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Abstract

The unsteady structure of a supersonic jet is highly
three dimensional, though the mean flow is axisymmet-
ric. In simulating a circular jet, the centerline represents
a computational boundary. As such, spurious modes can
be generated near centerline, unless special attention is
given to the behavior of the 3D structure near the center-
line. Improper treatment of the dependent variables near
the centerline results in the solution diverging or being
suitable only for small amplitude excitation. With a care-
ful weatment of the centerline formulation, no spurious
mode is generated. The results show that a near linear
disarbance growth is obtained, as the linear stability the-
ory indicates. At high levels of excitation, nonlinear de-
velopment of disturbances is evident and saturation is
reached downstream.

L. Introduction

Jet noise suppression has become a critical issue for
the development of high speed civil transport plane. The
jet noise is generated by the time dependent flow fluctu-
ations in the near field which are associated with pres-
sure fluctuations that propagate to the far field producing
the radiated sound. Experiments have shown that the
measured sound fields appear to emanate from a region
about 10 diameters downstream of the nozzle exit [1].
This noise-producing initial region of the jet is character-
ized by a large scale vortical structure and can be viewed
as having a wavelike nature. It is believed that the large
scale structure is more efficient than the small scale
structure in radiating sound [1-5]. This indicates that the
initial development of the jet should be clearly resolved
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so that an accurate noise prediction can be made. The
near flow field is described by the unsteady Navier-
Stokes equations. However, direct numerical simulation
can not resolve all scales of motion for high Reynolds
number flows. It is appropriate to perform large-eddy
simulations to accurately capture the large scales of mo-
tion while modelling the sub-grid scale turbulence.

The use of large-eddy simulations (LES) as a tool
for prediction of the jet noise source has been proposed
by Mankbadi et al. [6]. Not only the mean flow must be
calculated accurately, but also the physical flow fluctua-
tions must be accurately predicted since the sound source
is given in terms of the flow fluctuations. Since the com-
putational domain is usually finite, the numerical bound-
ary conditions can generate spurious modes that render
the computed flow fluctnations totally unacceptable. In
simulating a circular jet, the centerline (r=0) represents a
computational boundary. Boundary condition for axi-
symmetric mean flow is obvious. However, the unsteady
structure of a supersonic jet is highly three dimensional,
even though the mean flow is axisymmetric (see, for in-
stance, Mankbadi [S], Michalke [7]). As such, spurious
modes can be generated near the centerline, unless spe-
cial attention is given to the behavior of the three dimen-
sional structure near the centerline, which is the subject
of the present work.

The numerical solution of the Navier-Stokes equa-
tions in cylindrical coordinates requires the proper treat-
ment of the discretized equations at the centerline. In
axisymmetric jet flow, Mankbadi et al [6] derived a new
set of equations at the centerline from the original equa-
tions using L Hospitals rule to circumvent numerical
problems associated with the geometric singularity in the
formulation. In the present study, three approaches to the
centerline treatment are considered, namely, asymptotic,
averaging and interior points approaches. The effect of
sub-grid scale turbulence stresses is not taken into ac-
count in this study to avoid any uncertainty from the tur-



bulence models. A supersonic jet with Mach number =

1.5, Reynolds number = 1.27 x 109 based on the nozzle
exit diameter and jet centerline parameters is considered.
The outer stream is 0.25 of the jet exit velocity, and the
jet temperature ratio is 0.5. Time-harmonic disturbances
are imposed at the inflow boundary of the jet, and the
subsequent development of disturbances are examined.

2. Governing Equations

The flow field of a supersonic jet is governed by the
compressible Navier-Stokes equations, which can be

written in cylindrical coordinates as
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Here Q is the unknown vector, F, G, and H are the fluxes
in the x, r, and ¢ directions, respectively; S is the source
term that arises in ¢ylindrical polar coordinates; and k is
thermal conductivity. The total enthalpy is I, the total en-
ergy is E, and o;; are the viscous stresses. This system of
equations is coupled with the equation of state for a per-
fect gas.

3. Numerical Scheme

The importance of the dispersion and dissipation of
a given scheme, which used in connection with compu-
tational aeroacoustics, were highlighted by Hardin [8].
Both effects are crucial in computational aeroacoustics,
and can render the computed unsteady part of the solu-
tion completely unacceptable. As such, high-order accu-
rate schemes are required for problems in computational
aCT0acoustics.

A fourth-order accurate in space, second-order accu-
rate in time scheme is used, which is an extension of the
MacCormack scheme by Gottlieb and Turkel [9]. Mank-
badi et al. [6] used this scheme to study the structure of
axisymmetric supersonic jet flow and its radiated sound.
Ragab and Sheen [10], and Farouk, Oran and Kailasan-
ath [11] have also successfully applied this scheme for
the study of nonlinear instability problems in plane shear
layers. Sankar, Reddy and Hariharan [12] performed a
comparative study of various numerical schemes for
acroacoustics applications, and found that this scheme
offers high spatial accuracy. In this scheme, the operator
is split into three one-dimensional operators and applied
in a symmetric way to avoid biasing of the solution:
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where L represents the one-dimensional operator. Each
operator consists of a predictor and a corrector steps, and
each step uses one-sided differencing:
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and likewise for the radial and azimuthal directions. The
scheme becomes fourth-order accurate in the spatial de-
rivatives when alternated with symmetrical variants. Let
L, be the one-dimensional operator with forward differ-
ence in the predictor and backward difference in the cor-
rector, then L, will be the one-dimensional operator with
backward difference in the predictor and forward differ-
ence in the corrector.

o Bowndars Conilit

The scheme uses one-sided differences for the flux-
es. A cubic extrapolation is used to obtain the fluxes at
two ghost points outside the computational domain in or-
der to update the boundary points, i.e.

Fpe1= 4F <6F, 1%4Fy o-Fg 3 (10)

Baa = 5 m-2 (1)
The physical outflow boundary conditions for the com-
putation are derived using linearized characteristics
[13,14] to permit the unsteady flow properties to pass
without producing non-physical reflections. A summary
of the outflow boundary conditions is given in Mankbadi
etal. [6].
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The inflow was taken to be the mean flow with a hy-
perbolic-tangent profile plus time-harmonic disturbanc-
es. The initial mean axial velocity profile is given by

Michalke and Hermann [15] as
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locity of coflow and 6 is the momentum boundary layer
thickness of the jet shear layer. The momentum thickness
0 and radius r are narmalized by the nozzle exit radius R.
The corresponding temperature is specified by the Croc-
co’s relation, which can be expressed as
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where M is the Mach number. The time-harmonic distur-
bances consist of a single, symmetrical pair of the first
helical mode, i.c.

[wvwpp]=@Me cos (¢) + CQ14)

where a is the wavenumber and CC is the complex con-
jugate. The angular frequency ® is chosen such that the
corresponding Strouhal number St=R2R)/u;=0.125. The
eigenfunctions 4Xr) are obtained from the solution of lin-
ear stability equations for velocities, density, and pres-
sure respectively.

O = [a() v() %) P p(1) (15)
We now focus our attention on the flow behavior near
the centerline, as r approaches zero.
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In implementing the fourth-order scheme near the
centerline, two ghost points will be needed for updating.
We found that using two ghost points near the centerline
generates nonphysical oscillations and causes the code to
blow up. Instead, we used the second-order MacCor-
mack scheme for updating this point. Therefore, only one
ghost point is needed. Three approaches to centerline
treatment are considered and discussed below.

i(ax-ot)

Starting from the Navier-Stokes equations, and re-
quiring that the flow variables should be finite for r=0,
we find that the azimuthal velocity w must satisfy the dif-
ferential equation

2
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The solution for w near the centerline can thus be written
as

w = Acos¢ + Bsing an

We chose to study a top-bottom symmetrical jet, i.e. the
three-dimensional helical modes come in pairs as the ex-



perimental investigation of Cohen and Wygnanski [16],
and the theoretical investigation of Mankbadi [S5,16]
have shown. In this case, the constant A in the above
equation is set to zero. The formulations foru, v, pand p
can be derived in the same way. It follows from the Navi-
er-Stokes equations that the flow behavior at r=0 can be
written as
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These equations are valid at r=r,, where r,, is a small
quantity and is taken to be 0.01 in the present study. Thus
the above equations describe the solution at ¢ on the cir-
cle r=r,, in terms of the solution at ¢,,.. In implementing
this condition, the solution at ¢, is obtained by taking the
average of the values at 0° and 180°.

5.2 Averaging
Another alternative that can be used is the simple averag-
ing. The idea is that the flow variable at centerline r=0 is
single-valued and independent of the azimuthal direc-
tion. In implementing this approach, the flow variables u,

v, W, p, and p at r=0 are taken to be the azimuthal average
of all points at r=Ar.

5.3 Centerli et inf

The centerline boundary condition is in fact an arti-
are used with r starting from zero. Imagine performing
full jet simulation with r extending from —eo 10 oo, thus
point “a” closest to the centerline (figure 1) can be treat-
ed as an interior point. If a second-order scheme is used,
then the flux at point “b” is needed for updating point
“a”. Since we are solving half a jet, point “b” is a ghost
point. But because of symmetry, the flux at point “b” can
be related to that of the interior point “c” as follows

=M, (19)
-N (20)

where M represents the mass, axial or radial momentum,
or energy flux, while N is the momentum flux in the az-
imuthal direction.

6. Results and Discussion

A supersonic jet with Mach number 1.5, based on
the jet exit parameters, is considered in this study. The
velocity ratio uy/y; is 0.25, and the temperature T,/T; is
0.5. The Reynolds number based on the jet diameter and

jet exit centerline velocity is 1.27x10°, The parameter,
momentum thickness 6, in the initial axial velocity pro-
file is 0.125. The inflow is taken to be the mean plus the
time harmonic disturbance.

Q= Q+e-Q @1)

where Q and Q' were given in the previous section, and
€ is the input excitation level. The computational domain
(as shown in figure 2) extends S radii in the radial direc-
tion, and 50 radii in the axial direction. ¢ ranges from 0
to 180 degrees in the azimuthal direction, since we con-
sider a top-bottom symmetrical jet, and only half of the
circular jet is solved. The computational grid consists of
300x100x13 mesh points in the axial, radial and azi-
muthal directions respectively. The mesh is uniform in
the axial and azimuthal directions, and stretched in the
radial direction with concentration of the grid points
around r=R. The computations started with a time step
corresponding to a CFL number of 0.3, and later on, after
the initial transient purged out of the computational do-
main, a finer time step was used to collect the computed
data for use in Fourier transform.

Figure 3 shows a snap shot of the predicted density
contours using the asymptotic formulation, and a clean
behavior near the centerline is evident. The excitation

level € is 1x10°5 in this case. For the sake of comparison,
figure 4 shows a snap shot of the density with no careful
treatment of the centerline. These results were obtained
using a second-order MacCormack scheme for the points
at r=r,+Ar, and second-order extrapolation for the points
atr=t,,. As indicated in figure 4, nonphysical values were
generated near the centerline. Figure S shows the spectra
at r=r,, x=40R. This figure shows that the amplitude
peaks at the forcing frequency St=0.125 and its harmon-
ic, and no spurious modes were generated when the as-
ymptotic formulation is used. Without careful treatment
of the centerline, spurious modes were produced that
rendered the solution totally unacceptable.

Figure 6 shows the growth of the input axial velocity
disturbance at r/R=1 for several excitation levels using



the asymptotic formulation. The time span in which the
data was collected is 16 characteristic times, where the
characteristic time is defined as the ratio of nozzle exit
radius to the jet centerline velocity. This time span corre-
sponds to the period of the input disturbance when the
Strouhal number is 0.125. Fourier transforms are per-
formed for the collected time dependent data to obtain
the amplitude of the disturbances at each location. As
one can see in figure 6, the disturbance grows linearly, as
linear stability theary indicates. At high levels of excita-
tion, nonlinear effects occur and saturation is reached
downstream.

Next, we show the results obtained using simple av-
eraging at the jet centerline. A snap shot of the predicted
density contours is shown in figure 7. Clean behavior
near the centerline is obtained. Figure 8 presents the
growth of the input axial velocity disturbances at /R=1
for various excitation levels. An initial linear develop-
ment of disturbances can be clearly seen and nonlinear
effects take place when moving further downstream. The
saturation of disturbance growth is also reached down-
stream.

Figure 9 shows a snap shot of the predicted density
contours for e=1x10" using the interior point approach.
No nonphysical value is generated near the centerline ex-
cept the region near the outflow boundary. Figure 10 pre-
sents the growth of the input axial velocity disturbances
at r/R=1 for various excitation levels. The same phenom-
enon as those of the previous two approaches occurred,
i.e. an initial linear growth of disturbance followed by its
nonlinear development. The saturation of disturbance
growth is also reached downstream. Figure 11 shows the
comparison of the growth of axial velocity disturbances
at r/R=1 using the three different approaches. The results
obtained using the interior point approach have a slightly
higher growth rate than the results obtained using the as-
ymptotic and averaging approaches.

The three-dimensional structure of the flow field is
shown in figures 12-14. Figure 12 shows the snap shot of
the computed velocity vectors in r-¢ plane at x=283,
33.3 and 38.3. As demonstrated in this figure, the cross
flow velocity increases and changes its direction whea
the flow goes downstream; a clear evidence of the devel-
opment of streamwise vorticities. Figure 13 shows the
kinetic energy and vorticity contours at ¢=0 and 180 de-
grees. It is seen that the symmetry of the flow no longer
exists downstream. Figure 14 shows the iso-surfaces for
the kinetic energy and vorticity magnitude at time t=100.
The helical nature of the structure and the roll-up of vor-
tices are evident.

1 Conclusions
Direct simulations of a supersonic round jet flow

field were presented with emphasis on the numerical
treatment of the centerline (r=0). Three approaches, as-
ymptotic, averaging and interior point, were considered
in the present study. Similar results were produced by all
three approaches; a clean behavior of the flow near cen-
terline, linear growth followed by nonlinear develop-
ment of the disturbances, and the helical natural of the
flow structure. Currently, attempts are under way to
patch the computed nonlinear flow field to a linearized
Euler solution to obtain the far-field sound.
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Fig. 1 Schematic of meshes near centerline, r-¢ plane.
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Fig. 3 Snap shot of the predicted density contours at t=100 using asymptotic formulation, (a) r-¢
plane, x=40 (b) x-r plane, ¢=0 deg.
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Fig.4 Snap shot of the predicted density contours at t=100 using extrapolation, (a) r-¢ plane, x=40
(b) x-r plane, $=0 deg.
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Fig. 5 Comparison of axial velocity spectraat  Fig. 6 The growth of axial velocity disturbance
the centerline, x=40, ¢=0 deg. at r=1 using asymptotic formulation.
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Fig. 7 Snap shot of the predicted density contours  Fig. 8 The growth of axial velocity distur-
at t=100 using averaging approach, x-r plane, $=0 bance at r=1 using averaging approach.
deg.

0
2}
-+
=
? 5
=
8+
ol W i e=10e5 N
l (1% AR ©=25085 N
=X & i ¥
.10 5 ~- V/"
_‘2 i A A A e
) 10 20 ) 40 S0

Fig. 9 Snap shot of the predicted density contours  Fig. 10 The growth of axial velocity distur-
at t=100 using interior point approach, x-r plane,  bance at r=1 using interior point approach.
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Fig. 11 Comparison of the growth of axial
velocity disturbance at r=1.
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Fig. 12 Snap shot of the computed velocity vectors at t=100 in r-¢ plane, (a) x=28.3 (b) x=33.3 (¢)
x=38.3.
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(a)

(b)

Fig. 13 Snap shot of the predicted kinetic energy and vorticity contours at =0 and ¢=180 deg.,
t=100, (a) kinetic energy, (b) vorticity magnitude.

(a)

(b

)

Fig. 14 Snap shot of the predicted kinetic energy and vorticity isosurfaces at t=100, (a) kinetic
energy=0.5, (b) vorticity magnitude=0.8.
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