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Abstract

A one-dimensional model evolution equation is used to describe the nonlinear dy-

namics that can lead to the breakup of a cylindrical thread of Newtonian fluid when

capillary forces drive the motion. The model is derived from the Stokes equations by

use of rational asymptotic expansions and under a slender jet approximation. The

equations are solved numerically and the jet radius is found to vanish after a finite

time yielding breakup. The slender jet approximation is valid throughout the evolu-

tion leading to pinching. The model admits self-similar pinching solutions which yield

symmetric shapes at breakup. These solutions are shown to be the ones selected by

the initial boundary value problem, for general initial conditions. Further more, the

terminal state of the model equation is shown to be identical to that predicted by a

theory which looks for singular pinching solutions directly from the Stokes equations

without invoking the slender jet appro_mation throughout the evolution. It is shown

quantitatively, therefore, that the one-dimensional model gives a consistent terminal

state with the jet shape being locally symmetric at breakup. The asymptotic expan-

sion scheme is also extended to include unsteady and inertial forces in the momentum

equations to derive an evolution system modelling the breakup of Navier-Stokes jets.

The model is employed in extensive simulations to compute breakup times for differ-

ent initial conditions; satellite drop formation is also supported by the model and the

dependence of satellite drop volumes on initial conditions is studied.
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1 Introduction

It is well known that a perfectly cylindrical jet of liquid which supports surface tension at

its free interface is an unstable stationary solution of the equations of motion (both viscous

and inviscid) - any uniform axial velocity can be removed by a Galilean transformation, so

we concentrate on stationary unperturbed jets. The instability is driven by capillary forces:

If the radius of the jet. decreases locally at some axial position, capillary forces induce a

local increase in pressure (the pressure outside the jet is constant here) and conversely a

local increase in radius causes a local decrease in pressure just below the interface; fluid will

flow from regions of interfacial depression to regions of interfacial expansion and by mass

conservation the depression/expansion will decrease/increase. Linear stability analyses based

on normal modes have been carried out by Rayleigh for both inviscid (see [1]) and viscous

(see [2]) jet.s with the effect of the surrounding fluid neglected. The effect of a viscous

surrounding phase has been included in the linear stability analysis of Tomotika [3]. The

viscous dispersion relation given in [2] is valid in the limit of a highly viscous fluid; the

general dispersion relation for arbitrary viscosities is given in [3] as well as Chandrasekhar

([4], p. 541). The present work considers Stokes flows and so Rayleigh's dispersion is

useful, then. Following Tomotika, normal mode disturbances are considered proportional to

exp(i(nt + kz)), where t is time, z is axial distance, k is the wavenumber of the disturbances

and in their growth rate: Solution of tile linear eigenvalue problem in the case of Stokes jets

with the surrounding phase neglected, yields the following dimensional growth rates (see [3],

[4]):

(7 k2R 2 -- l

i.- 2R,. _'2R_ + 1 - k2R'g(kR)/q(kR) ' (1)

where (7 is the surface tension coefficient (assumed to be constant), t t is the fluid viscosity

and R is the unperturbed jet. radius.

and the growth rate is then given by

According to (1), the most unstable wave has k = 0

O"

i7_0- 6R// (2)

This long-wave instability result is due to the fact that time derivatives are dropped in

the momentum equations. Its inclusion (or inclusion of a surrounding phase) provides a

dispersion relation with a non-zero maximally growing wavenumber - see Tomotika's results.

Our interest in this article is to generate analytical nonlinear structures which coincide with

boundary integral numerical solutions, for example, in the long wave regime and in particular

near pinching. The theory presented in this article, then, is a nonlinear long wave one and

so on linearization of the obtained evolution equations, the growth rat.es (2) emerge (see

below). It is worth noting that since the maximum growth rate is for infinitely long waves

(as predicted theoretically by linear theory at least.), a long wave nonlinear ansatz is justified.

For inviscid and viscous (but not Stokes) jets the maximum growth rate occurs at. a finite

wavenumber which lies between 0 and 1 (in non-dimensional terms) and long wave theories,

then, may not be consistent with the linear results; they can, however, describe phenomena

such as jet pinching, which are beyond the scope of linear theory (see later).

Experimental observations of jet breakup phenomena, have been carried out by Chaud-

hary and Maxworthy [51, [6], Donelly and Glaberson [7], Goedde and 5A_en [8] and Peregrine,



Shokerand Symon [9]; the latter investigationconsidersbreakupwith gravity being impor-
tant also. More recently Tjahjadi, Stoneand Ottino [10] havecarried out an experimental
study' with highly viscousfluids using a Couettedevice;numerical boundary integral simu-
lations basedon the Stokesequationsare alsodescribedand comparedto the experiments.
This work is an extensionof previousexperimentsand computationsby Stoneand Leal [11]
who considerthe breakupof an initially extendeddrop. Simulations basedon the Navier-
Stokesequations and different Reynolds numbers(coveringinviscid t.oviscousflows) have
recently beenapplied by Richards, Lenhoff and Berris [12] to describethe motion of a vis-
cous jet injected into another viscousliquid. Comparisonsof the simulated breakup with
experimentsis madewith good overall agreement.All the simulationsdescribedarecarried
out for axisymmetric jets; this assumptionis consistentwith linear theory aswell as many
experimental situations especially if the Reynoldsnumber is not too large. For a review of
drop formation in circular jets, seeBogy [13].

Our interest is in the description of the breakup from the viewpoint that it is a singu-
larity of the equationsof motion with the jet. radius vanishing after a finite time at some
axial location. The theory developedis a local one and the singular time as well as the
axial position where breakup first, occurs, dependon initial conditions. The main reason
why such local structures are desirableanalytically is that. they provide a rational way of
continuing the solutionsbeyondbreakupafter the topologychanges.In fact.simplemassand
momentumbalancescanprovide regular initial conditionsfor the dynamicsbeyondbreakup
by assumingthat a sphericalblob of fluid is attached to the end of the breakawayjet (see
Ting and Keller [14]for inviscid flowsand Papageorgiou[1.5]for Stokesand Navier-Stokesjet
flows). Our approachis basedon working with a simplified set of evolution equationswhich
arise from the governingequations after a slenderjet. ansatz is adopted. One-dimensional
slenderjet modelshaverecentlybeenusedby manyauthorsin the modelingof viscousliquid
jets (seefor exampleRenardy [16], Eggersand Dupont [17], Eggers[18], [19], and Garcia
and Castellanos[20]). Suchapproachesare unsteadyextensionsof the steady fiber extru-
sion problem consideredby previous investigators (seefor exampleSchultzand Davis [21]
and referencestherein, aswell asthe review article by Denn [22]). In the presentwork we
mostly considerbreakupgovernedby the Stokesequations(extensionswhich include inertail
and unsteadyterms in the momentumequationsare also derived); this is a problem with
applications in microgravity flows, for instance,wherefluid viscositiesarehigh and typical
Reynoldsnumbers aresmall. A systemof one-dimensionalpartial differential equations is
derivedby assumingthat the ratio betweenthe maximumjet radius to the wavelengthof in-
terfacial deflectionsis anasymptotically smallparameterwhichcanbeusedin anasymptotic
expansionto capture the leadingorder evolution. (Note that higherorder correctionscanbe
calculated routinely within this framework). Theseequationshavebeenderived previously
in [16] using a Lagrangiancoordinate system. Renardyalso provesa theorem which states
that. in the Newtonian casetheseequationshave solutionswith the radius vanishing after
a finite time (he also showsthat this is not the casefor severalviscoelasticmodels). The
equations support similarity solutions corresponding t.o pinching and we show that. these

are identical to pinching solutions obtained directly' from the full Stokes equations (see also

[15] where the Navier-Stokes system is also studied). Analysis of the similarity equations

fixes universal scaling laws for the breakup and we confirm these scaling exponents by direct

numerical solution of the model equations for different, initial conditions.



The article is organizedas follows. In Section2 the equationstogether with interracial
boundary conditions are given along with the non-dimensionalizationbasedon capillary
scales. Section3 derivesthe slenderjet model comprisedof a system of coupled nonlinear

evolution equations. A generalization of the expansions to include inertial and unsteady

momentum effects is given in an Appendix. In Section 4 we construct self-similar solutions

valid as the jet pinches after a finite timel This is done for (i) the evolution equations derived

in Section 2, and, (ii) by looking for singular solutions directly from the full Stokes equations

given in Section 2. The similarity equations are the same and they are solved to obtain the

solutions in closed implicit form. The scaling exponents are also determined and are shown to

be universal. Section 5 is devoted to the numerical solution of the evolution equations. It. is

shown that the analytical self-similar solutions of Section 4 are the ones obtained at pinching.

This is done by comparison of scaling exponents and functions provided by the simulation

with the analytical predictions. Both symmetric and non-symmetric initial conditions (for

the jet shape) are used and the analytical results are verified in both cases.

2 Governing equations

Consider the evolution of a viscous cylindrical column of fluid of viscosity y. Initially the

jet is a perfect infinite cylinder of radius R and zero velocity (a constant axial velocity

can be removed by a suitable Galilean transformation); this is an exact solution of the

equations of motion and boundary conditions and is the flow used in linear stability theories

in the calculation of the initial stages of the instability. Even though linear theory cannot

provide a quantitative description of the flow at breakup, it does give useful insight into

the competing physical mechanisms acting. It is found, then, that capillary forces drive the

instability which leads to pinching (see Introduction). The pertinent scales are: lengths scale

with R; velocities scale with z: pressure scales with _'"N, time scales with e_.E.oThe equations

are made dimensionless by introduction of the variables

p= -_, t= _Ri. (3)= = ,,

Substitution of (3) into the Stokes equations and interfacial boundary conditions and drop-

ping of the bars, yields the following non-dimensional system:

1

Au r_U- -- p_, (4)

Aw = pz, (5)
1
-(ru)_+w;. = 0, (6)
T

(7)
0 2 1 0 0 2

where A =-- _ + 7_ + 5y_2. The interfacial conditions of tangential stress balance, normal

stress balance and kinematic condition, on r = S(t, z) are

(_,: + w_)(1 - S_:) + 2,,_& - 2w:& = O,

( 1 ) qz,-,/2p-2u,.-(-p+2w_)S_+2(u_+w,.)S_=- S_-_(I+S'_)(1+,__, ,

u = St + w S_.

(8)

(9)

(10)



In addition to the interfacial conditions (8)-(10) we imposeregularity of flow quantities on
the jet axis r = 0.

"v_%are interestedin solutionsof the system(4)-(10) in the strongly nonlinearregimeand
in particular when pinching occursand the jet radius tends to zeroat someaxial position.
Direct numerical solutionshavebeengivenin [10]and [11]by useof boundary integral tech-
niques. Here we proposea quantitative description of the pinching by useof an asymptotic
theory.

3 The evolution equations governing pinching

The evolution equations arise from a nonlinear long wave theory. If we assume that a

typical dimensional length scale in the axial direction is D, then the ratio e = _ is taken

to be a small quantity and we seek a leading order solution of an asymptotic expansion

in e. Such approximations have been used extensively in the description of nonlinear long

wave interfacial flows (see Introduction). At first sight the theory seems arbitrary since the

parameter D does not have a distinct physical meaning. The usefulness of the evolution

equations given below along with their solutions lies in the fact that. as a pinch forms the

radial length scale is at most of the order of the axial length scale (i.e. the axial extent of

the pinch region); if the radial length scale is asymptotically smaller than the axial one, a

long wave approximation is valid to leading order and so the model equations describe local

pinching solutions of the full equations even though the transient motion may be inaccurate.

A theory which constructs pinching solutions of the Stokes equations directly, has been given

in (i[15]). It. is shown later that. the two theories are in complete agreement thus lending weight

to the relatively simple model equation approach.

The long wave ansatz is easily applied to (4)-(10) by introducing the transformation

a _ e a. in addition the appropriate expansions proceed in powers of e2 (this can be seen0--7- _,
from the streamfunction formulation of the Stokes equations in cylindrical coordinates which

yields the biharmonic equation for the streamfunction implying that. the velocities expand

in powers of d):

u(t,r,z) = Uo + dUl +...,

1
w(t, r, z) = -w0 + owl + ...,

e

p(t,r, z) = Po + e2Pl + ... ,

S(t, z) = So + c2,_-_ + ....

(11)

(12)

(13)

(14)

Substitution of (11)-(14) into the governing equations and boundary conditions gives a se-

quence of problems. The leading order velocity components are found from (5) and (6) and

are

1
wo - Wo(t,z), Uo = --two_.. (15)

2

Substitution of this expression for u0 into (4) gives po_ = 0 and so po - po(t, z). This readily

yields the correction Wl from (5) as well as the leading order pressure distribution throughout

the jet from the normal stress balance condition (9); the continuity equation then gives ul in



terms of u'0 and the process can be continued to higher order. The results which are needed

for the evolution equation are:

1 2

Wx(t,r, z) = -_," (U,o,z - po-.) + A(l,z),

1

po(t,z)- So w0_, (16)

where A(t, z) is to be determined but it does not enter the leading order dynamics. With

these solutions available, the evolution equations are obtainable from the tangential stress

balance condition (8) and the kinematic condition (10). To leading order the tangential

stress balance gives u,0T = 0 which is already satisfied by (15). Next at order e and at order

one in (8) and (10) respectively, we find

,,o_.+ w,. + - 2wo_.&z= o, = (17)
uo = &t+Wo&z. (18)

The desired evolution equations are obtained from (17) and (18) by elimination of u0 and tt,1

in favor of tco alone to yield an evolution system for So and the leading order axial velocity

Wo. This system is:

1

&, + woSo, + -_u'o_So = O,

So_..5'u'o_ + 3So_Wo_ + 2-_o = O.

(19)

(20)

Asymptotic and numerical solutions of (19) and (20) are given in later Sections but some

comments on the physical origin of these equations are useful.

An integrated form of the evolution equations has been derived previously by M. Renardy

[16] by Use of physical arguments. The first equation describes conservation of mass for

slender jets which is most easily seen by multiplication of (19) by ,50 to yield the conservation
form

+ (WoSo ).= o. (21)

The second equation was written down by Renardy by considering the force acting on a

cross-section of the slender jet. The Stokes flow has no inertia and so this force must be

constant along the jet; equation (20) is the z-derivative of this force. This is most easily

seen by multiplication of (20) by So and writing it in the form

(3,So2U-,o_+ ,-qo)_= O. (22)

These ideas have also been used in [15] in following jet evolution just beyond pinching by

description of overall mass and momentum balance equations (see also [14] for an application

to inviscid flows).

We note also that a simple modification of (11)-(14) that allows for non-zero Reynolds

numbers and introduces inertial and unsteadiness into the momentum equations leads to

a set of evolution equations which can be used to model pinching of jets governed by the

Navier-Stokes equations. This analysis is included in Appendix A.



4 Finite-time singularities. Self-similar solutions.

The evolution equations (19) and (20) have been proven by Renardy [16] to possess singular-

ities with the jet. radius vanishing after a finite time. A Langrangian formulation was used to

prove the theorem and in particular it is established that arbitrarily small initial conditions

can lead to breakup. Our interest is in the related problem of quantifying such terminal

states and in particular in establishing any type of dominant solutions at breakup. To this

end we employ numerical computations of the initM value problem and a local analysis of

breakup by construction of self-similar solutions. In what follows we address the description

of local structures at breakup. This is done for (i) the long wave evolution system derived

above, and, (it) directly from the full Stokes equations. The latter analysis has been given in

[1.5] where unique scaling laws were established by solution of a nonlinear eigenvalue problem

(see later). In what follows we show that the similarity solutions of the model equations are

identical to those found by a direct analysis of the Stokes system and we test the analytical

self-similar structures and in particular the unique scaling exponents, with numerical solu-

tions obtained by solving the initial value problem (19) and (20). This is done in a later

Section with excellent agreement.

4.1 Pinching solutions of the model equations

We work with (19) and (20) and assume that the jet radius vanishes after a finite time, t_ say.

The objective is to describe the solutions near this time, so that r = ts - t with 0 < r << I,

and near tile axial position where the jet breaks (without loss of generality this position

is taken to be the origin). A balance of terms in (19), (20) gives the order-of-magnitude

estimates

S0 u,0& ,_%2,v0 ,_%,
-- r_+ _, -- #%-+

T Z g

from which it follows that & _ r while w0 " _. Assuming that the phenomenon is a

focussing one we can introduce a positive parameter /3 which controls the extent of the

similarity region by z --_ r a. Formally, then, we look for pinching solutions of (19) and (20)

in the form
z

So(t,z) = r,f({), w0(t, z) = Ta-lg({), _ = _ (T -_- _s -- t). (23)

Note that the forms (23) above are an exact self-similar transformation since all terms in

the governing equations are in balance. The situation is slightly different for the full Stokes

equations (see later). Partial derivatives transform according to

0 O /3_0 0 1 0
+ + .... + ---- (24)

Ot --&r r 0_' Oz r_ O(

Substitution of (23) and (24) into (19) and (20) gives the following equations for the scaling

1

(g + 3g),f' + (2g'- 1),f --0,

taste +s) :0.

functions:

(25)

(26)



Equation (26) can be integratedonceto give

1 k

¢= -3-7 + (27)

where k is a constant of integration. Equations (25), (27) need to be solved and the constants

/3 and k determined. In fact the value of k can be expressed in terms of f as explained next.

The force balance equation (22) can be integrated in z to yield (44) below and the function

A(t) given by (4.5). i.From the ansatz (23) and (44) it is clear that ,\ ,,o r as r ---+ 0 and in

fact A = 3kr + ... then with k as used in (27) above. The following expression for k then

follows,

k = 1 fZ_(1/f)d_ (28)
3 f_(1/Q)d{'

from either of two equivalent ways: (i) by integration of (27) over the range of { and using

the fact that axial velocities are zero far from the pinch (this is shown asymptotically later),

(it) by introduction of the ansatz (23) into the expression (45) for ,_. This identification of

k is essential in the determination of a unique value of fl described later. Before doing this

we present the construction of singular solutions of the full Stokes equations which yield an
identical result.

4.2 Pinching solutions of the Stokes equations.

In this section we summarize results described in more detail in [15]. The idea is to construct

solutions to (4)-(10) with the jet radius going to zero after a finite time. The system is not

one dimensional in space as for the model equations and a similarity variable in the radial

direction is also needed. The following transformations are appropriate

w = <w(_, v, _), _,= <+o-au(t, v, 4), p = ,--°P,

(29)

(a0)

where u follows from the continuity equation and a >/3 in keeping with slender geometries

at breakup. The constants c_, fl, 3 are to be determined along with the scaling functions (the

use of the same symbols as before should not be confusing). Unlike the model equations,

the transformations (30) do not retain all terms in the Stokes equations and an asymptotic

expansion in powers of r _'-2jJ is appropriate (this comes from the biharmonic operator for the

streamfunction in much the same way as the e: expansion was established for the derivation

of the model system). These expansions are

,,,= < +...), --_Ygo¢ + +... ,

which on substitution into the z-momentum equation (5) and balance of leading order terms

yields

1 p,
7--/3-_, 11_= _y( e- w0ee). (31)



This in turn leadsto U1 and the result that Py = 0. Substitution of leading order solutions

into the tangential stress balance equation (8) and the normal stress balance (9) give at

O(r -._) and O(r -_) respectively

(.fag,)' = _.fap,,

1
P=-g'+--; o,, y=f(_),

J

which can be integrated once to yield

1 k

g'= -aT + Y' (a2)

with k a constant to be determined. A second equation and the determination of o_ comes

from a leading order balance in the kinematic condition (10), which gives

c_,= 1, (g +/3().f' -t- (_g'- 1)f = 0. (33)

It can be seen that the leading order similarity solutions found here are identical to those

predicted by the long wave model system. Solutions which are to be compared with the

numerical solutions of the evolution equations are described next.

4.3 Solution of the similarity equations.

To fix matters we work with equations (25) and (26). Solutions must. be obtained for -oc <

< oc. The behavior for large _ is easily established from the equations to be

(3,4)

This asymptotic behavior can also be deduced from the similarity transformations (23) since

far away from the pinch region (i.e. as l_J ---' ec) the solutions are expected to be independent

of _; it follows, then, that I(_) "_ and g(_) ,-_ j(J -_5-2_ which make So "_ jzj_ and

w0 ~ which are the outer solutions as Izl -_ o. It follows from (34) that g vanishes as

tends to infinity which in turn implies that there is a point, _0 say, where g(_o) +/_o = 0.

Such a point is a removable singular point of equation (33) and requires a local analysis; _0

can be shifted to the origin by use of the transformations

.f ---+ f, G(r/) - g -t- fl_o 77= _ - _o.

The point 7/= 0, then, is a removable singularity if

c,(0) = 0, a'(0) = 2.

This is a condition required by smoothness of solutions. A local analysis for Jr/J << 1 gives

f(_) = .fo + ,?2£ + r/4f4 + .--, G(rj) = 27/Jr r/3ga -t-...,

where

1 k - 3 + 2fl (35)
fo- 12(1 + fl)' T2(1 + _)2'

8



with the remaining coefficientsexpressiblein terms of a singleparameter f2-

To get a closed form solution defined implicitly it is useful to eliminate g(() between (2,5)

and (27), for example, to obtain

f" (f,)2 (1 -/3).f 2 + ½,f k= : (36)
3+2,8 _

•f (.f + ,2(-i-g-/3),(f- f0)

which can be integrated once to give

a+2:)'3+}
[.t" (,f + 12(1+_,./

J:o f(f -.fo)1/2
df=Arl. (37)

The substitution
1

f - cosh2(0),
12(1 +/3)

in (37) above, leads to the implicit solution

f('/) -- 1 cosh2(O) '
12(1 + 9)

1 [e (cosh 2 0 + 3 + 2/3) z+½ dO + Arl.Jo12(1 + 3)) a cosh0

, 1 k

= f- (-.57f + T + 9(0,

(38)

where

24 { 2+:3 /7
,4- (1 +3)l,,6(i -7-3),) V/2

and 4- corresponds to 7/positive and negative respectively. Using the boundary conditions

G(-oo) = G(+_) = ,3(0 we see that

k = 1 fo(1/.f)&l
3 fd"_(1/,f2)&? ' (39)

which is seen to be identical to (28) once we note the symmetry of f. A numerical procedure

is required to find admissible values of/3. The first thing to note is that the ratio of the two

integrals in (39) is independent of ./'2 as can be seen by a. rescaling of 7/in (38) (this has been

established numerically also). Given a value of the scaling parameter/3, the solution f(r/) is

constructed from (38) by prescribing a value of 0 which implies an elevation f at an axial

position 7/ determined by integrating (38) over the appropriate 0-range; with f(r/) known

over an interval 0 _< 7/ _< 71_ , where r/m_ is sufficiently large for the asymptotic behavior

(34) to be valid, an iteration in/3 is carried out to satisfy the eigenrelation (combining (35)

and (39)):

3 + 2/3 1 fo_(1/f)drl

72(1 +/3) _ 3 fo(1/p)drl"
(40)



These computations give a unique value 'fl = 0.175 correct to three decimals. Representative

solutions are given in Figure 1 from which it is seen that the effect of ./'2 is just a rescaling

in 71as expected.

This Section has provided a fairly complete quantitative description of possible terminal

pinching states of Stokes jets. The most notable feature of the analysis is that unique scal-

ing exponents are fixed together with universal scaling functions to within a multiplicative

constant which depends on the initial conditions. The uniqueness arises by solving an eigen-

value problem for symmetric pinching profiles. The remainder of the article is concerned with

the verification of the local analysis just described by detailed comparison with numerical

solutions of the model system for different initial conditions.

5 Numerical solutions.

Numerical solutions have been obtained on axially periodic domains which can, without loss

of generality, be normalized to have length 27r. Since the pinching phenomenon is a local

one the periodicity in the boundary conditions is not expected to play a fundamental role.

The equations to be solved numerically are

Sot + wo,%... + lwo:So = O, (41)

(3So2Wo= + So): = 0. (42)

As will be shown shortly the initial condition So(0, z) = F(z) alone is required. It is clear

from (41) that

0 2,_sgaz) (43)0,(/0 =0,

which provides a useN1 conserved quantity in controlling the accuracy of the computations.

Equation (42) can be integrated once with respect to z to yield

, (44/= 5 Sg

where )fit) is a function of time to be determined. Integration of (44) with respect to z and

use of periodicity yields a value for t(/) in terms of So:

f?_(l/,%)dz
,\(t) = o (45)

ffo=(1/,q2o)dz

Equation (44) combined with (45) shows that an initial condition for So alone is sufficient

to determine the evolution.

Spectral methods are used to solve the equations numerically, and all required integrations

are also done spectrally. The result used is that the discrete fourier transform of a periodic

function, q(z) say, and the integral of q(z) are related by the following expression which

follows directly from the definition of fourier transforms:

/00"0( = 0) = q(

10



For example A(t) in (45) is computed by calculating the fourier transforms of (1/&) and
(1/S_) and forming the ratio of thefirst twofourier components.With theseresultsavailable
the numericalstrategy is asfollows: Equation (41) is marchedforward in time by specification
of ,%(0,z) alone; A is computed as indicated above at each level of a multi-level time scheme

which then provides Wo_ through (44) at that level; to update ,5'0 in time using (41) the

function u,0 is also required. This is evaluated t_y transforming (44) into Fourier space by
use of fast. fourier transforms and inverting (ik)-lH, where/} is the discrete fourier transform

of _ V sg - _)" (note that the fourier transforms of (1/,90) and (1/sa) are already known

at this stage from the computation of A). Finally the remaining derivative S0_, in (41)

is evaluated pseudospectrally and the time integration is done in real space. A second

order accurate predictor-corrector scheme as well as a. third order Runge-Kutta method were

implemented and tested. The computations described here were generated by the second

order scheme. Certain symmetries in the equations were also utilized in the numerical

work and to provide numerical solutions that can be directly compared with the similarity

solutions described earlier. It can be seen that if So is an even flmction of z initially, then it

will remain so for subsequent times since w0 is then odd as seen from (44). More formally it

is easy to show by integration by parts of (44) that

1
(- < So' >< > + < So ><  So' >), (46)

<U'o >= 3<,_go 2>

where < (.) >= f_(.)dz, and from which it follows immediately that w0 is odd if ,5'0 is even.

With u'0 odd it is ensured that its zero fourier component vanishes and does not enter into the

fourier inversion procedure of its computation outlined above. For general initial conditions,

however, the inversion to find w0 can only be performed if the first fourier mode (the one

corresponding to k = 0) is provided. In the notation of (46) this is just < w0 > which is

easily found by performing the additional fourier transforms of z/S_ and Z/So respectively,

or quadrature methods. Both were implemented and used with no noticable change in the

results.

In our computations of symmetric solutions we use the following initial condition

S(0, z) = a + bcos(-). (47)

This choice gives a minimum in the initial condition at z = a- (b > 0) and symmetry about

this point, with pinching first taking place there. The corresponding axial velocity is then

zero at z = rr and an odd flmction of z - rr. Throughout the computation the evolution

of < ,__ > and < w0 > was monitored in order to confirm that the former is conserved

and the latter is zero due to parity; in all the results given here these integral constraints

varied only due to machine round-off errors. Besides the actual solutions at different times,

it is important to monitor the evolution of A(t) and the value of the minimum as a function

of t which we denote by S_i_(t). These quantities are crucial in our comparisons with the

similarity solutions of Section 4. The axial position where the minimum is attained was also

monitored in order to verify accuracy, since the minimum is stationary for the present choice

of initial conditions. We note that the accuracy tests are crucial in determining acceptable

solutions which can be used to verify the asymptotic theory especially since such comparisons

are only meaningful when the jet radius is very small and the equations become singular.

All solutions given here pass the integral accuracy tests outlined above.
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Before presentingnumerical results we considerthe linear stability of the system (41)
and (42) which is beingsolvednumerically. Linearization is doneabout a constant value of
,5'0 taken to be a for consistency with the initial condition and about the zero state for w0.

Linearization of (41) and (42), then, and elimination of w0_z by differentiation of the first

equation with respect to z gives the following equation for the linear perturbation denoted

by ,qo also,

- = o. (4s)

The solution is readily found to be

So(O, (49)

The linear solution (49) is identical to the growth rate of the k = 0 mode of linear theory as

expected (this follows from (1) and (2) once the non-dimensionalizations (3) are introduced).

It can be seen from (49) that linear perturbations grow in place, so that a depression (regions

where S0(0, z) is negative) tends to grow reducing the local jet radius with the opposite

happening in regions where there is a local elevation. Physically' this implies that fluid

is being pushed out of a necking region and towards bulging regions, a result which is in

line with the mechanism of capillary instability since surface tension tends to increase the

pressure just below the surface of a depression and decrease it near elevations, causing a

fluid motion from high pressure regions to low pressure ones. /_.From a numerical point of

view the linear result (49) indicates that numerical short wave round-off error disturbances

which are inevitably introduced into the numerical simulation, are not subject to pathological

instabilities as in KeMn-Helmholtz or related problems (see Krasny [23] and Papageorgiou

and Smith [24] for instance).

The first set of numerical experiments has an initial condition with a = 0.5 and b = 0.1.

The number of modes used is 512 and the time-step was 0.0005 by the end of the computation.

The computation was terminated when the minimum jet radius, ,-groin, became smaller than

0.003. This happened at approximately t = 6.6. In order to achieve such a small value of Smi,_

the computational step was refined during the stage 6.5 < t < 6.6. Numerical convergence

was checked by performing an identical computation with 256 modes; the only, difference is

that the higher resolution computation allows achievement of a slightly smaller minimum

radius for a given accuracy. The evolution of the jet surface S0(t, z) and the corresponding

axial velocity w0(t,z) are given in Figures 2(a),(b). Figure 2(a) depicts the evolution for

0 < t < 6.5 while Figure 2(b) that during 6.5 < t < 6.6. As the Figures indicate the

jet is pinching after a finite time; the radius vanishes first at z = rr. The final computed

shape shown as a cross-section of the jet, along with the evolution of the maximum value

of _c,_over the spatial domain, is given in Figure 3. The jet shape appears fairly flat near

the pinch point (the slope is in fact zero there) and in particular the slope is bounded at

all axial positions. This is an essential requirement for the validity of the long-wave model

equations. The leading order axial velocity distribution has the following features: The flow

is stagnant (to leading order) at z = rr where a pinch first appears. Just to the right and

left of the pinch point, there are large axial velocities away, from the pinch points; these axial

velocities become infinite in magnitude as the singular time is approached and fluid drains

out of the necking region at increasingly higher local speeds. \_ will use the results from
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this numerical experiment to perform a detailed comparison with the asymptotic theory of

Section 4, and in particular will derive the scaling exponents and the rate at which the force

in the jet is going to zero as the singular time is approached.

Figure 4 shows the evolution of ,g-mid(t), which is seen to approach zero after a finite

lime - the rate at which this is done is found to be linear (see later for an estimate of the

slope), and as shown in the enlarged section the time of the singularity can be estimated by

a least squares fit.. The evolution of the maximum axial velocity with time, along with the

corresponding evolution of the axial position where it is attained: is shown in Figure 5. These

results strongly suggest that the axial velocity blows up at a finite time and this happens

locally at some axial position. The rate at which the velocity blows up will be compared

with the self-similar solutions later. Note that due to symmetry there is a symmetrically

placed minimum in w0 which blows up at the same rate as the maximum. Finally, in Figure

6 we depict, the evolution of ,\(t) given by (45) noting that physically this quantity represents

the quasi-uniform force, to leading order, throughout the jet at different thnes. Clearly A(t)

is approaching zero after a finite time; in fact for times larger than approximately 4.0 the

dependence of A with t is established to be linear, a fact which is used to get. an estimate of

the singular time, t_, by a least squares fit as above.

The results just presented indicate a qualitative picture of the breakup phenomenon: the

radius of the jet goes to zero linearly and so does the force in the jet. At the same time the

axial velocity blows up after a finite time. These numerical results are used next, to make a

direct comparison with the similarity solutions constructed in Section 4. Since the pinching

similarity solutions of the model equations are the same as those for the Stokes equations

(see Sections 4.1 and 4.2 respectively) the comparison holds for both regimes. According to

the ansatz (23), then, along with the solutions (.38) it is easy to determine Stain(t) given by

the local similarity theory,

1
,_%_(t) = (t, - t),_,, (50)

12(1 + P)

where /3 = 0.175 (see Section 4.3). An expression for A(t) near the singular time follows

similarly from the analysis of Section 4 and yields

.3+ 2Z t),
A(t) = 3k(t - t) - 24(1+/3)2(t - (51)

where the expression (35) has been used to express k in terms of/3. The analytical ex-

pressions (50) and (51) allow for a direct comparison between the theory and the numerical

experiments. To carry this out, however, we require the value of the singular time, t_. This

is not provided directly by the numerical solutions but can be estimated with tolerable ac-

curacy from the data which make up Figures 4 and 6. A value of t_ was obtained as follows:

a least squares fit was applied to the data in Figure 4 for t > 5.0 and extrapolation was used

to find t_ the point where the curve (straight line) intersects the t-axis. This was repeated

with least squares fits of smaller sets of data nearer the singular time with no change in the

result. As a check the t_ estimated by least squares fits of the A(t) data (Figure 5) yields the

same value of t_ to four decimal places. This value is

t_ = 6.6405. (52)
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Using this value of t_ we can check the power law behavior of the computed solutions

near the singular time. This is done as follows: We take the sets of data. (t, S,,i,_(t)), (t,)_(t)),

(t, u,m_(t)) from Figures 4, .5 and 6 respectively for t > 5.9 (this is near enough the singularity

for the asymptotic structures to provide a good approximation to the exact solutions) and

produce plots of the sets {(log(ts - t),log(S_i_(t))} and so on; the slopes of these lines

should give the powers of r appearing in the similarity ansatz (23). The results are depicted

in Figure 7: the slopes are estimated by least squares fits and are correct to the number of

decimal places indicated on the diagrams. The results are also summarized in Table 1 below.

Scaling law Asymptotic Numerical

,%_.(t_ - t) _.o 1.o
,\(t, - t) 1.0 1.0

rna,r{w0}(G - t) /3 - 1 = -0.825 -0.823

Table 1

The results just presented verify" the power law behavior postulated by the similarity

ansatz (23). The value of 3 = 0.175 is therefore supported by the numerical solutions also,

and next we make a further comparison of the multiplicative constants also. As shown

above, the leading order behavior of S,_,_(t) and )_(t) according to the asymptotic theory of

Section 4 as the singular time is approached is given by (50) and (.51). In Figures 8(a),(b)

we superimpose the numerically computed evolution of S_i, and 3, with the corresponding

asymptotic forms (50) and (51). It is seen that at times larger than about 4.0 (which is still

at. least 2 time units from the singular time) agreement is excellent; the divergence of the

two curves for smaller times is expected.

The results of Figures 3-8 provide strong evidence that the initM value problem of the

model equations terminates in a singularity after a finite time according to the theoretical

predictions set out in Section 4. The comparisons above were designed to verify the power

law behavior of the solutions and in what follows we consider a comparison of the solutions

of the model equation near the singular time with the scaling functions found from the

asymptotic theory. The numerical experiment we have been concentrating on terminates at

a singular time estimated to be t_ = 6.6405. We describe next how to construct the scaling

functions .f(_) and g(_) from our numerical solutions near the singular time: Given data

5_(t,z) and wo(t,z) it is easy to compute { and the corresponding values of .f({) and g({)

by direct substitution of r = (ts -t) into the forms (23). Different scaling functions are
obtained for different r but all results should collapse to universal curves as r + 0. This is

indeed the case as depicted in Figures 9(a), (b) corresponding to .f(_) and g(_) respectively.

5.1 General initial conditions; non-parity solutions

The results described so far have been computed by imposing a symmetry on the evolution

equations, restricting solutions to shapes which are symmetric and axial velocities which are

anti-symmetric about z = _. This was done in order to obtain an accurate set of data to use

in the evaluation of the asymptotic self-similar theory. The self-similar theory, however, is a

local one and it does not require the parity requirements mentioned above for all time. We
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would expectlocally symmetric solutions,then, to appearascorrect leadingorder dynamics
in the breakupdescribedby the model equations(41) and (42) starting from generalinitial
conditions which do not ensureparity for subsequenttimes. Equations (41) and (42) were
solvednumerically (seeearlier) using n = 512 modes and the initial condition

u0(x) = 0.5 + 0.1(sin(x) + cos{,)).

The evolution up to t = 5.0 of the interfacial shape and the corresponding axial velocity

is given in Figure 10. Due to the loss of symmetry, the jet first breaks at a point not

equal to ._r. The results of this numerical experiment are used next to confirm the local

validity of the self-similar solutions. In Figure 11 we give the evolution of Sm_,_(t) and k(t)

up to the time when _qmi,_ is less than 0.005. Superimposed on these curves are the results

given 1)3' the asymptotic forms (50) and (51) with fl determined by the similarity solutions

(/3 = 0.17,5) and t, determined numerically from the data by first confirming that the curves

are straight lines as t _ t_, followed by extrapolation to obtain t,. It. is seen that agreement

is excellent.. A more severe test is a direct numerical check of local symmetry. This is done

as follows: The profile (jet. shape) is taken from the last computed time station and the

minimum point on the curve is located; this gives the axial position where the jet radius is

at its smallest; if we denote this position by .r0, our objetctive is to show that the jet shape

is symmetric (at. least locally) about Xo. A good way to see this graphically is to plot the

jet shape for x >_ x0 and superimposed onto this to plot the shape computed for x < x0

but reflected about the line x = x0. If there is local symmetry about x = x0 then the two

curves will coincide for a range of axial positions in the neighborhood of x0. The results are

shown in Figure 12(a) with the circles denoting the reflected shape. We see that. the two

curves are indistinguishable for a large range of values about x0 and so we conclude that

the solution at pinching is locally symmetric. The corresponding axial velocity distribution

becomes asymetric as a pinch is formed, and the confirmation of this based on our numerical

results is given in Figure 12(b) which depicts plots of (x, w0(x)) for x >_ Xo plotted along

with (x, -w0(x0-x)). Again the curves are indistinguishable confirming the local self-similar

theory. Our numerical solutions, therefore, provide strong evidence that the local self-similar

solutions described in Section 4 are robust in that they provide a local theory with symmetry

independent of initial conditions. The initial conditions affect two things, however: (i) The

singular time, and, (ii) the scaling function (and thus the final shape) at breakup. These

two features are studied in more detail next by carrying out. a parameter study as the initial

condition varies.

6 Breakup times and scaling functions for different

initial conditions.

It is expected that different initial conditions provide different breakup times. For example,

it. would be expected that the breakup time decreases as the minimum initial jet. radius is

decreased. In what follows we try to quantify such statements by carrying out a. series of

numerical experiments - this is done for both symmetric and asymmetric solutions. Before

presenting results we define what we mean by breakup time. All runs (unless otherwise

stated) are followed up to times when the minimum jet radius first becomes less than 0.005.
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The evolution of _(t) is thenusedto obtain anestimateof the singular time by extrapolation
after utilizing the linear form of )_(t) near the singular time (see Section 5). The serf-similar

shapes at breakup are then approximated by the data from the last computed time, after

applying the transformations of (23).

One aim of carrying out such extensive computations is in the evaluation of linear stability

theory, estimates of the breakup thne for instance, as compared to the nonlinear dynamics.

Working within the fi'amework of the one-dimensional model, we can use linear theory to

obtain an empirical estimate of the breakup time. As shown in (49) linear solutions grow

exponentially at a rate exp(t/6a); the total solution which results fiom an initial condition

h(z) is

S(z,t) = a + fh(z)exp(t/6a), (53)

where 5 is the infinitessimally small amplitude of the perturbation as is usual in linear

theories. Denoting the minimum of t_(z) over the domain by -h0 < 0, we can use (53) to

predict a time, tL say, when S(z, tc) first becomes zero. This is easily calculated to be

(54)

and represents the breakup time as predicted by linear theory. We emphasize that this

calculation is empirical in that, for example, tL is a time outside the range of validity of

linear theory (linear theory is valid when S(z, t) is near r = a). Similar ideas have been used

in [25] in describing the rupture of free viscous films in the presence of van der Waals forces.

6.1 Symmetric initial conditions

Symmetry in the jet shape is preserved throughout the evolution if the initial condition is

symmetric. In the results that follow we computed breakup times as a flmction of an initial

amplitude q where

so(z, o) = 0.,5 + _ cos(._).

The parameter q is also a measure of the initial energy provided by the disturbance. We

note that q < 0.5, otherwise the initial condition has zero radius to start with - the breakup

time in this case is defned to be zero. The results are summarized in Figure 13 which

depicts the variation of the breakup time, t_, with el. The figure also contains the breakup

time tL predicted by the linear result (54), noting that in this case ho = 1. It is seen

that agreement between the two is only reasonable when el is small as would be expected

(we emphasize once more, however, that the linear estimate albeit empirical can be useful

in some instances). For example, an initial perturbation q = 0.05 (a 10% disturbance of

the unperturbed jet radius) gives a breakup time t, = 9.04 while linear theory predicts

tL = 6.91, an underestimate of approximately 26%. At a 20% initial perturbation the error

is approximately 27%. An additional feature of the numerical results, which is in line with

intuition, is that the breakup time decreases as the initial amplitude increases. In fact for

initial amplitudes larger than about 0.2 (i.e. a 40% perturbation of the unperturbed radius)

the breakup time varies almost linearly with q. The numerical values that make up Figure

13 are also given in Table 2 below.
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el .001 .005 .01 .02 .03 .04 .05 .075 .1 .125 .15 .175

ts 21.13 16.28 14.16 12.00 10.71 9.78 9.04 7.66 6.64 5.82 5.13 4.53

tL 18.64 13.82 I 11.74 9.66 8.44 7.58 6.91 5.69 4.83 4.16 3.61 3.15

q .2 I .225 .25 .275 .3 .325 .35 .375 .4 .425 .45 .475 .5
ts 4.00 3.52 3.08 2.68 2.31 1.95 1.63 1.32 1.03 .751 .487 .230 0

tL 2.75 2.40 2.08 1.79 I 1.53 1.29 1.07 0.86 0.67 0.49 0.32 0.15 0.0

Table 2

6.2 Non-symmetric initial conditions

The results that follow were generated from an initial condition of the form

S0(z, 0) = 0.5 + el(sin(x) + cos(x)).

Noting that this can be re-written as

So(Z,0) = 0..5 + v/2_q cos(x - _-14),

we see that the value q = vf2_/4 _ 0.35355 is an upper bound for the initial perturbation

amplitude. The breakup times were computed as before, and the estimate tL provided by

equation (54) is valid with 5 = v/-2q now. Figure 14 shows the variation of the computed

breakup time with the initial amplitude level el, together with the linear result tL. Table 3

below provides the numerical values that comprise the figure.

(1 .001 .005 .01 .02 .03 .04 .05 .075 .1

ts 20.09 15.22 13.08 10.90 9.59 8.63 7.86 6.43 5.36

tL 17.60 12.78 10.70 8.62 7.40 6.54 5.87 4.65 3.79

q .15 .2 .25 .275 .3 .31 .32 .33 .34 .35

t_ 3.76 2.56 1.58 1.16 .76 .61 .46 .32 .18 .05

tL 2.57 1.71 1.04 0.75 0.49 0.39 0.30 0.21 0.12 0.03

Table 3

Qualitatively, then, the behavior is similar to the symmetric case. A more direct compar-

ison between the two types of numerical experiment is made in Figure 15. Here the breakup

times are plotted as a function of the energy of the initial perurbation defined by

/oE=2-- _

Applying this to the initial conditions used above gives the following expressions for the

perturbation energy corresponding to symmetric, Es say, and asymetrie, E_ say, initial

conditions,

Es= co=4.

Figure 15 shows collectively the breakup times as a function of E, and E_. It can be

concluded from these results that the jet breaks sooner for the case of asymmetric initial

17



conditions; for the particular choiceof initial conditionsusedherethe breakup times for the
symmetric casearealwayslarger than the correspondingonesfor asymmetricconditions, at
a given equal initial perturbation energy.Asymmetry appearsto enhancebreakup, then.

6.3 Scaling functions for different initial conditions

Here we construct the behavior of the solutions near the singular time for different initial

conditions. For brevity we consider pinching solutions computed from symmetric initial in-

terracial elevations - non-symmetric conditions are treated in the same way and have already

been shown to provide locally symmetric solutions at breakup (see Figure 12). The main

objective of this section is to provide numerical evidence that different initial conditions will

pinch according to a single scaling function when suitably normalized. We constructed scal-

ing flmctions near pinching by solving the initial value problem for different E 1 ill (6.1). The

scaling functions were constructed as described earlier (for instance the methods used in the

construction of Figure 9) and by use of the computed estimates of singular times from Table

2. In what follows we concentrate on the interfacial shape scaling functions derived from

numerical solutions starting from initial conditions with Cl = 0.005,0.1,0.2, 0.3. According

to the similarity solutions of Section 4, all scaling functions coincide at _ = 0 where they take

the value 1/(12(1 + 'fl))- This will be exhibited in the construction of the scaling functions

below, but can also be seen by consideration of the variation of Umin(t) as the singular time

is approached - the variation of Umin(t) with t near the singular time t, for a given initial con-

dition, should be linear with slope 1/(12(1 +/3)) (see (50)). Figure 16 provides the variation

of umi.(t) for different initial conditions el = 0.005, 0.01,0.02, 0.03, 0.05, 0.1,0.2, 0.3 labeled

on the figure and superimposed with these numerical results is the asymptotic behavior near

the singular time (see above and equation (50)) shown with open circles. It is seen that

agreement is achieved near the singular times as expected.

The scaling functions for different initial conditions are considered next. As shown by

the results of Figure 16, all scaling functions are equal to the universal constant 1/(12(1 +

/3) ,_ 0.0709 at { = 0. Numerically constructed scaling functions from initial conditions

characterized by the amplitudes q = 0.005,0.1,0.2,0.3 are shown in Figure 17(a) which

indicates the self-similar nature of the different terminal scaling functions. It can be seen from

the analytical solution (38) that the only difference between scaling functions is expected to

appear through the constant A in (38) which in turn depends on initial conditions; the role

of this constant is to stretch the axial coordinate _1by different amounts for different initial

conditions. Our numerical simulations and singular states full3." support this property of the

solutions as is demonstrated next: Choose the computed scaling flmction corresponding to

el = 0.1 as the reference function, f0(rl) say. According to the theory, for each of the other

initial conditions shown in Figure 17(a), a number, c say, can be found so that the change

of variables r/-+ c7_ maps the given scaling function into the normalizing one. The number

c is different for different initial conditions and was computed by calculating the ratio rlo/rli

where .f0(T10) = .f_(r/,) = h with h a fixed interfacial amplitude- different values of h produce

the same ratios as expected (the value of h had to be found by interpolation due to the non-

uniformity of the grids). This procedure, then, enables all scaling functions to be collapsed

onto .f0(T/). The result of this calculation is given in Figure 17(b) which provides additional

evidence for the validity of the asymptotic theory near the singular time.
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7 Computation of satellite drops

In previous Sections we provided numerical and analytical evidence of the form of pinching

solutions admitted by the model evolution equations. Even though the equations are rela-

tively simple compared with the full governing system (the Stokes equations plus nonlinear

interracial conditions) it has been established that the model system captures a lot of the

nonlinear stages of the evolution leading to pinching. In this Section we use the model to

compute final breakup states which are remeniscent of the observed phenomenon of mother

and satellite drop formation. To compute such solutions the initial conditions need to be

chosen appropriately. In order to illustrate things we concentrate on symmetric solutions,

and in particular we use a one-parameter family of initial conditions given by

o) = 0.3 + 0.05cos(z) + - :):). (55)

This initial condition is symmetric, periodic in z and has a localized hump at z = r over the

longer wavelength depression provided by the cos(z) perturbation. The advantage of such

an initial condition is that the jet pinches after a finite time with the radius vanishing simul-

taneously at two distinct axial positions. Just beyound pinching, then, a system of mother

and satellite drops emerges. Sample results are depicted in Figure 18 for five successively

increasing values of ¢2. The Figure shows the cross section of the jet just before pinching;

the computational domain is 2_--periodic in the axial direction and for better visualization

the solution has been dipicted to include four periods. We have used the computational

methods described in earlier methods to verify that the pinching takes place according to

the self-similar solutions given in Section 4, and we have computed singular times as well as

the volume of the satellite drops. These are estimated by evaluating the integral

j[z z+ 2l_ - 7r '_o dz,

where z- and z+ are the minima in ,% to the left and right of the satellite drop respectively.

The integral Vo = 7r fro'_ Sgdz is a conserved quantity which is equal to the total volume of

the jet at t = 0. The ratio t;/tb provides a measure of the size of the drops which form

after pinching. The present numerical experiments yield the results given below in Table 4,

and summarized in Figure 19.

e2 0.03 0.035 0.04 0.045 0.05

I._ 0.229 0.323 0.393 0.451 0.502

1,_ 0.602 0.607 0.612 0.618 0.623

I';/IJ_) 0.382 0.532 0.642 0.730 0.806

t_ 7.53 7.22 7.08 6.96 6.88

Table 4

It: can be seen fi'om the results that relatively small changes in the initial conditions can

lead to large changes in the final drop size. Note that the initial volume of the jet increases

by approximately 3% when e_ is increased from 0.03 to 0.05, while the volume of the satellite

drop formed increases by more than 100%. It appears, then, that small increases in e: enable
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the satellite drop to drain fluid from the adjoining main jet yielding a wide rangeof drop
sizes. At the sametime the jet breakssoonerasseenfrom the variation of ts. The trends

depicted in Figure 19 will be studied in more detail by more extensive computational searches

in the phase space of initial conditions.

8 Conclusions

An asymptotic theory has been used to derive a system of nonlinear evolution equations to

model the dynamics of viscous fluid jets under the action of capillary forces. The theory

is a long wave expansion which allows for fully nonlinear interracial amplitudes and the

equations can predict, pinching. Theoretical descriptions of the pinching have been given by

use of similarity solutions valid as the jet radius tends to zero after a finite time. The scaling

exponents are unique and the scaling functions form a one parameter family of similarity

solutions depending on the initial conditions. The predictions of the asymptotic solutions

near pinching have been confirmed, with excellent, agreement., by extensive direct simulations

of the initial boundary value problem. The solutions found here are possible terminal local

states of the full Stokes equations and can be used to benchmark the accuracy of direct

simulations (e.g. boundary integral or boundary element techniques), as well as to provide

correct initial conditions t.o continue the computations beyond pinching. Such analyses have

been described elsewhere for viscous jets (see Papageorgiou [26]). These comments are also

relevant to viscous jets possessing inertia and modelled by an analogous system of evolution

equations (see Appendix A).

In addition, it has been shown numerically that the model can produce pinching solutions

with the radius of the jet vanishing at the same time at two distinct axial locations; this

heralds the formation of a mother-satellite drop system and the model has been used to gain

quantitative information on the distribution of satellite drop volumes as a function of initial

conditions (or equivalently initial perturbation energy). A considerable amount of numerical

experiments remain to be carried out in order to obtain overall trends in both the Stokes

and Navier-Stokes models.
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Appendices

A Navier-Stokes regimes

[.;sing the capillary scales (3) for dimensionless quantities and starting from the Navier-Stokes

equations one is led to the following system:

U

R_(,,,+ ,_,,r+ ,,w_)= -_,r + _x_- - (56)
- F2

R_(_,,,+ ,_,,r+ _,_,,_)= -p_ + LXw, (57)
1
-(_,,)_ + w, = o, (58)
F

where the Reynolds number R_ = _pR (1/R_ is the familiar capillary number). The boundary
it 2

interfacial conditions are the same as (8)-(10). Proceeding as in Section 3 we introduce a long

axial lengt.h-sacle by the transformation _ _ c °. Our objective is to find an asymptotic

solution in powers of c2 which includes, to leading order, the effects of unsteadiness and

nonlinearity in the bulk motion. In particular we wish to increase R_ from its zero value for

Stokes flows, to a vahie when unsteadiness and nonlinearity first enter to yield a canonical

evolution system. The appropriate expansions for the flow parameters are those of Section

3, see equations (11)-(14), together with the scale

R_ = c2x, _ = O(1).

The axial momentum equation (57) gives to the first two orders

Wo - Wo(z,t), (59)

1
_(Wot + WoWoz) = -Po._ + wa_ +--Wlr nt- WOzz, (60)

F

while the radial momentum equation and the continuity equation give, to leading order,

1 u0
-p0r + u0_ + -Uo_ - 0, (61)

F F 2

1

Uo = --_rwo_. (62)

It follows by substitution of (62) into (61) that

po_ = O =* po - po( z , t ).

This enables the calculation of p0 from leading order terms in the normal stress balance

condition (9), and yields

1

po - So W0z. (63)

We are now in a position to derive the first, evolution equation from the tangential stress

balance equation (8). This is done as follows: The velocity correction wa is easily evaluated
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from (60) sincethe forcingsw0 and p0 are independent of r. This solution, along with the ex-

pression (62) for u0 are substituted into (8) to yield the following leading order contributions

after evaluation on r = S0(z, t):

(64)

A second evolution equation comes from the leading order contribution of the kinematic

condition (i0). Re-arrangement of (65) together with the kinematic contribution gives the

following coupled system governing the evolution of w0 and So,

lq,
,%t + "_,-ouo_+ u:oSo_= O.

(66)

(67)

The order one parameter _ can be scaled out of the problem by a change of variables and
so we can take _ = 1.

Equations (66) and (67) have been derived by Eggers and Dupont [17] by using a Tay-

lor expansion in the r coordinate, and by the present approach by Papageorgiou [26] in a

slightly different regime. The present approach is a systematic single parameter asymptotic

expansion with all terms appearing in the equations being of the same order in e. Equations

(66) and (67) admit pinching similarity solutions (see [18], [19] and [26]) of the form

Z

( - (_, _ t),/2 , (68)

where l_ > O is the time of pinching. The scaling functions appearing in (68) satisfy

f' g'f' 1

3g" + 77 + 6 .f - 2(g + _g') + gg', (69)

(g -4-_/2)f' - (1 - g'/2)f = O, (70)

with primes denoting {-derivatives. Eggers [18] and [19] has given numerical solutions of

these scaling functions which do not depend on arbitrary constants and so describe pinching

states which are independent of initial conditions. We note also that the system (69) and

(70) arises by looking directly for pinching solutions of the Navier-Stokes equations without

first deriving the intermediate asymptotic equations by introduction of e. Instead, the small

parameter which allows for an asymptotic development is the smallness of t,-t near the time

of pinching. This analysis (as well as the equivalent one for Stokes flows) has been carried

out by Papageorgiou [15] where the dynamics beyond pinching where also modelled by use of

overall mass and momentum balances. Further numerical studies of (66) and (67) are under

way to evaluate the model for such phenomena as satellite drop formation and comparisons

with empirical breakup times obtained from linear theory, as well as direct comparisons with

experiments.
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List of Figures

Figure 1 Solutionsof the similarity equations for different valuesof f2 shown on the

figure; left- interracial shape, right - axial velocity.

Figure 2 Solution of the evolution equations for symmetric initial conditions: (a) 0 _<

t _< 6.5, (b) 6.5 < t < 6.6. The computations were stopped when S,_i,_ < 0.003.

Figure 3 (a) The final computed jet shape at t = 6.6 when ,-q'mi,_= .0028; the figure

represents a cross-section of the jet in a plane containing the jet axis. (b) Evolution of

the largest magnitude of the interracial slope - boundedness of this is crucial for the long

wave/slender jet theory to be valid.

Figure 4 Evolution of the minimum jet radius for symmetric initial conditions. The

enlargement shows the linearity as t _ ts and the extrapolation to compute an estimate for

_s.

Figure 5 Symmetric initial conditions. (a) Evolution of the maximum axial velocity. (b)

Evolution of the axial position where the axial velocity attains its maximum.

Figure 6 Symmetric initial conditions. Evolution of _(t) (cf equation (45)), the leading

order component of the force in the jet. The enlargement shows the linearity as t ---, t_.

Figure 7 Symmetric initial conditions. Log-log plots estimating the power law behavior

of (a) Sing,(t), (b) A(t), and, (c) Wom_,:(t), as t _ t_.

Figure 8 Symmetric initial conditions. Comparison of the similarity solutions with the

computed ones. (a) S_n(t), (b) A(t). The curves labeled asymptotic correspond to the

theoretical predictions.

Figure 9 Symmetric initial conditions. Convergence to scaling functions. (a) Interracial

shape in the pinch region, (b) Axial velocity in the pinch region.

Figure 10 Solution of the evolution equations for asymmetric initial conditions. (a)

Evolution of the jet shape, (b) evolution of the axial velocity.

Figure 11 Asymmetric initial conditions. Evolution of S,_n(¢), (a), and A(t), (b), to-

gether with theoretical predictions.

Figure 12 Asymmetric initial conditions. Verification of the symmetry of the interface,

(a), and the asymmetry of the axial velocity, (b), near the pinch point. The solid lines

denote the solution to the right of the pinch point, and the circles denote that to the left,

after reflection about the pinch point.

Figure 13 Symmetric initial conditions. Breakup times for different initial amplitudes.

o - numerical calculation, * - prediction of linear theory.

Figure 14 Asymmetric initial conditions. Breakup times for different initial amplitudes.

o - numerical calculation, * - prediction of linear theory.

Figure 15 Breakup times for symmetric and asymmetric initial conditions plotted as

functions of the initial perturbation energy, o - symmetric, * - asymmetric.

Figure 16 Variation of Stain(l) for different symmetric initial conditions, q = 0.005,

0.01, 0.02, 0.03, 0.0.5, 0.1, 0.2, 0.3. The open circles show the asymptotic result according to

equation (50) and the magnitude of their slopes is equal t.o 1/(12(1 + _)).

Figure 17 Symmetric initial conditions. The interracial scaling functions near pinching

for different initial conditions. (a) Non-normalized, (b) normalized with the scaling function

corresponding to q = 0.1.
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Figure 18 Runsleadingto satellatite drop formation. Numericalsolutionsgeneratedfor
different initial conditions(55) and c2= 0.03,0.035,0.04,0.045,0.05shownon the Figure. A
jet crosssection is shownjust beforebreakup.

Figure 19 Satellite drop formation. (a) Variation of the ratio of satellite drop volume
to total jet volume with initial conditions; (b) Correspondingjet breakup times.
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1D Stokes. IC: .5+.1*sin(x), n=512, 0<t<6.5
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1D Stokes, 0<t<6.6
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Comparison of similarity solutions with simulation; agreement as t->ts
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Breakup times: Symmetric initial conditions
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Breakup times: Non-symmetric initial conditions
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Comparison of breakup times for symmetric and asymmetric IC
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Variation of S_min with time for different symmetric initial conditions
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"Satellite" drop formation for different initial conditions
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Variation of satellite to total volume ratio with initial conditions
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