This microfiche was
produced according to
- ANSI/ AlIM Standards

and meets the
~ quality specifications
contained therein. A
poor blowback image

Is theresult of the
characteristics of the

original document.

e



NASA~CR~-197955 S by e

' 4> 72—
/- 38

Research Institute for Advanced Computer Science
NASA Ames Research Center

(NASA-CR-197955) FOURTH ORDER -
OIFFERENCE METHCDS FOR HVPEREOLIC N93-23348
IBvPeS (Research Inst. for

Advanced Comrputer Science) 38 p Unclas

G3/64 0043872

Fourth Order Difference Methods
for Hyperbolic IBVP’s

Bertil Gustafsson and Pelle Olsson

RIACS Technical Report 94.04 March 1994




Hires

Fourth Order Difference Methods
for Hyperbolic IBVP’s

Bertil Gustafsson and Pelle Olsson

The Research Institute of Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was sponsored by NASA under contract NAS 2-15721 between NASA and the
Universities Space Research Association (USRA).




Abstract

In this paper we consider fourth order difference approximations of initial-boundary value
problems for hyperbolic partial differential equations. We use the method of lines ap-
proach with both explicit and compact implicit difference operators in space. The explicit
operator satisfies an energy estimate leading to strict stability. For the implicit operator
we develop boundary conditions and give a complete proof of strong stability using the
Laplace transform technique.

We also present numerical experiments for the linear advection equation and Burgers’
equation with discontinuities in the solution ar in its derivative. The first equation is used
for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks
and rarefaction waves. The time discretization is done with a third order Runge-Kutta
TVD method. For solutions with discontinuities in the solution itself we add a filter based
on second order viscosity.

In case of the non-linear Burgers’ equation we use a flux splitting technique that results
in an energy estimate for certain difference approximations, in which case also an entropy
condition is fulfilled. In particular we shall demonstrate that the unsplit conservative
form produces a non-physical shock instead of the physically correct rarefaction wave.

In the numerical experiments we compare our fourth order methods with a standard
second order one and with a third order TVD-method. The results show that the fourth
order methods are the only ones that give good results for all the considered test problems.



1 Introduction

It is well known that high-order accurate difference operators are more efficient than low-
order ones for hyperbolic problems with smooth solutions, except for very low accuracy
requirements in the solution. The theoretical basis for this conclusion is found in (7]
and [17]). Nevertheless, in practice most calculations are done with first or second order
approximations. One of the reasons for this is the extra difficulty that arises near the
boundaries. It is always possible to derive non-symmetric operators near the boundaries
that have sufficient formal accuracy, but it is more difficult when requiring that the method
also be stable. In [12] and [16] high-order methods for initial-boundary value problems
are constructed based on the work by Kreiss and Scherer [8] and [9]. The approximations
satisfy an energy estimate that guarantees strict stability. For integrations over long time
intervals this is an especially important property.

Stability an. ysis based on Laplace transform technique leads to strong stability if
the Kreiss condition is satisfied as shown in [5]. In this book there is also a complete
analysis of a semi-discrete fourth order approximation based on the standard five-point
scheme, and the Kreiss condition is shown to be satisfied. Strict stakility, however, is not
an automatic consequence of this theory.

In sec. 2 we give a brief review of the currently available results for fourth order
accurate operators.

Compact difference operators (Padé type) for the space part of PDEs have been con-
sidered, for example, in [17], [14] and [10]. These methods are based on an approximation
Z — P7'Q, where P and Q are non-diagonal difference operators. In this way the error
constant can be substantially reduced, and the extra work required for solving the banded

systems in each time step may well pay off.

In [1] a boundary procedure is developed for the fourth order case, where P and Q are
tridiagonal, and it is verified that the Kreiss condition is satisfied. However, the step from
the Kreiss condition to stability is not carried out. No such general theory is currently
available; in [5] only the explicit case P = [ is treated. In sec. 3 we present the full
theory for the implicit fourth order approximation by generalizing the Laplace transform
technique. We construct boundary conditions such that the resulting approximation 1s
strongly stable and gives a fourth order error estimate.

For problems with non-smooth solutions, the error estimates based on the truncation
error breaks down. Still the fourth order methods may well also be competitive with lower
order ones in this case. This is demonstrated in sec. 4, where we present a number of
numerical experiments. We use the linear advection equation and Burgers’ equation with
discontinuities in the solution or in its derivative. The first equation is a good model for
contact discontinuities in fluid dynamics; the second one is used for modeling shocks and
rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD
method.




For solutions with discontinuities in the derivatives, for example rarefaction waves, no
extra viscosity terms are necessary. However, for discontinuities in the solution itself, we
expect oscillations in the numerical solution. Therefore, we add a filter based on second
order viscosity. This takes the formal accuracy down to first order, but by using a switch
as coefficient for the viscosity term, this loss of accuracy is limited to the immediate area
around the discontinuity.

In case of the non-linear Burgers’ equation we use a flux splitting technique that results
in an energy estimate for certain difference approximations, in which case also an entropy
condition is fulfilled as described in [13]. In particular we shall demonstrate that the
unsplit conservative form produces a non-physical shock instead of a rarefaction wave.

2 Explicit Difference Operators
It is common to use the energy method in order to establish well-posedness of initial-
boundary value problems (IBVP) for hyperbolic PDEs. Consider the model problem

utu, =0, 0<z<o00, t=>0
u(0,1) = g(t), (1)
u(z,0) = f(z),

where the initial data f(z) is assumed to have compact support. We consider the quarter
space problem for convenience; domains with two boundaries are handled analogously,
cf. sec. 4. The standard L? scalar product and the corresponding norm are defined oy

(wo) = [ uzp(eidz, (P = (u,v).

To arrive at an a priori estimate for eq. (1) we use the following tools.

(i) Integration by parts (assuming compact support):

d%”u”2 = 2(u,u;) = -2(u,u;) = u(O,t)2 .

(ii)) Boundary conditions:
u(0,t) = g(t).

Hence, p
g;llull2 = g(t)?,

which after integration with respect to t yields an energy estimate

Hu( ) = IfI? + /o‘ lg(r)|dr .

— «”.—-m-m— -



For the outflow problem

uy—u, =0, 0<z<o0. t>0

u(z,0) = f(z), )

no boundary condition is needed to obtain an energy estimate; in fact, one can estimate
the solution at the boundary z = 0:

G 01+ [ (0, 7)Pdr = |1fIP.

It is also possible to derive an energy estimate for the nonlinear conservation law

u + F.=0, 0<z<o0, t20,
u(0,t) = g(t) if F'(u)>0, (3)
u(z,0) = f(a),
provided F(u) satisfies a certain structural hypothesis. The key to obtaining an energy
estimate lies in splitting the flux derivative F, into two parts,

F:=(F -G): +G. = (F~ G); + G'u,,

where G = G(u) satisfies Euler’s inhomogeneous differential equation

Gu=-G+F G=l/"F(v)dv.
uJjo

Hence, F. can be written as
Fr = (G'u); + G'u,,

which will be referred to as the canonical splitting of F,. The solution of eq. (3) then
satisfies :

%Hull2 = =2(u, F;) = —2(u, (G'u);) - 2(u,G'v.) = 2uG'u(0,1),

where

uG'y = / Flo)vdy. (4)
0

Thus, in order to obtain an energy estimate we must confine ourselves to flux functions
F’ such that the sign of F’(u) determines that of (4). This is true if, for instance,

sgn(u) = sgn(F'(v)) or sgn(F'(u)) > (<) 0.

| The former condition is true for Burgers' equation, whereas the latt~r holds for all linear,
" constant coefficient equations. We thus have an example of the previously mentioned
structural hypothesis. The canonical splitting and the structural hypothesis can be gen-
eralized to symmetrizable systems and several space dimensions [13]. Hence, if we are to

obtain an energy estimate for a nonlinear conservation law, the list of tools is augmented
by
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(11i) Canonical splitting of F;.

(iv) Structural hypothesis on F.

The analysis of the semi-discrete case can be carried out in much the same way as in
the continuous case; integration by parts is replaced by summation by parts. The main
difficulty lies in the treatment of the analytic boundary conditions.

The discrete L? scalar product and norm are defined as

o o]
(1,000 = - 05 [full o = (4 Wloco.
7=0
To make the notation less cumbersome we shall use the conventions (u,v) = (u,)o,cc and
llu|l = l|u]lo,co- The difference operator D is defined by

1 ,
(Du)j=";§:djkuka ]=Osla'--9
k=1,

where D is a local operator, i. e., |I; — j| < I, [m; — j] < m for some constants I, m; h is
the (uniform) mesh size. For certain operators one can find a local, symmetric positive
definite operator (SPD) H [8, 9, 3, 2], such that

(u, HDv) = —ugvg — (Du, Hv) (5)

in complete analogy with the analytic case. As usual we have assumed compact support.
It can be shown [8] that it is impossible to choose H = I for consistent approximations
D. An example of a fourth order accurate operator with third order boundary closure
satisfying eq. (5) is provided in the Appendix.

The treatment of the analytic boundary conditions can be done in various ways. One
possibility is to represent the analytic boundary conditions as a projection operator T.
Eq. (1) is then discretized as

du,- _ dg _ .
L4 (TDu), = (=T, =01,

(6)
“1(0) = J

where

(Tu)o=0, (Tu);=u,, j=12,...,

and § = (g(t) = ...)T; g(t) is the analytic boundary data, and z is a generic component.
The actual value is of no importance. If ug(0) = fo = g(0) it follows that uo(t) = g(t) or,
equivalently, (/ — T)(u — §) = 0. Hence, the analytic boundary condition is fulfilled for
all time. Assuming that f and g satisfy certain compatibility conditions one can prove
the following estimate [12]

(u(t), Hut) = (/. H 1)+ [ g(r)dr.

4




Since H is a bounded, symmetric positive definite operator the above equation: yields
¢
el < const. (1 + [*g*(r)ar )
0

More generally, given a norm H, any linear boundary condition can be represented
as a projection operator T such that HT = TT}H [12]. This property together with
€q. (5) makes it possible to prove strict stability for arbitrarily accurate semi-discrete
approximations of hyperbolic systems in one space dimension. By strict stability we
mean that the growth rate of the analytic and the semi-discrete solutions is identical.
Confining ourselves to diagonal norms H it can be shown that operators D satisfying
eq. (5) will result in strictly stable semi-discrete approximations of hyperbolic systems
in several space dimensions. The stability results are valid for curvilinear domains with
non-smooth boundaries, cf. [12] for a complete presentation. For explicit examples of
high-order difference operators corresponding to diagonal norms we refer to (11,2, 16). If
we relax eq. (5) to

(u, HDv) = B(uy,vs) — (Du, Hv), wup= (uo ... uq)T n=(v ... v

b

LG
for some function B and some constant q, it is in general no longer possible to prove strict
stability. However, it may still be possible to prove stability using Laplace transform
techniques [5]; at outflow boundaries one uses extrapolation, and at inflow boundaries
the differential equation is used to impose proper analytic boundary conditions, f. sec. 3.
Yet another technique for enforcing the analytic boundary conditions is used [3], where a
penalty function F (Simultaneous Approximation Term) is added to the right hand side
of eq. (6) after setting T = I. The penalty function is constructed such that the solution
of the semi-discrete scheme will satisfy the analytic boundary conditions to some order
of accuracy. It can be shown that the resulting semi-discrete scheme is strictly stable
for one-dimensional constant-coefficient hyperbolic systems. F inally we mention that the
projection technique outlined above carries over to the nonlinear case if the semi-discrete
equation is based on the canonical splitting of the flux derivative, and if D satisfies eq. (5)
for some diagonal norm. This analysis will be carried out in a forthcoming paper.

q

3 Implicit Difference Operators

In this section we shall construct boundary conditions for the standard fourth order
implicit approximation and prove stability. It has been shown in [4] that it is impossible
to enforce eq. (5) for sufficiently accurate boundary approximations as long as the matrix
H in the norm is non-diagonal only in a neighborhood of the boundary. Therefore, we shall
use the Laplace transform technique to prove stability. Note that for the two-boundary
problem, however, the semi-discrete solution may grow exponentially in time even if the
analytic solution is bounded in titnc This is in agreement with the discussion in sec. 2,
since one cannot in general prove si. stability using the Laplace transform technique.

5



The step from the Kreiss condition to the stability estimate is not covered by existing
theory. We shall use the same type of technique as used for explicit approximations in
[5], but it will be modified so as to apply to implicit operators.

We first consider the outflow problem

U = Uy, 0<r<o0,0<t

u(z,0) = f(z), ®)

Let v; be the approximation of u.(z;,t). The standard fourth order implicit approxima-
tion used at inner points is

1 1 .
a(vj_l + 4v; + v,-.H) = -2—’;(1114.1 - u_,..l) .o3=012,....

Since there is no boundary condition for u at z = 0, we use a one-sided approximation at
7 = 0. A Taylor expansion shows that

1
vo +2v; = ﬁ(—fmo + 4u; + up)

has a truncation error of order h® (for a systematic derivation of high-order approxima-
tions, see [10]).

Let the operators P, Q) be defined by

é(uo-i-?ul), j=0
(Pu); = |
g(u,:_, +4u; +upa), 7=12,...,
(9)
é‘li—h(-&lo +4uy+up), j=0
(Qu); =

1 :
'2"};(uj+l'uj—l)a J=L2...,

where the boundary approximation has been normalized so that P is symmetric. For
general problems, we solve for the approximation v of u, from

(PU),':(QU)J', j=0111~-'»

and substitute v into the general approximation of the differential equation. For our
model problem, the approximation can be written as

(Qu);, 1=0,1,...

du
(P=7);

u;(0) = f;,

ROV




We need to know that our approximation is solvable. Furthermore, the operator P is
going to be used to define a norm. We have

Lemma 3.1 P is a symmetric positive definite operator in Co.

Proof: The matrix representation of P shows that it is symmetric. We have

12
—h—(u, Pu) = (Juol® + 2uou1) + (2u1uo + 8lua|? + 2uqus)

+(2u2'U.1 + 8|u2|2 + 2“2”3) + ... 2 l'u.(\|2 - 4|u0u1| + 6"!11 |2 + 4 Z |UJ'|2

=2

4 20 1
> fuo|® — g|“o|2 — 5w+ 6lm P+ 4yl > _57;”"”2’
=2

which proves the lemma. ]

For the purpose of deriving stability and error estimates, it is convenient to rewrite
the approximation with the boundary scheme singled out. With inhomogeneous terms in
the boundary approximation, (10) becomes

du

(PR, = (Quy,  J=l2ee
(PZ)0 = (Quho+s, m
u;(0) = fi-

We prove
Lemma 3.2 Consider (11) with f = 0. The solution satisfies the estimate

t t
u(@)|?+ | fu;(r)|?dr < const. hg(7)|?dr, 7 =0,1,...
o’ 0

Proof: The Laplace transformed approximation is

s(Pa), = (Q&);,  J=12..., (12)
s(Pi)o = (Qi)o + 9. (13)
[}l < oo, (14)

with the characteristic equation at inner points

(kP +4x+1)=3(x*=1), §=sh. (15)



This equation has exactly one root x; with |;] < 1 for Re(3) > 0. In order to prove
this, we first note that there is no root x with |x| = 1 for Re(s) > 0. If there were such
a root k = €%, £ real, then the periodic problem would have growing solutions with time.
This contradicts the fact that the symbol of the operator P~'Q has purely imaginary
eigenvalues. The roots  are continuous functions of 3 except at § = 3. In the limit, as §
tends to oo,

K1=_2+\/§1lxl|< 11
K2=—‘2—\/§,|K2|>1.

Furthermore, &, is continuous at the exceptional point § = 3, and we havex, = ~1/2,k2 =
oo at this point. For all other § in the right half-plane we have |x2| > 1.

Therefore, if Re(3) > 0, there is only one root «; of (15) with |x;| < 1. and the general
solution of (12) is

'&] = 0y IC';.
Inserting the solution into the boundary equation (13) gives
D(3)oy = hg, (16)
where !
D(3) = 3(1 +2xy) + 5(5 —- 4Ky — K2).
The Kreiss condition is fulfilled if

D(s)#0, Re(3)2>0.

Assume that this condition is not satisfied. Then we solve the equation D(s) = 0, and
substitute

1
5= 5(—5+4x1 + &)1 +251), K #-1/2

into (15). The resulting equation has the only possible solution x, = 1, corresponding
to $ = 0 in (15). But a perturbation calculation with § > 0,5 << 1 in (15) shows that
Ky = —1,K2 = 1. Since D(8) # 0 also for the exceptional value £y = —1/2, we have shown
that the Kreiss condition is fulfilled. Therefore we get from (16)

loy| < const.|hg|,

i.e.
l4,| < const.|hg|, Re(s)2>0, j=0.1,....

By integrating |i,|* along the line Re(s) = 0 and using Parseval’s relation, we get

/oo lu;()|?dr < const. /w |lhg(T)|?dr, j=0,1,....
0 0




But u;(7r),7 < ¢, does not depend on g(7),7 > t. Therefore, when considering u;(r) in
[0,¢], we can as well set 9(7) = 0 in (¢, 00). This gives the estimate

t t
/ [u;(7))%dr < const./ lhg(7))%dr, ;= 0,1,.... (17)
0 o

The final estimate is obtained by using the energy method. Recalling the definition (9)
of (Pu),,(Qu,), eq. (11), and that P is SPD. we have for some constants Q,;

d 2
(—i;(u, Pu) = 2(u,Qu) + 2uphg = Z ajuiu, + 2ughg |

1,0=0

implying
¢ 2
u(t)])? < const.(u(t), Pu(t)) < const.(/0 (Z [u;(7)% + thg(T)]?)dr .
ot

The final estimate now follows by using (17). o

We shall now prove that the approximation is strongly stable. Consider first the
auxiliary problem

dv :
(PE)J = (QU)}, ]=]v2v‘"‘s
Vo = v, (18)

v;(0) = fi.

By differentiating the boundary condition with respect to ¢, we can eliminate dvy/dt such
that (Pdv/dt); is well defined also for J = 1. We now use the scalar product and norm

oo

(u.v),m = Zu,-vjh R
=1

ull} oo = (u, )1 00+

and by applying the energy method we obtain
d
E(vv Pv)l.oo = 2(1), Pvt)l.oo = 2(”9 Qv)l,oo

= ~1vg = ~|yo)? = -|U1|2-
After integration we get

(4(0). P10 = (4(0). Po(0))se ~ 5 [ (Ioor) + oy (r) P




By using the boundary condition, vy can be eliminated, and it is easily shown that P is
positive definite. Since P is bounded, we get the estimate

O + [ loa(r) + bor(r) ) < const I oo (19

Since the original boundary condition employs 3 points ug, u;, uz, we also need an
estimate for v;. For j = 2,3,... we write (18) as

dv
(PG = (Quy, j=23,...,

!

(41 n,

vJ(O) = f] ’

where v; in the right hand side of the boundary condition is considered as a known
function. For this new problem we use the same technique as above. We construct a new
auxiliary problem for which we can derive an energy estimate including the boundary
values, and for the remaining part of the solution we use the Laplace transform technique
and the Kreiss condition to obtain an estimate. This time the auxiliary problem is

dw )
(P—d—t—)j = (Qw);, 7=2,3,...,

w = w,,

w;(0) = f;.

In the same way as we obtained the estimate (19), we now get

t
1o(®)l30 + [ (0r(r) + ha(r)P)dr < const |1 o (20)
The grid function y; = v; — w, satisfies

dy .
(PE)jz(Qy)ja J =213a--' ’

h=qg, 1 =y —w, (21)

y;(0) = 0.
We have

Lemma 3.3 The solution of (21) satisfies the estimate

t ¢
| windr < const. [Clgi(ryPar, j=1,2,...
0 0

10




Proof: The Laplace transform of (21) is

o pya | .
s(Pg); = 5(!1:41 = Y1),

ﬁl=glv

l§1l1,00 < 00

with the solution

ij =§1K{-l)j = 112v"‘ )

where &, is the solution of the characteristjc equation (15) with |k;| < 1 for Re(3) > 0. As

explained in the proof of Lemma 3.2, kq is well
1912

/ ij('r)lzdr < const./ lg1(7)|%dT , 71=12....
o ()

As in Lemma 3.2 we can change to integration
follows.

By this lemma, the definition of 91 and the estimates

estimate
t
/ fva(7)]2dr < const
0

t
< const./o (1 (7)) + Jwi (7)) + |w

We also need estimates for dv;/dt near the boundary. By differentiating (18) with
respect to ¢, we get the same diffe. ential-difference equation

¢ = dv/dt. Since at any time t, we can solve boundedly for dv/dt in terms of Qu, we also
have an initial condition for #, yielding the problem

do
( o) = (Q9);,

¢ = ¢la

5(0) = LR,

Here R is a bounded operator, and accordingly,

[18l1,00 < const.h

We now use the same procedure as above to
summarized in

11

along the line Res = 0, and using Parseval’s relation, we get

s=sh, j=203,...,

defined for all 3, Re(3) > 0. By intezrating

over a finite time interval, and the lemma
0

(19), (20), we now have an

S ) + o))

(7)[*)dr < const ||f]12 .

and boundary condition for

J=23,...,

vk | .

"N Moo -

derive estimates for ¢. The results are




Lemma 3.4 The solution of (18) satisfies the esiimate

olt))p

1 B+ [ Zld”’ D idr < consth ™| flf, v=0,1.

0

We can now derive the final estimate for u. The difference z; = u; — v; (where u and
v are the solutions of (11) and (18) respectively) satisfies

(PL), = @), =12,

(PZ)o = (@2)o+g- (Pl +(@v)o,

ZJ'(O) = 0.

The operator P is bounded in the maximum norm, and Q is of the order A~!. By applying
Lemma 3.2 and Lemma 3.4, we get

dv;
NP+ [ 1zy(r)dr < const.[‘(Uho(r)F + 3 r)? + 32 1h 24T e

1=0 1=0
_<_const.(||f||2+/o lhg(r)[dr), j=0.1,....

By the definition of z and by using Lemma 3.4 once again, we have proved

Theorem 3.1 The approrimation (11) is strongly stable, and the solution satisfies

(O + [l ()P < const (A1 + [ h(r)Pdr).

=0

0

If a forcing function Fj;(t) is introduced into the first equation of (11), an extra term
Js IF(7)||*dr enters the right hand side, see [5]. The error estimate then follows immedi-
ately from strong stability. The error e,(t) = u(z,,t) — u;(t) satisfies

d .
Pd—:)) = (Qe),-+0(h‘), 1=12,...,

(P%

Tl = (Qelo+ O(R),

e;(0) = 0,

and we get from Theorem 3.1

12




Corollary 3.1 The solution of (11) satisfies the error estimate
llu(z;,t) — uj(t)]| < const.h*.

0

At this point we have finished the analysis of the outflow problem, and we turn to the
inflow problem

Uy = —uz, 0<r<oo, 0<t,
u(0,t) = g(t), (22)
u(z,0) = f(z).

When using the implicit difference operator to compute an approximation v; of uy(z;,t),
we need a boundary condition for v;. From the differential equation we get, after differ-
entiating the boundary condition with respect to ¢,

u(0,t) = —g'(t),

and the approximation becomes

1 1 '
E(vj-l +4v; +v;4) = "ﬁ(uj-H —u;1), j=12,...,
t) = t),
uo(t) g9(t) (23)
Uo(t) = -—gl(t)a
u;(0) = f;.
which yields
du .
(P=)i = —(Qu);, j=12, .,
U = ¢, (24)
u,(0) = f,.

where P is defined at inner points as in (9). Here it is tacitly understood that the
differentiated form of the boundary condition is used to define dug/dt. Clearly, P is SPD
in the space of grid functions {u;}$® with compact support.

Corresponding to Lemma 3.2 we have
Lemma 3.5 Consider (24) with f = 0. The solution satisfies the estimate

t t
2 , 2 2 Y =
(O o + [ ()T < conat. [ lg(r)Pdr), j=12,....

13
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Proof: The Laplace transformed problem is
s(Pﬁ)J = —(Qﬂ)j) .7 = 1,2,... ’
t‘10 = fl ’
with the characteristic equation

(kP +4x+1)=-3(k* 1), 3=sh. (25)

The coefficient of x? vanishes for § = —3, which does not cause any trouble, since we are
only interested in § located in the right half-plane. Therefore, we get immediately
ﬁj = gK.‘; ’

where «, is the solution of the characteristic equation (25) with |x1] < 1 for Re(3) > 0.
Parseval’s relation yields

t t
/ u;(r)[2dr < const./ lg(r)2dr, j=0,1,.... (26)
0 0

Applying the energy method and using (26) together with the fact that P is SPD proves
the lemma. ]

Remark: For the outflow problem there is a gain of one power of h in the estimate with
respect to the boundary data. For the inflow problem with a physical boundary condition,
this gain does not occur. 0O

In order to prove strong stability, we use the same procedure as for the outflow problem;
it now becomes much simpler. As our auxiliary problem we now take

dv )
(PE)J = —(Q‘U)j, ]-'—'1,2,...,
V9 = —V,
v;(0) = J[;,
leading to the estimate
2 : 2 2
(@)l + [ ()7 < const ]I oo (27)

The difference w; = u; — v; satisfies
dw .
(P-‘E-), = (Qw);, 7=12,...,
we = g~ Vo,

w,‘(O) 0.

14




Lemma 3.5 now gives

(Ol < const. [ Clg(r) + vo(r))dr

t
< const (/|2 + | lg(r)Pdr).
The stability follows by using the definition of w and (27):

Theorem 3.2 The approximation (24) is strongly stable, and the solution satisfies

(O o < const (111 oo + [ lo()Pdr).

]

The only truncation error occurs in the difference approximation at inner points, and
an O(h?) error estimate follows immediately.

Remark: The method of deriving stability and error estimates presented here can be
generalized to systems of PDE. For the simple model example treated here we could have
used the following direct method. ]

Let ¢(z,t) be a smooth function with 1

¢(z,0) = f(z),
¢(0,¢) = g(t),

such that /
&g, T ,
[ e < const (111 + [ la(rldr), 0<v4ugl. 1
The difference v;(t) = u;(t) — ¢(z,,t) satisfies
dv ,
(P'Jt') = (Qv)j+Fja ]=1v2a'°-’
Yo = Ov

v;(0) = 0, ;
where . \ .
JNF@lhocdr < const(1flhee + [ larldr). |
0 0 ;

The energy method gives

d d d
2”Pl/2v”l.w'&;”Plnv”l.oo = a”Pl/?v”fm = E(vv Pu)i .00 = 2(v, Pv) o
= 2(v, F)1.00 < const.||[P?vls.00| | P F|1 00
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After dividing by ||PY?v||,,. and integrating, we get

t
o ®ll0 < const.||PY2v||s.00 < const. / | PY2F(7)||1 codT
0

t t
< const. /o E() |l oodr < const.(||fllro + /o lg(7)|d)

which gives us the estimate for u. (8

4 Numerical Experiments

We will now investigate how the previously analyzed difference methods behave in prac-
tice when applied to two different model problems. We have chosen the linear advection
equation, which will serve as a simple model for contact discontinuities in fluid dynam-
ics, and Burgers’ equation, which is used to study how the schemes treat shocks and
rarefaction waves.

Consider the scalar conservation law

w+ Fr=0, -1l<z<l, t>0,

u(z,0) = f(z). (28)

At the boundary we prescribe u = g if the characteristic is ingoing. We will consider
different implementations of the flux derivative r.

F, = F;, (c-form), | fu
F,=(F~G): +G'u,, (eform), G=-— / F(v)dv. (29)
F, = F'u,, (p-form), u’o

The first expression of eq. (29) is the usual conservative form; the second form corresponds
to the flux vector splitting that results in an energy estimate. The third variant, finally, is
the primitive form. These forms will lead to numerical methods with different properties.
It is possible to give a unified presentation by writing

F. = (aF + BG): + (W F' + 6G")u., (30)
where
a=1 =0 =0 §=0 (c-form),
a=1 f=~1 v=0 §=1 (eform), (31)
a=0 =0 ~=1 6§=0 (p-form).

The flux F = F(u) is defined by

F(u)=u (advection equation),

F(u) = u*/2 (Burgers’ equation). (32)
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Thus, the initial-boundary value problem is defined by eqs. (28), (30), (31), (32).

Next we formulate the semi-discrete problem

‘_’Eti +(T (D(aF + BG) + (YF' + 6G") D)), = ((I —T):i,—f)j» 71=0,1,....,N, (33)

d
where u = (ug...un)T is the grid function; F = (Fp... Fy)T, G = (Go...Gn)T, where
F; = F(u;) is the analytic flux evaluated at u;; the G;’s are defined analogously. The
operator F' is defined by (F'v); = F'(u;)v;,j = 0,..., N (F'(u;) is the Jacobian of the
analytic flux evaluated at u;) with a similar definition of G’. We shall write F'(u;) = FJ,
G'(u;) = G for brevity. The operator T represents the analytic boundary conditions
and g contains the boundary data [12]. Finally, D is a difference operator approximating
8/dz to some order cf accuracy; D can be either explicit or implicit. Symbolically we

write D = P~1Q, where P and Q are local operators. In the case of explicit operators we
have P = J, ard thus D = Q.

For explicit difference operators the boundary operator T is defined by

douo, 1=0,
(Tu)j= uj, j=1,2,...,N—l,
6luNa ]‘_'Na

where

5_{0 if F§>0, _{0 if Fy <0,

711 otherwise , ' 11 otherwise.
The data g is given by g = (¢(t) z...z g™ (1))T, where 9 and g are the analytic
boundary data. It follows from eq. (33) that the boundary conditions are fulfilled for all
time if the initial data satisfies the boundary conditions. It is assumed that the type of
boundary condition remains the same for all time at a given boundary point. One can
always restart the process, should there be a change at a time ty. We point out that the
c-, e-, and p-forms lead to identical semi-discrete schemes for the advection equation.

The implicit scheme is formally obtained by setting T = | and by enforcing the
boundary conditions explicitly. Hence,

du, |
—d'% +(D(aF + 8G) + (vF' + 6G')Du); =0, j=0,1,....N, (34)
subject to the constraints
wo =g if Fg >0, uy=gMif F} <0.

In the following we shall confine ourselves to the fourth-order accurate operaior D = P~1Q




discussed in sec. 3. For outgoing characteristics at the boundaries we then have

4

up + 2uy, 1=0,

1 )
(Pu); = 4 -é(u,‘-1+4u,-+u,~+1), i=L,2,...,.N-1,

{ 2un-y +un, J=N,
and -
ﬁ(-—5uo+4u1+uz), 1 =0,
1 )
(Qu); = | 51—(—u,—_,+u,-+1), i=12,...,N~1,
1 )
| 2% —un-z2 —4un. 1 +5un), J=N.

Since the characteristics are assumed to be outgoing (corresponding to the linear outflow
case, cf. sec. 3), no analytic boundary conditions need to be enforced. Consequently, the
semi-discrete scheme (34) becomes

B g+ ((rF 466 W); =0, =01, N,

where v and w satisfy

(Pv); = (Qu);, (Pw); =(Q(aF +8G));, j=0,1,....N.

On the other hand, if there are ingoing characteristics at both boundaries, then no bound-
ary modified stencils are needed since one can use the analytic boundary conditions to

close P and Q. Consider
(Pv)i = (Quh,

(Pw) = (Q(aF + BG)),

which is equivalent to

1(4 + ) 1 1 lv
— ’ = ee—— — S— — -
6 Uy + U2 2hu2 2hu° 6 0,

(35)
1 1 1 1
6(4101 +w;) = ﬁ(aFg + BG,) - “2_,;(3F0 + BGo) ~ gWo-
Suppose that Fj > 0. Then we have the boundary condition uo = g, which implies
Fo = F(¢®) and Go = G(¢'?). Furthermore, vg is an approximation of uz(—1,t). Using
R w_ e
HEF TR T ()

18



we obtain

o
g%

Vo = —

F'(g®)

Note that this expression is well-defined since F'(¢(®) > 0. Similarly, wo approximates

aF(—1,t) + BG.(-1,t) = (aF' + BG")u.(—1,1).

Using

0
9

Uy = ~

F'(g)
leads to the following boundary approximation for wq

G'(q'®
W = — (a + )61;!/2;(0);) gt(O) .

Substituting these expressions into eq. (35) yields

Ly 1l I 0,1 ¢
sl o) =g e g F(gmy

1 1 1 1 Gl(g(O))
6(4&)1 + wy) = ﬁ(an + 8G;) - 2—h(aF’(g(°’) + ﬂG(g(o))) + 6 (a + ﬂF’(_gw—))_) gfo) .

The right boundary is treated analogously. Summing up, the fourth order implicit scheme
is defined by eqs. (36) - (41)

dy;

7+w,+((7F'+esc:')v),-=0, j=0,1,...,N, (36)

where v and w are the solutions of

(Pv); = (Qu); +p;, (Pw); = (Q(aF +8G));+¢q;, j=0,1,....,N. (37

The explicit structure of the difference operators P and Q will be given shortly. We
have moved the boundary such that z_; = —1 and zy4; = 1 in eqgs. (36) - (41) in
case of ingoing characteristics. These extra boundary points have then eliminated by
means of the analytic boundary conditions. This procedure will simplify the computer
implementation of the algorithm, since the number of unknowns will be same regardless
of the direction the characteiistics (u_, and uny, are known if the characteristics enter

19
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the domain).

1
6(4uo+u,) if F§>0,
1=0,
uo + 2y, otherwise ,
1 .
(PU)J‘=4 g(u,-_1+4uj+u,-+1), 1=1L2,...,N—-1, (38)
1 .
E(uN_l +4uy) if Fy <0,
J= Na
[ 2un_y + upn, otherwise,
and
1
' ST if F}>0,
| 1=0,
2—h-(—5uo + 4u; + u3) otherwise,
| .
(Qu)J:: 1 2_’1-(_uj—l+uj+l)a ]=l’2v"'7N—lv (39)
1 .
“ﬁuN—l if FN <O,
| j=N.
{ 2—h(-uN—2 —4un_y + 5un) otherwise,
Finally,
(1 1 g
g 9
2 T F(g0)" Fe >0, j=0
0 otherwise ,
p,=4¢ 0, J=412,...,N~-1, (40)
1 1 g(') .
_ gy I /
2hg +6F’(g(”)' 1 Fy <0, 1=N
| 0 otherwise ,
20
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and
1 1 G'(g!? e oy
( ~~27(QF(9(0)) + BG(g')) + & (a + ﬂ-l:_TE‘q—(a)—;) g9 if Fs>0,
9 j=0,
0 otherwise,
qj=J 0, 1J=1L2... N~
1 1 G'(gV :
55 (@F(¢") + BG(gM)) + 5 (a + ﬂ‘pl—é:‘lﬁ)—;) oV i Fy <o,
g i=N,
| 0 otherwise.

(41)

The numerical method (36) ~ (41) is discretized in time using an explicit 3rd order
TVD Runge-Kutta method [15]

ul = u” — kL(u"),

3 1 k
u® = it 4—u(” - ZL(u“’), (42)

1 2 2k
MU= _una 2, 2R )
u U + 3! 3 L(u'®),

where £ is the time step; L is the (nonlinear) spatial operator implicitly defined by egs. (36)
- (41). Although the spatial accuracy is of order four we still use the above third-order
TVD Runge-Kutta method because of its simplicity. It is possible to construct TVD

Runge-Kutta methods of higher order of accuracy than three, but they are considerably
more complicated.

The existence of a smooth solution is the underlying assumption when constructing
high-order centered difference approximations. This assumption is obviously violated at
shocks and contact d’scontinuities. Spurious oscillations can be expected. One way to
overcome this problem is to introduce viscosity as a filter. Let n+! denote the output of

eq. (42). As a preliminary step in the derivation of the filter we define the new time level
as

1 1 ) .
W= (W 2t ) = ane F8A-0T = N

All points will be filtered as the scheme stands above. To avoid this effect we introduce
a switch r; to turn off the filter outside the spurious region

ntl ~n+1

1 .
ut =@ +ZA+(.",_,/2A..&;‘“), J=1L2,...,N—-1. (43)
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We have used a switch proposed by Jameson [6] |

rj=(|A+uj-—A_uj|) , J=12,...,N—-1, (44)

|A+;| +|A_a)

where we have omitted the time index n + 1 in the right member for simplicity. If AW
and A_i; do not have the same sign, which happens for high-frequent oscillations, then
7, = 1. For the remaining grid points we obviously have 0 < r; < 1. Taking m = oo

yields r; = 0 away from the spurious regions. The complete numerical algorithm is thus
defined by eqs. (36) - (44).

In the first numerical experiment we solve the linear advection equation to see how well
the explicit (E) and implicit (I) fourth order methods capture an oscillating solution with
a discontinuity in the derivative; for second order methods one can expect poor resolution
at the point of discontinuity. The results are compared with a those of a standard explicit
second order centered finite difference method and a third order accurate TVD method
using the following limiter function [15]

0 r<0,
, 2r 0<r<l1/4,
¥(r) = (2
r+1)/3 1/4<r<5/2,
2 r>5/2. )
As initial data we use Q
_J —asin(k7rz) <0, }
R(x,a,k)_{ . >0,
!
with @ = 0.1 and k = 6. The solutions are plotted at ¢ = 0.5. ‘
08 - W.Q-Rﬁ,:‘..), 0(:'.0-0. te 05; Ne |f;c‘l:0.“

> °
L] o
v >

o
»N
—

‘0

Advection equaon, 2nd order (E), c-form
o
N

&

02 A " e

B 08 08¢ o0¢ 02 o 02 04 oe o8 1

Fig 1. 2nd order (+) versus true (—) solution
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Advection equation, 4t order (E), c-form
-

R “ A i . A N . N
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Fig 2. 4th order (E) (+) versus true (—) solution
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1
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o
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Advecton equation, 4% order (i), c-form
[
——

o
1
K
PWTTEE o o4 oz o o2 o o o !
Fig 3. 4th order (I) (+) versus true () solution '
08 WxO0)= R0 16). W-1N=0. =05 nat0d. CR» 008
(X}
3
g oa}
]
5
("
So.
|
R I T R T Y R e T M Y R T Syt
Fig 4. 3rd order TVD (+) versus true (—) solution
The fourth order methods clearly resolve the discontinuities much better. It should be
noted that no artificial viscosity (fiiter) has been used for the 2nd and 4th order schemes.
23
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Next we study how many grid points are needed to achieve a certain tolerance level
€ = ||»n — ul}o, Where uy, is the numerically computed solution. Again we use R(z,0.1,6)
as initial data and present the solutions at ¢ = 0.5. We have chosen ¢ ~ 0.04. : |

U0} e A(x,0.16), UOY =0, 1205 ne 100, CFL= 006

.0
of R
01
23T %0 o8 o4 92 0 0z o4 o8 o1
Fig 5. 2nd order, ||lus — ul|oo = 0.042 for 100 grid points )
08 uix,0) = Rx,0.1.6). 0 =0. 105 nads, CFL=00S [
04 ]
§ 03} l
(™)
! ]
02} .
: ¢
g [ ]2 .
i o " )
v’
o4 DY
0 ?| ~0‘l -OL. -0“ - -O.Lz ; 0‘2 O.LQ Of. O.Ll 1 E

Fig 6. 4th order (E), ||upr — ul|co = 0.032 for 48 grid points

Ux.0) » Rx.61.6). UON =0 ta05 Nadd CFL.00S

0s v v~ - - .

od} i

%03 1

i 4 l
Pl |
0 !1 -0‘. 0‘. 04 -0‘2 OL 02 074 0" Oll 1

Fig 7. 4th order (1), |lup - u||loo = 0.031 for 34 grid points -
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Thus, the fourth order methods achieve the same level of accuracy as the second order
method using only half (explicit) or one third (implicit) of the number of grid points. No
artificial viscosity was used. We have set the CFL-number to .05 to suppress errors due
to the time discretization.

To simulate contact discontinuities we again solve the linear advection equation, this
time using piecewise continuous initialdata

uy <0,
H(x,‘UL,UR):{u: r>0.

with uy =1, up = 0. At £ = —1 we prescribe u(—1,t) = 0. The resulting solution is a
square wave traveling with speed 1 to the right. The fourth order methods are compared
with the standard second order method and a third order TVD scheme. It is evident
from the following figures that the fourth order methods are superior to the second order
method. In fact, the fourth order solutions are comparable to that of the third order TVD

scheme. For the centered difference schemes we used the previously described filter.
Wx.0) @ Hix.1,0). u(-1.e0. 1=05, na100, CFLa0.96

12— —

> e

4
Eal

N 3
.

+

-1 -0‘. -0‘. -0‘4 -0‘2 ;) 0‘2 0?0 Of. 07. 1
Fig 8. Contact discontinuity, 2nd order

ux,0) w Hx,1.0). u(-1.9=0, 108 ne100, CARL.=086

1 prven e

A oy —_

" — " " A i
1 08 08 04 .02 0 02 04 1] 00 1

Fig 9. Contact discontinuity, 4th order (E)
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Fig 10. Contact discontinuity, 4th order (I)

uix.0) « H{x,1.0), W-1.9=0. te0.5 ne100. CA.=0.85

1.2 v - ~r -r

°
-
L
i

Advection eqaton, 3¢ order TVD, E-O
(-]
>

1 -0‘. -0‘. '0.4 -0.2 6 0.2 0‘4 0‘. 0‘. 1
Fig 11. Contact discontinuity, 3rd order TVD

We next solve the Riemann problem for Burgers' equation. For shocks we have used
the initial data H(z,1,0) and the boundary data u(—1,t) = 1. We include the 3rd order

TVD solution as a reference.
Wx.0)eHix1,0) U1 Qel telS Net00 CFLOO

—

-1 08 08 04 .02 L4 [} 04 [ 1] os U

Fig 12. Shock, 4th order (E)
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Fig 13. Shock, 4th order (1)
. U(x.0) @ Hix.1,0), U-1.e? 1a0S ne100, CFL =045
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Fig 14. Shock, 3rd order TVD

The e-form of the fourth order methods was used, since it appears to be less oscillatory at
the shock than the other forms. The filter was turned on in a neighborhood of the shock.
The fourth order methods generate almost as crisp a shock profile - albeit somewhat more
osciilatory - as the 3rd order TVD scheme.

Finally we solve Burgers’ equation for a rarefaction wave. As initial data we take
H(z,—1,1). For the fourth order methods we use the c-form as well as the e-form without
artificial viscosity. The c-form evidently violates the entropy conditions, whereas the
e-form produces an entropy satisfying rarefaction wave.
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Rarefaction shock, 4th order (E), c-form
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08 906 04 02 [ 02 04 [ 1] (1) 1

Fig 16. Rarefaction wave, 4th order (E), e-form
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. Rarefaction shock, 4th order (1), c-form
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Fig 18. Rarefaction wave, 4th order (I), e-form
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Fig 19. Rarefaction wave, 3rd order TVD

5 Discussion

In this paper we have studied explicit and implicit fourth order difference operators for
hyperbolic initial-boundary value problems. Presently there exists no general procedure
for establishing stability of implicit high-order difference approximations if one wants to
enforce the analytic boundary conditions explicitly [5], cf. eq. (23). We have presented
a complete stability analysis of an implicit fourth order accurate difference operator for
the initial-boundary value problem. The boundary points are eliminated by means of
the analytic boundary conditions; at boundary points where there is no analytic bound-
ary conditions we use one-sided stencils. The stability result then follows using Laplace
transform techniques. The result of the stability analysis forms the basis for the actual
computer implementation of the fourth order implicit operator.

For implicit and explicit difference operators having one-sided differences at every
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boundary point there is a well-developed stability theory based on the energy method.
The analytic boundary conditions are then enforced by adding a penalty function or a
projection to the semi-discrete system [3, 12]. We have foilowed the approach in [12] for
the implementation of tbe explicit fourth order operator .

It has been numerically verified that the fourth order methods studied in this paper are
more efficient than the standard second order one. For the linear test problem, figures 1 -
4 show that discontinuities in the derivative and high frequency data are better resclved
using the high-order difference methods. Also, they are more efficient to achieve a certain
tclerance level (figures 5 - 7). In the one-dimensional case we obtained a reduction of grid
points by a factor of two for the explicit fourth order method, and by a factor of three for
the implicit operator. This is true for each space dimension. Thus, in three dimensions
one would obtain a reduction by a factor of eight or twenty-seven, respectively. Since
the work grows linearly it is natural to assume that high-order methods would be even
more efficient for multidimensional problems. We emphasize that no artificial viscosity
was used in the previous test cases.

The fourth order methods are good candidates for handling the case where the data is
piecewise continuous. This is illustrated in figures 8 - 11. Artificial viscosity was needed
to control spurious oscillations in this case. The performance of the fourth order methods
is comparable to that of a third order TVD method.

The numerical experiments were concluded by solving Burgers’ equation. Two different
forms of the flux derivative was implemented: the c-form and the e-form. The c-form is
the usual conservative form, and it may lead to entropy violating solutions for both the
implicit and explicit operators, see figures 15 and 17. The e-form, however, picked up the
entropy satisfying solution without using artificiai viscosity (figures 16 and 18). Indeed,
in a forthcoming paper it will be shown that for diagonal norms H one can prove an
entropy condition for the semi-discrete system if the e-form is used. Furthermore, shocks
are treated satisfactorily after adding artificial viscosity, cf. figures 12 - 14.

In summary, there is a complete stability theory for the high-order methods that
we have used. The theoretical properties have been verified through numerical experi-
ments. For nonlinear conservation laws these high-order methods work as well as specially
constructed high-order TVD schemes; for linear problems with high frequency solutions
(or discontinuities in the derivative) the difference methods work better than the TVD
schemes. Another attractive feature of these difference methods is the simplicity of their
computer implementation. We anticipate that these methods will generalize well to sys-
tems of conservation laws, where all phenomena (shocks, contact discontinuities, etc.)
may be present at the same time.
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6 Appendix

Fourth order accurate difference operator with third order boundary closure satisfying

eq. (5):

¢ 1 .
Z(doouo + doyuy + doguz + doaus) 1=0
1 .
'ﬁ(dlouo + dijuy + dyzuz + disus + digug + disus) J=1
1 .
E(dzouo + dauy + dagug + daaus + dagus + dasus) J=2

(Du); =

1 )
~(daouo + da1uy + daauz + dazus + daqug + dasus + dagug) 7 =3

o

1 .
z(dwuo + dgu; + daqug + dastus + dequg + dasus + daeus) J =4

1 .
{ m(ug‘-z — 8uj_1 + 8ujyr — uj42) j=25,6,...

The corresponding norm is defined by

4

hoouo ] =0

hiruy + higuz + hyzus + hygug 3 =1

(Hu); = hiauy + haguz + hasta + hagua J =2
b= hiauy + hazuz + hasua + hague 7 =3

hiqur + haquz + hasta + haquy j =4

L Uj ] = 5,6, e

The elements d;; are given by

doo = -11/6

dm = 3

dyy = ~3/2

do3 = l /3
fidio = —24(—1779042810827742869 + 104535124033147/26116897)
fidyy = —(—176530817412806109689 + 29768274816875927/26116897)/6
fHidya = 343(—171079116122226871 + 27975630462649+/261 16897)
fidiz = ~3(—T7475554291248533227 + 16484642187939251/26116897)/2
fidia = (—2383792768180030915 + 117962058781 2973/26116897)/3
fHidis = —1232(~115724529581315 + 37280576429/ 261 16897)
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f2d20
f2d2l
f2d22
f2d23
fada
fadas

fidso
f|d3l
fld32
Sidss
f1d34
f1d35
Sadzs

Jadao
fada
fads,
Jadas
Sadas
Jadss
Jadss
and

h

f2

fa

il

l

il

—12(~380966843 + 863151/26116897)
(5024933015 + 20106311/26116897)/3
—231(—431968921 + 867111/26116897)/2
(—65931742559 + 12256337+/26116897)
— (50597298167 + 9716873+/26116897)/6
—88(—15453061 + 2911/26116897)

48(—56020909845192541 + 9790180507043/26116897)

(—991824904923758601 1 + 14637020131965011/26116897)/6
—13(—4130451756851441723 + 664278707201077/26116897)
3(—26937108467782666617 + 5169063172799767+/26116897)/2
—(6548308508012371315 + 3968886380989379+/26116897)/3

83(—91337851897923397 + 19696768305507+/26116897)
242(~-120683 + 151/26116897)

264(—120683 + 15/26116897)
(—43118111 + 23357\/26116897)/3
~47(~28770085 + 2259+/26116897)/2
—3(1003619433 + 11777\/26116897)
~11(—384168269 + 65747/26116897)/6
22(87290207 + 10221/26116897)
—66(3692405 + 419+/26116897)

= -—56764003702447356523 + 8154993476273221./26116897

= -—55804550303 + 9650225/26116897
= 3262210757 + 271861/26116897

The elements A;; are given by

hoo
Jhy
Jhiz
flas
SThis
fha
Jhas
Jhaa
Shas
Sha
Shas

o

il

3/11

(299913292801 + 56278767+/26116897) /228096
—(64756272879 + 310129v/2611€597) /76032
—(—50615837729 + 5284177,/26116897 )/76032
(—5026701941 + 948741/26116897)/20736
—7(—6989673895 + 135271/26116897)/25344
49(—657605303 + 100423+/26116897)/25344
—49(—75022899 + 14467+/26116897)/6912
—(—45333081425 + 982369./26116897 ) /25344
(—3355209517 + 597005+/26116897)/6912
5(35213725709 + 51391711/26116897 /228096
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e

where f = 591223 + 1461/26116897. In decimal form the elements d,;

doo
dOl
d02

|| T I TR

o

LY

—1.83333333333333333333333333333
3
~1.50000000000000000000000000000
0.333333333333333333333333333333

—0.389422071485311842975177265601
—0.269537639034869460503559633382
0.6390379376592629384326 77856177
0.0943327360845463774750968877542
~0.0805183715808445133581024825053
0.00610740835721650092906463755986

0.111249966676253227197631191910
—0.786153109432785509340645292043
0.198779437635276432052935915731
0.508080676928351487908752085978
—0.0241370624126563706018867104972
—0.00781990939443926721678719106473

0.01905120609488501904 78223587424
0.0269311042007326141816664674714
—0.633860292039252305642283500160
0.0517726709186493664626888177642
1.592764606048964306931634491846
—0.054368814269840675877467926 1364
—0.00229048095413832510406070952285

—0.00249870649542362738624804675220
0.00546392445304455008494236684033
0.0870248056190193154450416111555
—0.686097670431383548237962511317
0.0189855304 8094366 19%79348998897
0.659895344563505072850627735852
—0.0827732281897054247443360556719
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