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Enhanced Analysis and Users Manual for
Radial-Inflow Turbine Conceptual Design Code RTD

Arthur J. Glassman®
University of Toledo
Toledo, Ohio 43606

SUMMARY

This report presents modifications made to a radial-inflow turbine conceptual design code,
herein named RTD. The analysis is based on meanline flow through the stator and into the
rotor, and on equal span-fraction sectors at the rotor exit. Input design variables include flow,
power, and rotative speed. The output presents rotor tip diameter, flowpath dimensions,
diagram velocities and angles, and efficiencies. Design parameters that can be varied
include stator-exit angle, rotor-exit tip and hub radius ratios, and rotor swirl distribution.

Modifications were made to enhance the design-code capabilities consistent with those of
a companion off-design code. For pivoting vanes, a stator-endwall clearance flow was mod-
eled by a vaneless-space flow through the clearance height. The rotor-inlet slip model and
the rotor-blade-number calculation were changed to allow rotor-blade-inlet angles other than
radial, thus permitting the use of swept rotor blades. Also for the rotor, splitter blades can
now be used between the full blades.

Added to the loss model were stator and rotor trailing-edge blockage losses and a
vaneless-space friction loss. The disk-friction model and the rotor-exit clearance loss corre-
lation were modified. The Reynolds number dependency and level of the stator- and
rotor-passage losses were then calibrated based on experimental turbine performance data
from several radial-inflow turbines. The selected model performed very well in predicting the
efficiency variation over a more than tenfold range of Reynolds number. The predicted
efficiencies for three turbines had a maximum deviation of about 1 point as compared to
measured values.

This report also serves as an updated users manual for the RTD code. Program input and
output are described, and sample cases are included for illustration.

INTRODUCTION

Performing preliminary studies for power or propulsion systems requires the capability to
rapidly produce conceptual designs of the components in order to determine geometry,
performance, and weight. The typical turbomachine "design” code enables a study of the
interrelationship of the number of stages, the flowpath dimensions, the gas velocities and
flow angles, and the resultant variation in efficiency. A computer code capable of performing
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this function for a radial-inflow turbine was presented in reference 1.

A recent evaluation of the aforementioned code, herein named RTD, resulted in the
identification of desirable modifications. To make the modeling compatible with the
off-design code of reference 2, capabilities were required to accommodate pivoting stators,
swept (i.e., non-radial) rotor blades, and splitter blades. Also, the components of the loss
model would have to be expanded to include stator and rotor trailing-edge losses and a
vaneless-space loss. The disk-friction and the rotor-exit clearance loss models needed
adjustment. Since the loss model of reference 1 was calibrated using only a single
experimental point, the use of a more extensive database was highly desirable.

This report presents the analytical modeling associated with the above modifications. Also
presented is the calibration of the loss model using data from several turbines to define the
Reynolds number variation and the level of the efficiency. The report also serves as an
updated users manual for the RTD code. Program input and output are described and sam-
ple cases are included for illustration.

SYMBOLS
A area, ft®*
Deq equivalent diameter, ft
f Fanning friction factor
g gravitational constant, (Ibm)(ft)l(lbf)(secz)
Ah'  turbine specific work, Btu/lbm
J energy dimension constant, (ft)(Ib)/Btu
Kyt backface radius correction factor
Kre Reynolds number correlation coefficient
K, radius-ratio correction factor
L loss, Btu/lbm
| surface length, ft
/ vaneless-space flow length, ft
n number of blades
Ap’ absolute total pressure drop, psf
Ap” relative total pressure drop, psf
blade-to-blade distance, ft
Reynoids number
radius, ft
trailing-edge thickness, ft
blade speed, ft/sec
absolute velocity, fi/sec
relative velocity, ft/sec
mass flow rate, Ibm/sec
absolute flow angle, deg
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4] relative flow angle, deg

Y meridional flow angle, deg

&im  limiting radius ratio for correction factor
0 momentum thickness, ft

n viscosity, Ibm/(ft)(sec)

P density, Ibm/ﬂ3

Subscripts:

av  average
b blading

bf  backface
cl clearance
h hub

m mean

opt optimum
ref reference

r rotor or radial component
s stator

t tip

te trailing edge

tot total

u tangential component

VD velocity diagram

vs vaneless space

0] stator inlet

1 stator exit - outside trailing edge
1a rotor inlet

1i  stator exit - inside trailing edge
2 rotor exit - outside trailing edge
2i rotor exit - inside trailing edge

ANALYTICAL MODELING

Enhancements were made to an existing radial-inflow turbine design code (ref. 1) to
improve its accuracy and to make the modeling compatible with that of a companion
off-design code (ref. 2). The analytical models, where applicable, are those used in
reference 2; in some instances, however, changes were made due to shortcomings in the
original modeling. These changes also have been made to the off-design code so that the
two codes are compatible. Presented in this section are the analytical models for the stator-
endwall clearance flow, the rotor-inlet slip, the rotor-inlet blade number, the splitter blades,
the rotor clearance loss, the disk-friction loss , the stator and rotor trailing-edge losses, and
the vaneless-space loss.



Stator-Endwall Ciearance Flow

The stator-endwall clearance flow is modeled exactly as in reference 2. At the stator exit,
the clearance flow has the same total temperature and static pressure as the passage flow.
By assuming the same loss in total pressure, the clearance and passage flows have the
same velocities, static temperatures, and densities. The flow angle and flow rate for the
clearance flow are then determined from conservation of tangential momentum and continu-
ity, respectively, in the clearance space.

Vuiic =toVuo /T (1)
asig = Sin" (Vytier f Vii) (2)
Wyi g = P1i Vai Aqi (N / Ng)1i COS 04 (3)

This clearance flow is then mixed with the passage flow at the stator exit, with the after-mixed
velocity and flow angle obtained from conservation of both angular momentum and mass.

Rotor-Iniet Slip

The tangential component of velocity for optimum incidence at rotor inlet is obtained from
the Wiesner slip factor correlation (ref.3) as adapted to a turbine in reference 2.

Vitaopt = Kir Uta [1 - V(COS Bo,1a) [ Ne1a” 1/ (1 - tan By, 1a / tanaya) (4)

The radius-ratio correction factor K,,, which is applied only if rp 5y /114 is greater than gy, is
defined

Kee=1- [(r2.av/ f1a - i) | (1- Eim)]” (5)
where
f2av = (f2n + 129 /2 (6)
and
gim =1 /©xp (8.16 cos PBp,1a / Nr,1a) (7)

For radial blades, this correlation yields an optimum tangential velocity only a few percent
different from that of the correlation used in reference 1.



Rotor-Inlet Blade Number

The number of blades required at the rotor inlet is based on maintaining a positive velocity
everywhere within the rotor channel. This is estimated by formulating the blade-to-blade
velocity gradient equation at the rotor inlet and then setting the pressure-surface velocity to
zero. Starting from a general velocity gradient equation such as equation (5-70) of reference
4, and applying it to a constant-radius blade-to-blade distance at the inlet to a radial-inflow
turbine rotor (i.e., at station 1a), yields

dW /dg=-cos B (W, /r+2U/[r-dW,/dr) (8)

where W is the local value of relative velocity along blade-to-blade distance q. Assuming a
linear variation of W along q for one passage, setting W=0 at g=0 (i.e., pressure surface),
expressing blade-to-blade distance as 2nr/n, and using velocity-diagram relationships yields

Nr.ta = 7 C0S%B1a [21aN 0t1a - taN Bia - (1] Vi)1a (AW, / dr)1a] (9)

The derivative on the RHS of equation (9) is approximated by using an equation from
reference 5 to estimate the radius at which the flow foliows the blade

Iy = M3 ©Xp(-1.42 T/ N, 45) (10)

and assuming that W,, varies linearly with r between ry, and r,. Using this approximation in
equation ( 9 ) finally yields

Ny1a = 7 00S°P1a {2 AN aya - tan Bra [1 + 1/(1 - €Xp(-1.42 1/ Ny10))]] (11)
The details of the complete derivation of equation (11) are presented in the Appendix.

This calculation is for the total number of blades (full plus splitter) at the rotor inlet. It can
be overridden by input if desired.

Splitter Blades

The option is now available to directly specify (by input) the use of full blades only for the
rotor, the use of splitter blades between the full blades, or a default selection to be made by
the program. The default is to use full blades only when the number of blades obtained from
equation (11) is less than 16 and to use splitter blades for a larger number.

When splitter blades are used, some minor modifications are required for determining the
rotor loss coefficient given by equation (7) of reference 1. The blade spacing is based on the
number of full blades. The blade length and blade area terms are arbitrarily increased by 50
percent to account for the splitters.



Rotor Clearance Loss

The rotor-shroud clearance loss is based on the experimental results of reference 6,
wherein a radial-inflow turbine was tested over wide ranges of rotor-inlet axial clearances
and rotor-exit radial clearances. The sensitivity of efficiency loss to the normalized clearance
(i.e., the ratio of clearance to passage height) was almost an order of magnitude less for the
axial clearance than for the radial clearance; thus, axial clearance loss was not included in
the loss model.

In reference 1, the efficiency loss per percent of normalized clearance was taken as a
constant value of one, which was the average slope over the full range of test clearances
(which extended to seven percent). In reality, the data of reference 6 shows that the siope is
greatest at zero clearance and decreases with increasing clearance. A parabolic curve fit of
the experimental performance yielded

Lo/ Ah'yp ay = - 1.9522 (h [ hyrp) + 11.207 (het [ he2)? (12)

For a one percent clearance-to-passage ratio, the clearance loss is about two percent, which
is double that of the previous model.

Disk-Friction Loss

The disk-friction loss in reference 1 was for a rotor having a backface extending to the tip
radius. Some rotors have a cut-back or scalloped backface, which would reduce the disk
friction. To account for this, the ratio (or an effective ratio) of backface radius to tip radius
was added to the loss calculation as a correction.

Lot = 0.02125 Kt p1a Ura” Fra” /94 W (p U T/ 1ha”] (13)
where the backface radius correction is
Kot = (1ot / 11a)*® (14)
Trailing-Edge Losses

To make the loss model compatible with that of the off-design code of reference 2, stator
and rotor trailing-edge blockage losses were added.

Stator.- In reference 2, the trailing-edge blockage loss is dependent upon the reduction in
radial component of velocity as the flow suddenly expands from inside to outside the trailing



edge. This gives satisfactory results when there is no stator clearance flow, but the mixing
of clearance flow with the passage flow changes the radial component of velocity, which then
is no longer dependent just on the blockage. Therefore, the model was changed so as to use
the physical blockage itself to determine the trailing-edge loss.

AP'es = p1i Vi 1 (29) [Ns ts/ (2 7 14 €OS o)) (13)

Rotor.- The rotor trailing-edge loss in reference 2 was computed as a loss in absolute total
pressure proportional to the absolute kinetic energy at the rotor exit. Since this is a cascade
loss, the computation was changed to a loss in relative total pressure proportional to the
relative kinetic energy at the rotor exit. Also for consistency with the stator, the loss was
made dependent on the physical blockage rather than on the reduction of axial component
of velocity.

AP"ter = P2 Wai [ (2.0) [Nr2i tom [ (2 7 Tom COS Baim)]’ (14)
Vaneless-Space Loss

The vaneless-space loss is modeled as a friction loss due to the endwalls. The pressure
loss is obtained as in reference 2.

Ap'ys =2 f1py V42 ] (g Deg) (15)

A correction has been made to the calculation of equivalent diameter, which has been
changed to

Deq =2 hs (16)
CALIBRATION OF LOSS MODEL

The variation of efficiency with Reynolds number and the level of efficiency were defined
by using experimental performance data to calibrate the stator and rotor passage loss
models. The design characteristics of the turbines used for loss model calibration are
presented in table . The first four of these turbines were for space-power system application
while the last two were for small airbreathing engines.

Reynolds Number Dependency

Performance measurements for three radial-inflow turbines, which are scaled versions of
the same design having 6.02-, 4.59-, and 3.50-inch rotor-tip diameters, over ranges of
Reynolds number are presented in references 7-11. The three turbines had the same design
velocity diagrams, with variations in design pressure and rotative speed accounting for the
different sizes. The Reynolds number variation for each turbine was achieved by testing over
a range of inlet pressures. These turbines are used only to determine Reynolds number
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dependency because they are off-the-shelf industrial turbocharger hardware and, therefore,
do not represent aerospace design technology. Plotted in figure 1 against Reynolds number
are points representing efficiency at design speed and design pressure ratio for the three
turbines. These points were obtained from smoothed curves through experimental points of
efficiency plotted against pressure ratio.

Within the experimental variability noted in figure 1, the Reynolds number dependency for
the three turbines can be considered the same. Using the type of function

Loss o Kge + (1 - Kre) Re™2 (17)

for the stator and rotor passage losses as was used in references 7 and 9 for overall loss, a
value of Kge=0.3 produces the desired variation of efficiency with Reynolds number, as
shown by the curves in figure 2. The level of turbine efficiency is determined by the stator
and rotor reference loss coefficients, which for the purposes of figure 2 were arbitrarily set to
match the efficiencies of the 6.02- and 3.50-inch diameter turbines. The efficiencies for the
4.59-inch diameter turbine were lower than those for the other two turbines by about two
points, about half of which is accounted for by the loss model due to a larger rotor-exit
clearance.

Efficiency Level

The geometries and experimental performances for three other radial-inflow turbines at
their design Reynolds numbers (see table | for design characteristics) are presented in refer-
ences 12-15. These turbines were specifically designed for their intended applications using
aerospace design technology and, therefore, should provide the best achievable
performance.

The 5.92- and 14.46-inch diameter turbines were designed for "off-design" conditions with
loadings higher than optimum and, therefore, efficiencies less than maximum. Since this
computer code produces optimum designs, the measured "design-point” efficiencies need
correction for proper comparison. For the 5.92-inch diameter turbine (ref. 13), where
extensive data is presented, the maximum efficiency on the design speed line is used. Inthe
case of the 14.46-inch diameter turbine (refs. 14 and 15), where the data is not as definitive,
the incidence loss determined by the analysis in reference 16 is added to the measured
design-point efficiency. In both cases, the efficiency is 1.5 points higher than the measured
design-point value.

The stator and rotor reference loss coefficients (used in egn. (7) of ref. 1) selected to best
fit the data are

(Oeot / 1 Jret.s = 0.0023119 (18)

and



(610t / ! Jrets = 0.0066267 (19)

The ratio of values is somewhat arbitrary, reflecting the higher loading and diffusion in the
rotor. Detailed measurements andfor analysis are required for better definition.

Using these values of reference loss coefficients, the computed efficiencies are compared
to the measured values in figure 3 for the three turbines. The maximum deviation is about
one point. The 5.92-inch diameter turbine was purposely designed with very thick stator and
rotor trailing edges, to simulate cooled blading, as well as a relatively long vaneless space,
and these features are reflected in the lower efficiency of this turbine.

DESCRIPTION OF INPUT AND OUTPUT

This section presents a complete description of the input and output for code RTD. The
input and corresponding output for two sample cases are included for illustration. There are
several error messages indicating the nonexistence of a solution satisfying the specified
input requirements. These messages are self explanatory and, usually, reflect input error.

Input

The program input, which is read on unit 05, consists of a title line and one NAMELIST
dataset. The title, which is printed as a heading on the output, can contain up to 79
characters located anywhere in columns 2 through 80 on the title line. A title line, even if itis
left blank, must be the first line for each case. The data are input in data records having the
NAMELIST name INPUT. The variables that compose INPUT are defined below along with
units and default values. Either S| units or U.S. customary units may be used with this
program. '

A sample input file containing two cases is shown in table Il. Each case is headed by a
title line. The first case is for the turbine of reference 12, which was tested with argon. This
turbine was designed for optimum rotor incidence. The second case, which is an air turbine,
is for an optimum design corresponding to the design requirements of reference 13.

ALPHAO stator-inlet flow angle from radial direction, deg
(input only when NSTAR =0 or 1)

ALPHA1| stator-exit blade angle from radial direction, deg
BETAB rotor blade inlet angle, deg (backsweep is positive - default=0.0)
CDT2 ratio of clearance to rotor-exit tip diameter (default=0.0)

CFU1A multiplier for optimum tangential velocity at rotor inlet (default=1.0)



CLFR1

CR

CS

EBARR

EBARS

GAM

INRBL

INSTV

IOFF

ISP

MU

ratio of stator clearance to stator passage height (default=0.0)
rotor loss-coefficient multiplier (default=1.0)
stator loss-coefficient multiplier (default=1.0)
rotor loss cosefficient (input only to override the internal computation)
stator loss coefficient (input only to override the internal computation)
specific heat ratio
number of blades at rotor inlet (defauit=-1)

= -1 - computed internally

> 0 - number of blades
number of stator vanes (default=-1)

=-1 - computed from input or default SIGSIN

> 0 - number of vanes
switch for writing off-design code input file (default=0)

=0-no

=1-yes
switch for splitter blades (default=-1)

= -1 - decision by internal rule

= 0 - all rotor blades are full blades

= 1 - rotor blades are half full blades and half splitter blades
units indicator (default=2)

=1 - Sl units

=2 - U.S. customary units
number of radial sectors at rotor exit

gas viscosity, (N)(sec)/m?; Ib/(sec)(ft)

rotative speed, rad/sec; rev/min
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NSTAR

POW

PTIN

R

RBFR1A

RH2RT2

RT2R1A

RV1AAV

RV212M(1)

I=1,K

ROR1A

R1R1A

SIGSIN

STAR

TOH1

TOH2M

TTIN

stator geometry indicator
= 0 - cambered vane with input diameter ratio
= 1 - cambered vane with input aspect ratio
= 2 - uncambered vane
shaft power, kW; hp
inlet total pressure, Nfcm?; Ibfin.?
gas constant, J/(kg)(K); (f)(1Ibf)/(Ibm)(°R)
rotor backface- to rotor-blade-tip-radius ratio (default=1.0)
rotor-exit-hub- to tip-radius ratio

rotor-exit-tip- to rotor-inlet-radius ratio

ratio of rotor-inlet angular momentum to average change in angular momentum
(default=1.0)

ratio of i" sector to mean-sector rotor-exit angular momentum
(default=1.0 for all 1)

stator-inlet- to rotor-inlet-radius ratio
stator-exit- to rotor-inlet-radius ratio

stator solidity based on exit spacing (can be omitted when INSTV is input -
(default=1.2)

stator aspect ratio (input only for NSTAR = 1 or 2)
ratio of stator trailing-edge thickness to stator height (default=0.05)

ratio of rotor mean-section trailing-edge thickness to rotor-exit passage height
(default=0.04)

inlet total temperature, K; °R

mass flow rate, kg/sec; Ib/sec



Output

The program output consists of title headings, the input values, and the computed results.
Table Il presents the output that corresponds to the sample input shown in table Il. The top
line of output is a program identification title that is printed with the first case of each data file.
The second line is the case title from the input title line. The next three lines show the units
used for the different variables.

The heading *INPUT™ is followed by the input values used for this case. ldentification of
the items is self-explanatory. The zero value shown for stator aspect ratio indicates that this
was not an input for this case. Values of 1.0000 are shown for the stator and rotor loss
coefficients to indicate that the actual values are computed using the internal loss model.

The heading *OUTPUT* is followed by the computed results. Temperatures, pressures,
flow angles, velocities, and velocity ratios, along with diameter, are shown for each
calculation station, which are stator inlet, stator exit inside trailing edge, stator exit outside
trailing edge, rotor inlet, rotor exit inside trailing edge, and rotor exit outside trailing edge. At
the rotor exit, the computed values are shown at the mean diameter of each sector as well
as for the hub and the tip. Additional output for the rotor-exit sectors include flow rate,
specific work, and total and static efficiencies. Also shown are the computed loss coefficients
for the stator and rotor, the stator height, number of stator vanes, and number of rotor blades,
both full and spilitter.

Under the heading *OVERALL PERFORMANCE?* are the turbine total-to-total and total-to-
static pressure ratios, diagram specific work, and both diagram and net total and static
efficiencies. Also shown are the individual loss components as fractions of the turbine ideal
work, the specific speed, the blade-jet speed ratio, and the work factor.

The first case uses U.S. customary units while the second case uses Sl units. Since the
4.97-inch diameter turbine of reference 12 was an optimum design, the rotor tip diameter
computed for the first case should be close to the actual value; and it is, differing only by 2.5
percent (5.093 inches). For the second case, the computed optimum diameter (17.13 cm.)
was 14 percent higher than the diameter (15.04 cm.) of the reference 13 turbine, which had
been designed for a higher than optimum loading.

SUMMARY OF RESULTS

This report presents modifications made to a radial-inflow turbine conceptual design code,
herein named RTD. The analysis is based on meanline flow through the stator and into the
rotor, and on equal span-fraction sectors at the rotor exit. Input design variables include flow,
power, and rotative speed. The output presents rotor-tip diameter, flowpath dimensions,
diagram velocities and angles, and efficiencies. Design parameters that can be varied
include stator-exit angle, rotor-exit tip and hub radius ratios, and rotor swirl distribution.

Modifications were made to enhance the design-code capabilities consistent with those of
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a companion off-design code. To accommodate pivoting vanes, stator-endwall clearance
offects were modeled by a vaneless-space flow through the clearance height, and this clear-
ance flow was then mixed with the passage flow just beyond the stator trailing edge. The
rotor-inlet slip model and the rotor-blade-number calculation were changed to allow
rotor-blade-inlet angles other than radial, thus permitting the use of swept rotor blades. For
radial blades, the computed slip and blade number were very close to those from the
previous models. In addition, splitter blades between the full blades can now be optionally
specified.

Added to the loss model were stator and rotor trailing-edge blockage losses and a
vaneless-space loss. The trailing-edge losses are reductions in kinetic energy that depend
on the fraction of flow area that is blocked. The vaneless-space loss is computed as a friction
loss for flow between the parallel endwalls. A change was made to the disk-friction loss to
account for backfaces that do not fully extend to the rotor tip. The rotor-clearance loss was
changed to reflect the non-linear variation of loss with clearance height.

The variation of turbine efficiency with Reynolds number and the level of efficiency were
defined by calibrating the stator and rotor passage losses using experimental performance
data from six radial-inflow turbines. The selected model performed very well in predicting the
turbine efficiency variation for three industrial turbines over a more than tenfold range of
Reynolds number. The efficiencies predicted for three aerospace turbines had a maximum
deviation of one point as compared to the measured values.

This report also serves as an updated users manual for the RTD code. Program input and
output are described, and sample cases are included for illustration.
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Appendix
DERIVATION OF ROTOR-INLET BLADE NUMBER EQUATION
The velocity gradient along an arbitrary curve g can be expressed (ref. 4)
dW / dq = a (dr/dq) + b (dx/dq) + ¢ (d6/dq)
where
a=W cosycos? B /1, - Wsin® B /r+sinycos  (dWr/dm) - 2 w sin f
b =-W sinycos? f/r + cos y cos p (dW/dm)
¢ =W sin y sin p cos B + r cos B [(dW,/dm) + 2 sin y]
Since our interest is in the blade-to-blade distance (constant r and constant X),
dr/dg = dx/dq =0
and the velocity gradient equation reduces to
dW / dq = ¢ (d6/dq) = [W sin y sin i cos § + r cos {3 [(dW,/dm) + 2 o sin y]} db/dq

With the flow being radially inward (y=-90° and sin y=-1), and since dq=rd®, W, =Wsin §, and
U=rw, the velocity gradient equation is further reduced to

dw /dg=-cos B (W, /r-dW,/dr+2U/r)
which is equation (8) in the body of the report.

As the blade number selection criterion, let W=0 at the pressure surface. Assuming a
linear variation of W along q,

dW Jdq = AW J Ag=2 W [ Aq =-2 W/ (r A6)

The minus sign is a result of the positive q direction from pressure to suction surface being in
the negative 6 direction. With this assumption, the velocity gradient equation then becomes

W=rABcos B (W,/r-dW,/dr+2U/r /2
Substituting W=V,/cos B, A6=2n/n, and U=V,-W, into the above equation then yields
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Vr=ncos?B (2Vu-Wu-rdW,/dr)/n

Using the velocity-diagram relationships tan a=V,/V, and tan p=W,/V,, subscripting for the
rotor inlet station, and rearranging gives

Mr1a = T COS°B1a [2 1N Gy - 1AN B1a - (F/ Vehia (AW, / dr)sa]
This is equation (9) in the body of the report.

The derivative dW,/dr is approximated by using an equation from reference 5 to estimate
the radius at which the flow follows the blade.

Mo = Mg ©XP(-1.42 [ N 1a)
Assuming that W, varies linearly between r,, and r, and that =0 at r,, we can write
dW, [ dr = (Wy - 0) [ [(T1a - T1a ©XP(-1.42 71 [ R 1a)] = Wy [[F1a [1 - ©xp(-1.42 71 [ Np 14)]]

Finally, with this approximation for dW,/dr, the equation for number of blades at the rotor inlet
becomes

N1a=T coszﬁm {2 tan o4, - tan Bea [1 + 1/(1 - exp(-1.42 7t/ Nr,1a))l}

This is equation (11) in the report.
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TABLE |
DESIGN CHARACTERISTICS OF RADIAL-INFLOW
TURBINES USED FOR LOSS MODEL EVALUATION

Tip Eq.total Corrected Corrected Blade-jet Reynolds  Reference

diameter, pressure work tip speed, speed number

inches ratio Btu/lb ft/sec ratio x1072

6.02 1.496 11.9 592 .697 63.7 7,8

4.59 1.496 11.9 592 697 83.2 9,10

3.50 1.496 11.9 592 .697 109. 11

4.97 1.645 14.8 644 .690 76.2 12

5.92 3.028 29.7 813 .609 228. 13
14.46 4.88 41.8 975 ~.62 422. 14,15

TABLE II. - SAMPLE INPUT

Radial Turbine with Argon - TN D-5090
&input gam=1.667,alpha0=45.0,alphai=72.50,
rirla=1.0298,r0rla=1.3392,rt2r1a=0.6990,
rh2rt2=0.5245,cdt2=.00193,k=3,nstar=0,r=38.68,iu=2,
ttin=610.,ptin=7.0,n=28359.,w=.2655,pow=5.150,mu=.165e—4,
&end

Radial Turbine with Air - TP 1730
&input gam=1.4,alpha0=0.0,alphai=73.385,tohl=.1007,
rlrla=1.111,r0r1a=1.292,rt2r1a=0.6315,toh2m=.1557,
‘ rh2rt2=0.4814,cdt2=.00312,k=3,nstar=0,r=286.8,iu=1,rv1aav=.963,
instv=29,inrbl=12,

ttin=322.2,ptin=13.79,n=3482.7,w=.3054,pow=22.5,mu=.170e—4,
&end
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