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1. Introduction

In recent years, active and passive control of sound and vibration in aeroelastic

structures have received a great deal of attention due to many potential applications to

aerospace and other industries. There exists a great deal of research work done in this

area. Most recent advances in the control of sound and vibration can be found in the

conference proceedings [1, 2]. In this report we will summarize our research findings

supported by the NASA grant NAG-l-l175.

The problems of active and passive control of sound and vibration has been in-

vestigated by many researchers for a number of years. However, few of the articles

are concerned with the sound and vibration with flow-structure interaction. Exper-

imental and numerical studies on the coupling between panel vibration and acoustic

radiation due to flow excitation have been done by ._Iaestrello and his associates at

NASA/Langley Research Center (see e.g. [3,4]). Since the coupled system of nonlinear

partial differential equations is formidable, an analytical solution to the full problem

seems impossible. For this reason, we have to simplify the problem to that of the non!in-

ear panel vibration induced by a uniform flow or a bondary-layer flow with a given wail

pressure distribution. Based on this simplified model, we have been able to consider the

control and stabilization of the nonlinear panel vibration, which have not been treated

satisfactorily by other authors. Although the sound radiation has not been included,

the vibration suppression will clearly reduce the sound radiation power from the panel.

The major research findings will be presented in the next three sections. In Section two

we shall describe our results on the boundary control of nonlinear panel vibration, with

or without flow excitation. Sections three and four are concerned with some analytical

and numerical results in the optimal control of the linear and nonlinear panel vibrations,

respectively, excited by the flow pressure fluctuations. Finally, in Section five, we draw

some conclusions from our research findings.

2. Boundary Control of Nonlinear Panel Vibration

Consider a rectangular panel whose mid-plane is bounded by 0 _< z _< a and 0 < y _<

b. A spatially uniform air-flow passes over the panel with a time-dependent, mean flow

velocity U(t), (see Fig. 1). For a long span b >> 1, when the transverse deflection w is



uniform in the y-direction, a one dimensional structural model for the panel vibration

is used, (see Fig. 2). At a high flow speed, the linear piston theory for the aerodynamic

forces is assumed to be valid. Then the panel vibration is described by the following

nonlinear integro-differential equation:

02w 02w 04w

m--_- + [P(t)- N(t)]-_x 2 + D_ + f(w) = 0, (2.1)

where m is the mass density of the panel, P is the compressive in-plane load, D =

Eha/12(1 - v2), E, h and v denote the Young's modulus, the panel thickness and the

Poisson's ratio, respectively. The additional tension due to the panel stretching is given

by the integral:

r_ &_ 2 (._)_\T=(e,_/2a)J0 (O-7) _tx, -.-

and the aerodynamic force f(w) can be expressed as

"_ 1 Ow (2.3)f(w) = PU_:(Ow + )
M.= Ox _ Ot '

where p is the fluid density and ?.I_ is the flow Mach number. Let I( and V denote.

respectively, the kinetic energy and the potential energy defined by

1
fo Ow 2 (21)°(7) &,I;,(w) = :_

E

1 fo"{D.O2w)2 (1 N _ p)(Ow)2}dz,V,(w) = ._ (TZ, + oz

so that the total energy is given by

(2.5)

E, = Kt + Vt. (2.6)

To release the compressive force P, we first apply a tensile force Q at x = a. Then the

net compressive force becomes

R=(P-Q-N) (2.7)

and the modified equation (2.1) takes the form

02w O=w 04w

mot 2 R-_z_. + D Ox 4 - f(w). (2.8)
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o,, and integrate the resulting equation over 0 < x < a,If we multiply Eq. (2.7) by tb = -_- _ _

it yields the following energy equation:

0
E,,(w) : -_E,(w) :

02w &b Oaw ROw
{ D(_)(_ ) - (D Ox a Ox )d, }l_

a a 0113 2
(2.9)

Since the left end is clamped, we have

0W 0 3 W

m=0 and -0 at x=0. (2.10)
Oz Oza

At the right end, x = a, in addition to Q, we apply a twist moment M and a vertical

point-force F so that the boundary condition takes the form (see Fig. 3)

02w M and ( D Oaw R ow
D Oz 2 - Oa"----2- #)z ) = - F. (2.11)

Ti_e objective is to choose the control (Q, ?,f, F) properly to stabilize the system.

" '-' _, w/h c.,By introducing the scalings k = z/a, t = t(D/ma4) _''_ and = et the

initial-boundary value problem for the boundary control can be written in the following

dimensionless form:

02t;, _ 02_b , 04tb ^

R_,..._ ,.r Oy:4 -- f(tb), 0 < 3: < 1,
0£'

uS= tbo and -----==d,x at [=0,

tb = 0 and Od'tO
0---_-= 0 at i:=0,

02_ .03_ _ 0ta
and R-r7) = P at 3:= 1,

ox _

(2.12)

v¢_ere

with 15 = p/a2,_, = Q/a 2 and

rl 0tb 2 -

&5 O_

] ( ) = - ( + .y--E).

]'he remaining non-dimensional quantities are given by: /3 = paaU2/DM_,

q=pa2U/3,I_(DM) l/'2,tz'i=wi/h, i=0,1; ?_?I=Ma2/Dh and F=Faa/Dh.
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Next we consider the caseof freevibration without flow excitation, where the corn-

pressiveforce P is static. For simplicity, from now on, we shall drop the caret symbol

over the dimensionless variables. For no flow, we have ] = 0 so that Eq. (2.12) yields

02w _ 02w 04w
+ -h--L-_= 0, 0<x<l

Ot 2 l_-'ffhz2 owOz

w=w0 and m=wl at t=0,

omot
w=O and m=O at x=O,

Oz
02w

-'3.q_ _ Ow
M and (ww- R-=-)=F at x=l,

Oz 2 Ox a or"

(2.13)

where

R = AP+N with AP=(Q-P),

f 1 0LO 2

The corresponding kinetic energy K and potential energy 1," are

K = I(_(w_ 1 fl

i foir,(O'w)_ (Ap i VOw) 2

It can be shown that, in order to have a positive-definite V, we require AP + 1 > 0 or

Q must be chosen so that

(P-Q) < (1-5) < 1 for an 5' 5> 0. (2.14)

For P < 1, we simply taken Q = 0, or no tensile control is needed in this case. One

notes that P_- = 1 is the critical buckling load for a simply supported panel.

In view of the boundary conditions in Eq. (2.13) and the fact f =/5 = 0, the energy

equation (9) yields

Et(w) = FiJ,(t)- MOx(t), (2.15)

where _),(t) tb(t, 1) and 0,(t) = °'_(t, 1). For the energy E to decay, we will choose=

a feedback control pair of the form F = g(_)_) and M = h(t_) such that L', < 0. An

obvious choice is to assume g and h being linear,

F =--;Li'l and M = u_}l, (2.16)
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where # and u are some positive constants. They can be regarded as the damping

coefficients against the right end's transverse and rotational motions, correspondingly•

A substitution of (2.16) into (2.15) gives

L -- -#,_ - ,AI _<o (2.17)

This shows that, if the sub-critical load condition (2.14) is satisfied, the linear control

(2.15) will results in a decay in energy. In fact the rate of decay is exponential. To

verify this fact, we need to introduce a perturbed energy E_ as follows

E;(w) = E,(w) + _a,(w), (2.18)

where 0 < ¢. < 1 and

First, it is easv to show that

So that Eq. (2.18) leads to

G,(w) _1 Ow 0,_,= x(-g[)(_-7)dx.

IG,(w)l _ E,(_,)

(2.19)

(1 - ¢)E, < E[ < (1 + ¢)E,, (2.20)

or, Et and E_, as far as the exponential decay is concerned, are equivalent. Next, by

differentiating Eq. (2.19), invoking Eq. (2.13) and some mathematical inequalities, we

can derive the following inequality:

< -eE, -[/_ - _(1 -I- tt2)¢]_)[ - u(1 -

If we choose e in the range 0 < s < So < 1 with eo = min{1,2/_/(1 +/_2),l/u}, and

make use of (2.20), it follows from the above inequality that

• _

E_< (I+¢)E"

which implies

. , e -,\t
E; < Eae
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or, by noting (2.20)

Et < (,1-'_+_)Eoe-'\t, A = e/(1 + ¢).

Thus we have shown that the free vibration can be exponentially stabilized by a small

boundary damping together with a tensile control Q, which is necessary only if the

compressive force P exceeds a critical level specified by (2.1:1).

Now we consider the case of flow-induced vibration. Dropping the caret symbol over

the dimensionless quantities again, under flow excitation the controlled problem (2.12)

reads as follows:

a_'w a_w °4w 30wm aw+ _-2-g + + -),m = O, O<x<l,
Ot2 R-g-_-iz2owOz Ox Ot

w= w0 and --=u,1 at t=0,
<,at (2.'21)
OLV

w=O and --=0 at x=O,
Oz

c9z2 - M and (_wOx---_- R = F at x= 1,

where R = (:V+Q- P).3 and 7 are time-dependent. By making use of Eq. (2.21) and

integrating by parts, we can obtain the energy equation

where AP = (Q-/5).

First we choose the control law (2.16) and (2.14) for (P,F,M) as in the previous

case. Then, by applying some integral inequalities, Eq. (2.22) yields the following

inequality:

_At 1 (v2 dx

which is negative if

AP + _2/2_i < o.

Thus it is sufficient to set

Q any _>0. (2._:_)
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Then

_- _. (2.24)

Let E_ = Et q- _Gt as before. In this c_e, one can verify that

__
1

- [# - _(1 -I-/*=)_]512 - u(l - uc)D_

_< -sEt,

(2.25)

provided that 0 < _ < el _< 1 and

'-,' ' . (2.2_)el = min{1,2#/(l + v_),ll_,,%%,_bS(Ol._(Oj}

As in the free-vibration case. by noting (2.20), we conclude that

i + _._ -.\t
E__< (-7-___)/:0e , with A=s/(l+e),

which shows the exponential decay of energy by the given boundary control.

We remark that

1. By' a more careful examination of the conditions (2.14), (2.16) and (2.26) for stability,

they imply that the flow velocity can only have weak fluctuation which tends to zero

quickly as t ---* oc.

2. In lieu of (2.27), the exponential stability holds if

%%_{I,_kl+ #=/2v}= _, < 1. (2.27)

This condition means that both the rate of change of the difference (Q - P) and the

flow velocity are small. Since the governing equation holds for a high speed flow, the

condition is unrealistic.

3. In general, the boundary control as discussed here may not be sufficient to stabilize

the system. A more active control is required for this purpose.



To illustrate the analytical results,we consider the controlled system (2.21) in the

special form:

0_w 0% Z0w 0wOt2 R-'g-zTz_+ Oz + "Y-_ = o,
Ow "0 z)w(0,x) = _(_-cos2,-x) and -g/-/,

Ow
w=0 and --=0 at x=0,

02w Jw OZw Ow

Ox 2 - - v O-_z and c)x----_ - R -_z

=0,

0W

9?(2.... )

where

(2.2.0)

The associated energy of the system is given by

1 ' Ow)2 1R.Ow/, (O2w)2}dx. (2.30)E(t) = _ fo {(7? + .; (b-7 "+

To show the effect of boundary damping on the panel vibration, tile system energ:.

was computed based on a modal expansion. Since the boundary condition in (2.28)

is non-standard, the eigen-function expansion for the static problem cannot be used.

Instead we approximate the deflection w(t, z) by a truncated Fourier series as follov:s:

1 N

w(t,x) ,--,_,o(t)+ _{a,,(t) cos2,,=z + b,,(Osln2,',=._},
n,=l

(2.:3i)

where N > 1 is a fixed integer. When the above series is substituted into Eqs. (2.28),

we obtain a coupled system of (2N + 1) ordinary differential equations of the form.:

a,_(t)

b.(t)

= fx(ao, ax,...,a,.,,;b,,...,b:v),a,,(O) = a,.,,n= 0,1,...,:\',

= 9y(ao,a,,...,ag;bx,...,bg),b,,(O) =/3n, n = 1,2...,N,

The above system was solved numerically by the 4th-order Runge-Kutta method for

N = 2, 3, 4, 5. We found that for N = 5, the modal amplitudes a, and b,, are numerically

negligible for n > 3. Thus all the results to be shown were obtained by truncating the

series (2.25) at N = 3. The corresponding system energy E(t) given by (2.24) was

evaluated at u0 = 0.33 and various other parameter values. The numerical results were

summarized and displayed in Figs. 4-10, which exhibit the evolutions of the vibratioaal
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energylevelswith andwithout boundary damping (control). In the caseof freevibration

(fl = -7= 0), Fig. 4 showsthat, when # = u = 0 (without control) the energy is at

the constant level of 130 and, when # = u = 1.5 (with control), it does indeed decay

exponentially, in agreement with the theoretical prediction. For the ease of visualization,

in the sequent figures, the results, with flow excitations, for the uncontrolled and the

controlled cases were plotted separately. In Fig. 5 with flow parameters/3 = 50 and

-7 = 0 (without aerodynamic damping), the energy level oscillates periodically when

there is no boundary damping. By contrast, given the control parameters # = 2.5 and

u = 1.5. Fig. 6 shows the exponential decay of the system energy. Corresponding to

Figs. 5 and 6, similar results are displayed in Figs. 7 and 8 when the flow damping

parameter value was changed slightly" from ")' = 0 to "7 = 0.05. The most drastic effect

of the boundary damping is shown by Figs. 9 and 10 where the flow speed is high

(9 = 500) but the flow damping 7 = 0. Without control, the energy level osciall_._es

very rapidly, as seen from Fig. 9. This highly oscillatory state of energy can be reduced

to an over-damped state, as depicted in Fig. 10, by introducing a boundary damping

with control parameters/1 = 14 and u = 6.

3. Optimal Control of Linear Panel Vibration

Let us consider a viscous flow past over the elastic panel. The flow is governed by

the well know Navier-Stokes equation"

0_ 1

a-7+ v)a = --vp+ (:3.1)
P

where the notations are standard. For a slightly compressible flow, the continuity

equation reads

Op
0-7+ v. = 0. (3.2)

The panel is regarded as an elastic plate with thickness h, Young's modulus E and

Polsson's ratio "7. Under a uniform tension with T > 0 (or compression with T < 0)

and the fluctuating wall pressure, the vertical displacement _" of the plate satisfies the

following equation:

02(
p,,..--_ = TA( - DA2( + p,,, + q(_.,t) (a a)

9



wherep,,, is the plate density, p_ the wall pressure fluctuation, and q is the applied force

as the active control. The constant D is the stiffness of the plate defined by

Eh 3
D = (3.4)

12(1 _ .y2)"

According to the boundary-layer thcory, given an upstream velocity field /), the

flow near the plate can be determined by the Prandtl's approximation. In particular, if
Op

the panel is located on the z - y plane, the pressure gradient _ across the boundary-

layer is nearly constant, where 2 = (x, y, z). Suppose that the mean flow outside the

boundary-layer is parallel to the plate so that 0 = (U_,0,0) -t- Ux(2, t), where b_x is a

small perturbation. To derive the equations for acoustic quantities ill, pl and pl, we let

=5o+_I,P=Po+Pl and p=po+pl (3.5)

where fi0,P0 and p0 are flow variables associated with the mean flow. As in the stability

analysis, we introduce a parallel flow approximation. Then, in view of (3.5), one obtains

the acoustic equations from (3.1) and (3.2) by linearization:

O/_---L+ (rio' V)fil - 1 Vp,, (3.6)
Ot Po

Opl

o--T + V. (PoU, + Pxfio) = O. (3.T)

For an isentropic flow, Pl and Pl are related by

m = m/c2, (3.S)

where c is the speed of sound for the unperturbed flow. Aside from a static displacement,

the vibration of the panel is described by the perturbation w of equation (3.3) as follows:

02w
- TAw - DA2w + f + q(i:, t), (3.9)

Pw' Ot 2

where f -- /5_ is the fluctuating part of the wall pressure excited by the unsteady

boundary-layer flow. The coupling of the acoustic equations (3.6) and (3.7). and the

plate equation is through the boundary conditions. For the plate equation (3.9), since

10



it is simply supported by a periodic structure, we need only to analyze the problem

over a fundamental domain 0 _<x _< a, 0 _< y _< b and impose the boundary conditons:

w(z,y,t)=O at x=0, a; y=0, b. (3.10)

Op = 0 across the boundary, the wall pressure/5_, can be
Since the pressure gradient 0--_" "'

determined from the perturbed potential flow field U1 through an approximate Euler's

equation, that is,

/_ = F(0"I). (3.11)

To counter this excitation, a control force q(z, y, t) was introduced in (3.9). The objec-

tire of the active control is to minimize the average vibrational energy and tile control

cost:

1 fo T; Ow)2 w ,2 l_q2}dtdxdy, (3.12)d(q) : ,5-Y {°(-b7 +3(zw) +' vwJ +

where the time T may be infinite, D is the basic domain {0 _< x _< a,0 < y _< b}; a,,'3,

and k are positive constants. In the language of the optimal control of a distributed

parameter system, the equation (3.9) is known as the equation of state and J(q) defined

by (3.12), the objective or cost functional. Here the physical problem of vibrational

control reduces to an optimization problem: Given the wall pressure excitation /5_,

find an optimal control q*(z, y, t) from a certain admissible class Q of functions which

minimizes the objective functional J(q), that is,

J(q*) : min{J(q), q in Q}. (3.13)

To obtain an analytical solution, we consider the case of simply supported boundary

conditions:

w(x,y,t)=Oatz=O,a; y=0, b,

O_w 027,0 .

(z,y,t) = 0 at z = O,a and --_---7,(x,y,t) = 0 at y = O,b. (3.14)
Ox 2 uy"

The initial conditions are given by

w(z,Y,0) = w0(z,Y),
OU)

o--{(x,y,o)=

ll



It is well known that the set of functions

m/r 1277

c2m,,(x,y ) = 2 sin --x sin --_-y, m,n = 1,2,... (3.16)a

are orthogonal eigenfunctions associated with the plate equation (3.9) and the corre-

sponding eigenvalues are

7 m_r 2 nTr)212. (3.17)Am,, = T[(m_r) 2 + ( )2] + D[(---_-') + (T
a

In terms of the above eigenfunctions, we can expand the displacement w, the wall

pressure f and the control as follows:

oo

w(x,y,t)= E Wm._(t)_m,_(x,y), (3.18)
re,n=1

f(x,y,t)= _ f_,r_(Q;m_(x,y) (3.19)
mJ$=l

and

_, x • (3.20)q(x,v,t) = E qm,.( )_m_(,_),

where the coemcients Win,, etc. are computed by

fo°fobWm,_ = (w,_,,,,} = w(x,y,t)_,_._(x,y)dxdy,

and so on.

(3.15) and (3.12) yields the following uncoupled system of equations:

{ pwWmn + )_mnWmn = finn(t) + qmn(t) ,w,.,,(o) = _o,,,,,., ,/,,.,.(o) = _,,,,.

and

A substitution of the expansions (3.18)-(3.20) into the equations (3.9),

(3.21)

CO

J(q)= E Jinx(q),
m,n=l

(3.22)

where

1/oTJ""(q) = 9-_ {ad'2m"(l) + P_"W2m'_(t) + kq_,,(t)}dt (3.23)

12



for m, n = 1, 2,.-.. Since the modes are uncoupled, if the cost J,,,, for each mode is

minimized, so does the total cost J.

For a given (m, n)-mode, dropping all the subscripts, we are led to consider the so-

called "linear r%ulator problem in optimal control: Find the control q in the equation

pgv + ,\w - f(t) + q(t) , (3.2-1)w(0) = wo, _(0) = =,,,

which minimizes

1 for{_,2j(,fl = _g_¢ +/,_,_ + kq_},tt , (3.'_,5)

where #,,,n is given as in k,,_,_ with D and T replaced by/3 and 7, respectively. By the

method of adjoint state, b] , for tile cost to be minimal, tile state tu and its adjoint t,

must satisfy the opzin',::!i"_: system:

pff, + ,\w = f(t) -I- _(a_c'- v), (3.26)w(0) = w(0), e(0) = _,,,

and

/:, + ,\,:= (o,,\+ _)w, (3.2:)v(T) =/,(T) =0.

The optimal contro! q* is given by q = }(ctw -v). One notes that, due to the coupling

between w and v, the above system (3.26)-(3.27) is a two-point boundary-value problem.

Numerically it can be solved by the shooting method. Some numerical results for the

original modal equations (3.21) and (3.23)have been obtained.

For example, we choose a = 4rr, b = rr, Wo = w, - 0 and T = 4, and set

1 cos(m =+n=)l/=t, re, n=1 2, ....
f,,,,,(t)= (m 2 + n2)

All the parameters are taken to be one except for /3, which is zero. The maximal

amplitude of vibration under a optimal control has been computed and some results,

corresponding to 4 modes (m + n = 4), are shown in Fig. ll to Fig. 13. In the above

figures, the solid curves represent the controlled amplitudes, which are in contrast with

the uncontrolled ones. It is seen that the control is very effective in reducing the

vibration amplitudes. For an independent interest, the controlled mode shape at t = 4,

13



is plotted asshown in Fig. 14.

4. Optimal Control of Nonlinear Panel Vibration

Similar to Eq. (2.1), under a tension T and without flow excitation, a simplified

model of the control of nonlinear penal vibration, in lieu of Eq. (3.9), is given by

02u" O2w 04w (4 1)
m--0-_- = (T + :V)-_7 - D-8-Tgz4 + f(z,t) + q(z,t),O < x < a,

with w(x,O) g(x), and a_,= -5i-(z,0) = h(x), where, as before,

Eh _.Ow

N- 2a fo (-b-7)_& (4.2)

For a simply supported beam, we have

02w
u' = 0 and - 0 at z = 0, a (4.,1)

0d: 2

while, for a clumped beam, the following holds

cow
_L'=0 and -- =0 at a:=0, a. (t.,1)

02?

Other boundary conditbn are possible. In the subsequent analysis, we consider the

simply supported case (4.:3) only. The objective is to choose an optimal control q*(x, t)

which minimizes the following cost function:

1 (To r" Ow)o 8_w tJ }dt dx.J(q) - 2To.. ]o {a( c-_" + _( cOz--_5) + + kq=

where a,/3 and/c are positive constants.

(4.,5)

The necessary condition for minimum is the vanishing of the variation 6J of J, or

1 T a 8112 8_qW /_ (_2W Oq2 _hZL']o ]o + + (4.6)6a(q) - T {_(%Tl(-&-1 (_7:)(-_-_:

dtdz = 0,

where 6w and 6q denote the variations of w and q, respectively. Note that, by taking

the variaiton of equations (4.1) and (4.3), we can relate 5w to 6q by the variational

equation:

02_hw
- (T + N,) 0=6w D °':946w - (6N,) 0:am

Maw = p Ot2 _ + Ox4 _ = 6q,
8

_w - _&v=O at t=O,

8_
6w - 5w=O at x=O,a,

cox2

(4.7)

14



where

r_ Ow 05w

_N, = _]o (_)(TT/lax'
Eh

with _ -
a

(4.8)

Upon eliminating 5q from Eq. (4.6) by Eq. (4.7) and noting Eq. (,I.i), it yields

1 /oTff " O2w _O4w_J = T {{-_TV + #_ + w)Sw+ _q,,_ISw}dtdx = o,

which implies, after integrating by parts several times, that the optimal control q must

satisfy the following equation.

and the terminal - boundary condition:

0q COcOw

q = 0 and -_+pk cOt -0 at t =T,

O2q-o at z=0 a
q - cox 2 ' •

(4.to)

The equations (4.1) and (4.9) together with the conditions (4.3) or (4.4) and (4.10) form

the optimality system. A peculiar feature of the system is that the state w is coupled

to the control q which satisfies a terminal condition. This has caused some difficulty in

computing the optimal solution.

To solve the system, we proceed by applying the Galerkin method of approximation.

For the simply supported case (4.3), we may use the following set of admissible function

_,_(x) _/'_ sin nzr--,n = 1,2,... (4.11)
a

as an orthonormal basis. Now we expand w and q as follows:

_(_,t) = E _,,(tM,(x),
n=l

OC

n----[

(4.12)
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Substituting the series(4.12) into equs. (4.1) and (4.9) yields

_ (4.13)m_o,,(t) + [(T + Q) + DA,,]A,,w,, = A(t) + q_,(t),

2 2 2
mFl,,(t ) + [(T + Q) + D A,,]A,,q,_

oo

m=l

7_ _ 1,2,... ,

w_(0) = g.,_.(0)= h,, (4.1,1)

%(T) = O, itn(T) + ff_kd'..(T)
O,

• d • ?'tTf
where w_v = g;u_,_, f,_ = fo f_,_dx, etc; A,_ -- --_ and

oo

Q Y:::= A2l win.
rn_l

By a modal truncation, the above infinite coupled system can be reduced to a finite

system as follows:

- ,2 _ (4.15)row,v,,, + [(T + Q,v) + D,%]l;,w,v,,, = f,, + q,,,
N

2 2 2 ,m,_x,_ + [(T + Ox) + D,\,,]A,,qx,n + ,\., _L,v,,-,(_ _,\._ Wu,,,,qX,m)
rn:l

= _[_;,,_ = (1+ 9,\4,)w,,,q,_ = 1,2,...,x,

which are subject to the conditions as in (14), where QN is N-term truncation of Q.

The truncated system (4.15) can be solved numerically. The numerical solution of

the truncated problem poses two technical difficulties: the large scale in computation

and resulting two-point boundary values given in time domain. As a result, we can only

handle a small set of modal equations. To be computationally efficient, we adopted the

so called shooting method. The method consists of solving the boundary value problem

as an initial value problem by assigning the missing initial data and then adjusting the

data by interations until the end point conditions are met. The interatlon procedure is

based on a fixed point algorithm in locating the zeros of a function.

The numerical computation has been carried out in a SUN workstation. The results

confirmed the theoretical prediction that the feedback control can drastically reduce the

panel fluttering and it is more effective in suppressing the lower [requence vibrations. As
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an illustration, by suitably choosingthe parametervalues,someresults for a three mode

calculation are shownin Figs. 11-13under a time-harmonic wall pressurefluctuation.

For the given numerical results, we set X = 3, fi(t) = (sint/2 + cost/2)/3i, and the

parameter values: m = 1,a = 0.1,/3 = 1,7 = 0.01,D = 0.02, k = 1. The domain

of computation is given by 0 < z _< 4 and 0 < t <_ 4. The amplitudes of the first

three modes Zl, Z2 and Za are plotted in Figs. 11-13, where the solid curves depict

the amplitudes for the controlled system in contrast with the chain-like curves for the

uncontrolled case. The reduction in the modal vibration amplitudes is very remarkable.

Consequently, if we consider the sound generated by the vibrating panel, the sound

radiation power or the aero-acoustic noise level will be reduced drastically by the active

control.

5. Conclusions

Several problems in the control of panel vibration due to the flow excitation were

studied. The main research results are presented in the previous three sections. The

problems were solved analytically and numerically. Based on these resuhs, we can draw

the following conclusions:

In the boundary control of nonlinear panel vibration, by means of the energy method

and some mathematical inequalities, the boundary stabilization of a vibrating nonlinear

elastic panel was studied. The panel is clamped at one edge and free to vibrate at the

other edge. In general, the panel is subject to a compresssive in-plane loading combined

with an aerodynamic forcing. Without any control, the panel would flutter due to flow

induced instability. To stabilize the panel, a boundary control was introduced as the

combination of a bending moment, a vertical point force and a tensile force applied to the

free edge. Two cases, corresponding to the absence and the presence of an aerodynamic

loading, were treated separately. For no flow, this is the case of free vibration. Even

though the energy of the uncontrolled system is conserved, with initial disturbance, the

system may buckle or sustain a persistent large-amplitude oscillation. To render the

energy an exponential decay, it was found sufficient to apply a tensile force, if necessary,

to reduce the net force to a subcritical level and, at the same time, to introduce a

boundary damping. The damping mechanism consists of a pair of frictional force and
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torgue, which are linearly proportional to the transverse and the angular velocities

of the right edge, respectively. Therefore, if the compressiveforce is subcritical, the

passivecontrol in the form of a boundary dampingsufficesto stabilize the system. In an

analogoussituation, the result seemsto be in agreementwith the experimental evidence

that a boundary damping is effective in suppressingthe panel vibration [6]. In the

presenceof unsteadyflow and compressiveforce, the panel is subject to flow excitation.

If the flow velocity isoscillatory and decaysrapidly, it is possibleto stabilize the panelby

applying a time varying tensile force Q(t) together with a boundary damping as before.

But the control force Q nmst follow the flow fluctuation closely. For this reason, such

scheme is not robustic. However, for slowly varying compressive force and, at the same

time, small flow parameter f32/'7, the system can be stabilized as in the free-vibration

case. It is believed that, when the flow parameter is large, the boundary control may

not be sufficient for stabilization and a stronger mode of con_,ol, such as a distributed

control, will be required for this purpose. The preliminary results of this results were

summarized in a paper which was published in Recent Advances in Active Control of

Sound and Vibration, Volume 2, [T]. The full paper [S] containing the analytical and

numerical results was accepted by the Journal of Sound for publication and Vibration

and will appear shortly.

In the control of both linear and nonlinear panel vibrations, we investigated some

optimal control problems with and without flow excitations. For the linear problems,

the vibration control of a simply - supported rectangular plate was treated. The con-

trol objective is to minimize the objective function, which is the sum of the vibrational

energy and the cost of control. For the nonlinear control problem, a simplified panel

equation similar to the boundary control problem was used. By the optimal control

theory for distributed parameter systems, the problems can be solved by deriving the

optimality equations for the adjoint states. These equations coupled with the dynamical

equations for the panels must be solved to yield the optimal control forces. For approx-

imate solutions, we adopted the Galerkin method or the modal expansion to reduce

the governing partial differential equations to a finite system of ordinary differential

equations by truncation. For the linear elastic plate, the control of each modal ampli-
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rude reduced to the so-calledlinear regular problem which can be solved with relative

ease. For the nonlinear control problem, the modal equations and their adjoint-state

equations are nonlinearly coupled and the solutions are difficult to obtain. However

numerical solutions were carried out. The numerical results show clearly that the con-

trol is very effective in suppressing the panel vibration and the sound generation by the

elastic panel. The results will be summarized in one or two papers to be submitted for

publication.
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Figure 14: The uncontrolled mode shape with m = 2, n = 2 of T = 4.
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