection port liner, that many of the extracted

compounds were not suitable for analysis by GC/MS, as there was obvious evidence of pyrolysis

and deposition in the liner. The major compounds identified are shown in Table 4 below.

Table 4 Identification and Quantitation of Major Compounds Extracted from Soot

Identified Compound

Aniline

phenol

2- and 3-methylaniline

quinoline

5-methylquinoline

Diphenylether

2-methoxyethoxybenzene

1,2-dihydro-2,2,4-trimethylquinoline

1-isocyanonaphthalene

dibenzofuran

Soln Conc (ltg/ml)

215.5

156.5

45.0

250.2

86.4

75.8

119.7

159.2

Concin Soot(_g/Kg)

2994.4

2174.6

1204.0

3476.3

1200.3

1053.6

1662.7

2212.3

158.9 2208.2

97.6 1356.7

1-Isocyanonaphthalene 119.6 1661.5

Anthracene 122.2 1698.1

N-Hydroxymethylcarbazole 92.5 1285.1
Fluoranthene 93.3 2129.6
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From experience,the quantification is probably low. Several other comments need to be made.

As these identifications were made by mass spectroscopy, it is quite probable that some of the

isomers may be some other isomer. That is one of the weaknesses of the technique. There were a

number of PAH peaks in the soot extract which were of too low an intensity to characterize

properly, and were not included in the above. Additionally, as mentioned above, there are

probably a considerable number of compounds which either did not extract in the first place or did

not make it out of the GC injection port. The key point is that many of these compounds are

known carcinogens.

DISCUSSION

A CM Emission Rate

The primary objective of these combustion experiments was to obtain a mass loss rate for the

ACM. However, one significant limitation to this study is the lack of research on the heat transfer

properties of composite materials. Therefore, we assume that the flame spread characteristics

demonstrated by this bench-scale combustion equipment accurately simulates those of a full-scale

aircraR The results, under controlled heat flux and air flow conditions, identified a linear

relationship between the mass loss rate and the area of the burning composite.

Multi-variable linear regression of the mass loss rate data with the sample coupon area was

preferred. The equation for the regression line is found below in Equation 1-1. The regression

results provide a linear equation (R 2 = 0.99) that allows accurate prediction of an emission rate

for a full-scale aircraft.

th = fl j ( Area) + fl 2 (HeatFlux)- O.O1

where:

r: = 1.98

r2 = 1.86 × 10 -4

(1-1)

These findings enable regression analysis of a linear equation for the emission rate given constant

heat flux, air flow, and area conditions. Aerosol properties were identified which enabled

calculation of the gravitational settling velocity. This, in turn, will serve to better estimate the

downwind plume characteristics. The combined results allow for accurately modeling the smoke

and aerosol smoke plume generated during the combustion of composite material aircraft.

Thermogravimetric Analysis

The way heat was applied to the samples in the thermogravimetric analyzer was a little different

than that in the larger unit. The TGA uses a cup design, with the sample in the center of a small

furnace. It wasn't possible to shield the sample during the heatup cycle from the heat, as is

possible in the UPITT II apparatus. Despite this difference, and the much smaller sample size, the

weight loss measured by the two units was quite similar. During the first two to three minutes,
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the sample lost approximately 25% of its weight. What happened in the TGA after this is a direct
result of the differences between the TGA and the larger burn unit. The TGA has the capability to

heat in a nitrogen atmosphere or in air. The atmosphere made a significant difference in the

weight loss characteristics.

Burns in Nitrogen: After the initial weight loss due to the polymer pyrolysis, the weight stabilized

at a little over 75% of the initial weight, and stayed there for the rest of the thirty minute test run.

There was no significant change with extended time.

Burns m Air: The specimen mass never stabilized after the initial pyrolysis mass loss (due to the

polymer resin loss). The mass loss curve changed with temperature, the slope of which increased

as temperatures increased. Given enough time, the graphite fibers completely disappeared, i.e., at

950°C all mass is lost within 15 minutes, while at 650°C the time required increased to 60

minutes.

We suspect that the graphite fiber was being '_roded" by the oxygen in the air. Unpublished
work on diamond showed a molecular surface effect (R. Langford, personal communication).

Apparently, when the material is given enough energy (heated), the impact of an oxygen molecule

is enough to pull off a carbon atom and form C02 or CO. This is supported by infrared

spectroscopy data, which show evolution of these gases until the weight goes to zero.

Modeling the Plume Corridor

The Industrial Source Complex Short Term 2 (ISCST2) Model results were was used to identify

deposition values, downwind concentrations, and plot the potential plume concentration corridor.

These results provide a review of the modeling scenarios described below. Following the

scenario are figures that portray the ISC plume corridor concentration results in a plan view or

contour plot, and a 3-Dimensional surface plot. Given the very unstable conditions in Scenario 1,

Figure 4 suggests a small area of potential contamination, but a large concentration. Further

review indicates a maximum concentration of 1400 lag/m3 occurring approximately 500 m

downwind from the source. A significant difference in the plume area is identified in Figure 6

where the maximum concentration is 1300 Bg/m3 at 400 m downwind of the source. This should

be expected due to the changing meteorological conditions used in the scenario
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The following describes the parameters for Scenario 1

• JP-4 Pool Fire Centerline Temperature: 873.5 °C

• Emission Rate: 870.98 g/sec

• Stability Class: A

• Wind Speed: 5 m/sec

• Release Height: 0

• Effective Stack Height: 972 m

• Model: Particle Deposition over a 1 and 3 hour period.
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Figure 4 A Contour Plot of Plume Corridor for Scenario 1

M1

Figure 4.5 A 3-Dimensional Surface Plot of Plume Corridor for Scenario 1
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Thefollowing describestheparametersfor Scenario2:

• JP-4Pool Fire Centerline Temperature: 873.5 °C

• Emission Rate: 870.98 g/sec

• Stability Class: Varying

• Wind Speed: Varying

• Release Height: 0
• Model: Particle Concentrations over a 1 and 3 hour period.
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Figure 4.6 A Contour Plot of the Plume Corridor for Scenario 2

M1

Figure 4.7 A 3-Dimensional Plot of the Plume Corridor for Scenario 2
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The previous plots suggest that the ACM plume corridor is extremely dependent upon the

atmospheric conditions at the time of the mishap. The concentrations will be higher with a

nominal plume spread on a turbulent day, whereas the converse will occur during a calm day.

Other Observations from the TGA runs

Once the resin was pyrolysed off the fiber matrix, the fibers separated and puffed to several times

the original volume and lost any cohesion or tendency to group together. Aiter a burn where the

graphite was not completely consumed, there was a considerable difficulty getting fibers out of

every nook and cranny of the instrument. This phenomenon happened whether the burn was in

nitrogen or air.

This leads to a couple of speculations. In general, even after a long burn, the fibers remain visible

and therefore not respirable. It is, however, possible that some are being eroded to the point

where they could be respirable. At this point, the answer is unknown, however, there are clear

hazards associated with what is known to be contained in the soot particles and that these present

the greater hazard to life and property than does the physical shape (i.e., particle or fiber).

The fibers are extremely fluffy, and potentially electrically conductive. They could travel a

significant distance in a mild breeze, and have the potential to short out everything from

computers to power lines. It is probably critical that measures be taken in fighting a fire involving
these materials to reduce dust and aerosols.

CONCLUSIONS

Smoke production and yield of toxic species varied with the combustion conditions. This finding

is consistent with previous work with this method which showed that the combustion conditions

directly influenced the yield and toxicity of smoke produced by a variety of materials (3).

Although no animal exposures were performed during this preliminary series of experiments, an

estimate of the potential toxicity of the smoke can be made based on the analytical results and the

smoke yield from the burning ACM.

Future work will incorporate animal exposures to determine the toxic potency of the smoke and

evaluate alternate non-lethal endpoints such as incapacitation. We can not only measure toxic

potency in terms of smoke concentration, but also determine the time to effect, i.e. lethality or

incapacitation. This approach will result in the selection of s_fer advanced composite materials for

new and existing weapons systems.
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The Problem

For many years the metalworking industry has cleaned metal and composite substrates with

chlorinated solvents. Recently, however, health and disposal related environmental concerns

have increased regarding chlorinated solvents, including 1,1,1-trichloroethane,

trichloroethylene, methylene chloride, or Freon _. World leaders have instituted a production

ban of certain ozone depleting chlorofluorocarbons (CFC's) by 1996.

The Occupational Safety and Health Administration (OSHA) has instituted worker vapor

exposure limitations for virtually all of the solvents used in solvent-based cleaners. In

addition, the United States Environmental Protection Agency (EPA) has defined nearly all

solvent-based cleaners as "hazardous". Cradle to grave waste responsibility is another reason

manufacturers are trying to replace chlorinated solvents in their cleaning processes.

Because of these factors, there now is a world wide effort to reduce and/or eliminate the use

of chlorinated solvents for industrial cleaning.

Waterbased cleaners are among the alternatives being offered to the industry. New technology

alkaline cleaners are now available that can be used instead of chlorinated solvents in many

cleaning processes. These waterbased cleaners reduce the release of volatile organic

compounds (VOC's) by as much as 99 percent. (The definition and method of calculation of

FOC's now varies from region to region.) Hazardous waste generation can also be

significantly reduced or eliminated with new aqueous technology. This in turn can ease

worker exposure restrictions and positively impact the environment.

TABLE1
PHYSICALPROPERTIESOF VAPORCLEANERS

Parameter A__ _B C _D

BoilingPoint (*C) 39.8 74.1 86.9 121
Boiling Point(*F) 104 165 189 250
Specific Gravity 1.316 1.322 1.456 1.613
Flash Point (TOG)°C none none none none
Vapor Pressure,turn 340 90 59 13
Volatile Organics 10.98 10.92 12.11 13.47

(VOC)#/gallon
SurfaceTension 28 28 28 28

(dynes/cm)

CODE: A= MethyleneChloride
B= Trichloroethane(1"CA)

C= Perchloroethylene(PERC)
D= Trichloroethylene(TCE)

The use of aqueous products can also eliminate or reduce the annual reporting required 2 under

SARA Title III, Section 313 ( Toxic Chemical Release Reporting." Community Right-To-

Know) because these aqueous cleaners contain little or no ( less than 5%) chemicals currently
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listed in Section 313. Standard degreasing solvents such as perchloroethylene, methylene

chloride, trichloroethylene, and Freon presently require reporting under Section 313 when

used in quantities of 10,000 pounds or greater annually.

Tables 1 and 2 compare the physical and chemical properties of waterbased cleaners versus
chlorinated solvents.

TABLE2
PHYSICALPROPERTIESOF AQUEOUSCLEANERS

Parameter A B C D

BoilingPoint (*C) 100 100 100 100
BoilingPoint (*F) 212 212 212 212
SpecificGravity 1.02 1.07 1.07 1.02
Flash Point(TOC)*C none none none none
Vapor Pressure,mmHg 29 23 23 18
VolatileOrganics 0.2 0.0 0.0 0.5

(VOC) #/gallon
SurfaceTension 29 29 33 32

(dyneslcm)
pH, 100% 11.5 13.0 13.0 7.8
pH, 10% 10.5 12.0 11.7 7.1

Cleaning Process Defined

Cleaning is defined as "the removal of soil or unwanted matter from a surface". 3 There are a

wide variety of cleaning processes to choose from depending on the nature of the soil, the

substrate involved and the degree of cleanliness required.

Cleaning of metal and composite substrates can be accomplished in several ways: 1) by using

mechanical action such as wiping, brushing or spraying; 2) by solubilizing the soil; 3) by

chemically reacting the soil through saponification or chelation; or 4) by lifting the soil

through surface action and detergency. Often a combination of mechanisms is employed.

Solvent Degreasing

Vapor degreasing 4 has been a traditional means to clean industrial components. During this

cleaning process vapors from a boiling solvent condense on the cooler part, flushing off oily

soils. The soils are then dissolved in the solvent. This cleaning action continues until the part

warms up enough to stop the condensation from occurring. At this time the cleaning process

is complete whether the parts are clean or not, generally within ten minutes. The part is then

removed from the degreaser tank clean and dry. A spray wand may be used to remove

particulate soils not readily removed by the vapors.
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Chlorinated solvents most frequently used for vapor degreasing include: 1,1,1-tfichloroethane

(TCA), trichloroethylene (TCE), perchloroethylene (PERC) and methylene chloride. Freon is

also used, especially by the electronics industry.

Vapor degreasing is an effective method for removing organic soils such as oil-based cutting

oils, greases, petrolatums and high-melt waxes. It is less effective in removing inorganic soils

like fingerprints, water salts and road film. Aerospace, electronics and automotive industries

have typically employed vapor degreasing methods for cleaning.

Once a hydrocarbon solvent has been used for degreasing purposes, it must be redistilled in

order for it to be reused. This can require a significant capital equipment expense. More often

than not, the resulting sludge and/or used solvent is discarded and treated as hazardous waste.

Some waterbased cleaners contain non-chlorinated solvents as part of the package. These

semi-aqueous emulsion cleaners contain hydrocarbon solvents and emulsifiers. Since they

contain non-volatile residues, water rinsing is generally required. These emulsion cleaners

work by solubilizing and/or emulsifying the soils and dispersing them throughout the bath. As

the semi-aqueous cleaner is used, the entire bath becomes contaminated. The entire bath,

including the water and any water rinses, must be treated as hydrocarbon waste. Again, the

waste generator is legally responsible for that waste "from cradle to grave".

New Technology Aqueous Cleaners

Using new technology, waterbased cleaners are now being developed to replace chlorinated

solvents for cleaning metal and composite substrates. These new cleaners, specifically

designed for long bath life, are aqueous solutions containing water conditioners, corrosion

inhibitors, varying amounts of alkalinity builders and a careful selection of organic

surfactants. These ingredients are specially selected for desired foaming, wetting (surface

tension) and soil removal properties.

This new technology includes cleaners designed to be self-cleaning. When the cleaner has a

greater affinity for the part surface than the soil does, it undercuts the soil. The soil is then

released from the part surface. Light oils float while heavier soils such as chlorinated

paraffins and particulates settle to the bottom. This way, the cleaning bath can be skimmed
and filtered to remove both light and heavy soils. Cleaner concentrate is then added as

required to maintain recommended parameters and cleaning continues. Only the contaminants
skimmed or filtered from the bath need be hauled away as waste; the liquid can be recycled

indefinitely. Shop dirts, cutting oils, fingerprints, grease, carbon, low-melt waxes and road

soils can all be readily removed with the new aqueous cleaners. Additionally, by adding heat

and/or some mechanical action, these aqueous cleaners can also be used to remove

petrolaturns and high-melt waxes.
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In-Use Comparisons

Cleaning tests conducted on a wide variety of soils shows comparable cleaning efficiency

with aqueous chemistry and chlorinated solvents. Every hydrocarbon solvent tested dissolved

the soils. Aqueous cleaners either emulsified, saponified or rejected the soils depending on the

chemistry of the cleaner and soil involved. Overall, most of the soils tested were removed by

one or more aqueous cleaner
within the ten minute time frame

typical for vapor degreasing.

Chlorinated solvents did not

remove ink, solder paste and
candle wax from metal or

composite substrates. Mechanical

action was required to remove

these soils with aqueous chemistry.

Extraction with boiling water

and/or hydrocarbon solvents has

shown improved cleaning

efficiency with aqueous technology

versus TCA when measured by ion

chromatography, ICP and FTIR
methods. Surface examination

using X-Ray Photoelectron

Spectroscopy (XPS) and Scanning

Electron Microscopy (SEM) verify

these findings.

FIGURE 1.

Traditional Vapor Degreaser

Condensing

Coils

Spray Wand

VaporZone

Heater

XPS showed no evidence of offgassing 5 on parts cleaned with aqueous cleaners when exposed

to a vacuum at 10 -8 To_ on either rinsed or unrinsed parts. Rinsing does, however, enhance

the aesthetics of the part.

Aqueous cleaners are also used to clean composite surfaces prior to bonding. Bond strength

can be measured by Lap Shear Testing. In one study 6, the TCA control had 778 psi Shear

Strength versus an aqueous alkaline cleaner with 1239 psi. Other tests used to qualify bonding

performance include Double Plate Tensile (DPT) and Peel Tests.

It is a well know fact 7 that many composite materials absorb water during fabrication,

therefore offgassing can occur for prolonged periods of time depending on the vent path,

amount of water absorbed and temperature of the material. The manufacturer of sensitive

parts must determine whether exposure to aqueous environments can be tolerated.
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Applying the Findings

Since these waterbased cleaners have little or no volatile components, with the exception of

water, cleaning cannot take place in the vapor phase. Instead, the parts must be immersed in,

or sprayed with, the cleaner. Though parts are wet after processing, they can easily be dried

with heat, forced air or other means appropriate to the substrate and configuration involved.

Keeping environmental regulations in mind, the manufacturer should select cleaning products

that remove the majority of soils at a concentration, temperature and time frame compatible

with production needs. To minimize waste, the cleaner selected should have a long or

indefinite tank life. Ideally the bath should be filtered periodically to remove contaminants

and deionized water should be used for makeup to prevent the buildup of water solids in the

bath. Cascading rinses should be used whenever possible with the freshest water in the final

stage. Attempts should be made to match the cascade rate to the evaporative loss due to heat.

Once again, since the bath need not be dumped, waste is minimized. This in turn translates

into reduced costs to the environment and to the company.

Field Testing

Aqueous cleaners have

already replaced vapor

degreasers in many

industries. Making the

change has enabled users to

eliminate process stages

and reduce waste

significantly-- in some

cases up to 80 percent.

Modification of existing

equipment as shown in

Figures 1 and 2, enables.

users to convert to aqueous

technology without major

capital equipment expense.

FIGURE 2.

Modified Vapor Degreaser

SprayWand

pA_e

•

A major aerospace
manufacturer successfully replaced 1,1,1-trichloroethane with reduced capital expenditures. 7

With slight modifications, the existing vapor degreaser was converted to an 18,000 gallon

aqueous immersion bath. The chiller coils were disconnected, the fluid level was raised to

allow immersion of parts, and fluid recirculation pumps were added to facilitate agitation.

Skimming and filtration were also added to facilitate removal of contaminants. Tank life to

date is over three years.

A major manufacturer of flight and non-flight engines has also converted to aqueous

technology for the removal of EDM Oil from turbine blades. Five vapor degreaser units have
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beenmodified for usewith aqueoustechnology, thus avoiding major capital equipment

expenditures.

The subcontractor for a global manufacturer of high tech audio and visual equipment is in

the process of converting an existing vapor degreaser to an aqueous spray system. A fine

deionized rinse spray over the tank will enhance part aesthetics without requiring a separate

rinse tank. The rinse volume will match evaporative loss to minimize bleed-off requirements.

The aqueous product selected was custom formulated to meet this customer's potassium and
sodium limitations.

The military and automotive industries also have or are in the process of converting existing

equipment to aqueous immersion systems for cleaning a wide variety of metal and composite

components. One military facility has documented the cost to convert a vapor degreaser at

approximately $5000 including all stainless and PVC parts and labor.

In each of the above case histories, tank life has or could have been extended by fluid

filtration. Media filters, centrifuges and skimmers all work well in removing contaminants

from aqueous cleaning baths.

In addition to the above applications, aqueous cleaners are successfully being used to clean

in-flight airplane components, printed wiring assemblies, advanced composites, fasteners,

communications components, computer systems and hydraulic systems in the United States
and world wide.

New Technology for the Future

Many industries are faced with the challenge of finding new technologies to reduce hazardous

chemicals, thus reducing the amount of hazardous wastes generated. Industry must share

responsibility with courts and governments around the world for a cleaner, safer environment.

With the new waterbased cleaners, waste minimization is real and obtainable today without

loss of cleaning effectiveness. In addition, these aqueous cleaners can be recycled to save on

product and disposal costs.
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