Development of an Atomization Methodology for Spray Combustion

S. P. Seung, C. P. Chen Department of Chemical Engineering University of Alabama in Huntsville Huntsville, AL 35899
and
Y. S. Chen
Engineering Sciences Inc.

Abstract

In liquid rocket propulsion, the knowledge and the understanding of liquid-gas interfacial phenomena are very important. This is of keen importance for predicting the onset of cavitation occurring in swirl injection elements used in STME, as well as atomization processes in shear-induced injector's (co-axial) and impinging injector elements. From the fact that all the physical processes including droplets size distribution, droplet dispersion, mixing and combustion are controlled by atomization processes, it is expected that the successful incorporation of the volume of fraction (VOF) will greatly enhance the analytical capability for predicting spray combustion processes in liquid-fueled engines.

In this paper, a methodology is developed to define and track interfaces between two fluids in a non-orthogonal,body-fitted grids using a single fractional volume of fluid(VOF) variable to describe the distribution of the liquid phase in a gas-liquid flow field. This method was implemented in a matured CFD code MAST (Multiphase All-Speed Transient) utilizing the general PISO-C algorithm. For the preliminary study for analyzing the spray combustion and tracking the interface between two phase, we will report the progress on simulation of the instability on the liquid column, the surface wave instability and the droplet breakup from the liquid surface.
Development of an Atomization Methodology for Spray Combustion. S.P. Seung, C.P. Chen
Department of Chemical Engineering
University of Alabama in Huntsville
and
Y.S.Chen
Engineering Sciences Inc.
Workshop for CFD Application in Rocket Propulsion
NASA/Marshall Space Flight Center.
NOILDOGOצLNI \#
> o The dense and dilute spray combustion in liquid rocket
> engine.
> o The onset of cavitation occurring in swirl injection elements o The atomization processes in shear-induced injector(co-axial)
and impinging injector elements.

Enlarged Picture of a Liquid jet from X-ray Image

o A strongly-coupled method has been developed to include the
Lagrangian -Tracking scheme into a pressure-velocity coupling
algorithm.
o Non-iterative PISOC Algorithm.
o Easy to include physical models. - Evaporation

- Turbulence
- Collision and Breakup
- Finite Rate Chemistry
o Avoid global iteration betwe
o Time accurate after prescribed corrector steps
Using VOF method (volume of fraction) to define and
track the liquid-gas interfaces
'S'AHDVOXddV \#
o Stochastic Particle Tracking Technique
- Stochastic separated flow(SSF) model.
- Parcel PDF transport model. o Incorporation of Dense Spray effects.
- Taylor analogy breakup(TAB) model.
- Reitz's wave instability model.
- Droplet collision and coalescence model.
o Eulerian-Lagrangian Frame.
o Atomization Model.
\quad - Blob Injection.
- Volume of Fluid Method.

\# SURFACE TENSION EFFECT.
o Continuous Surface Force Procedure Used.
o Surface Tension treated as a limiting Body Force Fsv
included in the momentum equation.
o Avoid Jump Conditions in Pressure corrections. o Efficient.
o Fsv has to be calculated accurately. $\begin{aligned} \mathrm{F}_{\mathrm{Sv}}(\mathrm{x}) & =\sigma \kappa(\mathrm{x}) \Delta_{\mathrm{i}} \mathrm{F}(\mathrm{x}) /[\mathrm{F}] \\ \sigma & : \text { Surface tension coefficient } \\ & \kappa: \text { Free surface curvature }\end{aligned}$

Two-Way Coupling_Scheme
Coupling $+R_{p}^{n}$ Two-Way Including Momentum Implicitly solve
term,
$\frac{\rho^{n-1}}{\Delta t}+$ and Colakup

$$
S_{p}^{n} U_{i}^{*}
$$

vaporisation
$\Delta_{i} p^{n}+S$
${ }^{5}+u$
$S_{u i}+$
E
Droplet Injection,

$$
\underline{\rho^{n-1} U_{i}^{n}}-
$$

$$
\frac{i_{i}}{\Delta t}-
$$

Evaporation, Bra

๗
1

- Predictor Step

$v_{i}^{*}=\frac{v_{i}^{n}+\left(U_{i}^{*}+u_{i}^{\prime}+F_{b i} \tau^{n}\right) \frac{\Delta t}{\tau^{n}}}{1+\frac{\Delta t}{\tau^{n}}}$
- Evaluate Two-Way Coupling Terms, $S_{p}^{*}, R_{p}^{*}, S_{m l}$, and $S_{h l}$

$$
\begin{aligned}
& \text { First Corrector Step } \\
& \text { - Momentum Equation is Approximated by } \\
& \qquad\left(\frac{\rho^{n-1}}{\Delta t}+A_{p}\right) U_{i}^{* *}=H^{\prime}\left(U_{i}^{*}\right)-\Delta_{i} p^{*}+S_{i}+\frac{\rho^{n-1} U_{i}^{n}}{\Delta t}-S_{p}^{*} U_{i}^{* *}+R_{p}^{*} \\
& \text { - Subtracted to Predictor Equation and Get New Velocity } \\
& \qquad U_{i}^{* *}=U_{i}^{*}-D_{u}^{*} \Delta_{i}\left(p^{*}-p^{n}\right)-D_{u}^{*}\left[\left(S_{p}^{*}-S_{p}^{n}\right) U_{i}^{*}-\left(R_{p}^{*}-R_{p}^{n}\right)\right] \\
& \qquad D_{u}^{*}=\left(\frac{\rho^{n}}{\Delta t}+A_{p}+S_{p}^{*}\right)^{-1} \\
& \text { - Substitute into Continuity Equation and Obtain Pressure } \\
& \text { Correction Equation } \\
& \left.\qquad \frac{1}{\Delta t R T^{*}}+\Delta_{i}\left(\frac{U_{i}^{*}}{R T^{*}}\right)-\Delta_{i}\left(\rho^{n T} D_{u}^{*} \Delta_{i}\right)\right]\left(P^{*}-P^{n}\right)=-\left[\frac{\rho^{n T}-\rho^{n}}{\Delta t}\right. \\
& \left.+\Delta_{i}\left(\rho^{n T} U_{i}^{*}\right)\right]+S_{m, l}+\Delta_{i}\left\{\rho^{n T} D_{u}^{*}\left[\left(S_{p}^{*}-S_{p}^{n}\right) U_{i}^{*}-\left(R_{p i}^{*}-R_{p i}^{n}\right)\right]\right\}
\end{aligned}
$$

Constraint.

Continuity
the

Sauter mean diameter ver. distance from the injector

o Evaporating and Burning Solid-Cone Spray.
> nitrogen or air. o Dense spray and turbulent.
o Liquid jet atomization and droplet secondary breakup. o Dense spray and turbulent.
o Liquid jet atomization and droplet secondary breakup. o Single step chemical reaction .

$$
\mathrm{C}_{13} \mathrm{H}_{28}+20 \mathrm{O}_{2}=13 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}
$$

Test Conditions for the Measurement of Yokota et al.					
Case	Pinj (MPa)	Pgas (MPa)	Tamb (K)	Minj $(\mathrm{kg} / \mathrm{s})$	Atmosphere
Evaporating Spray Burning Spray 30	30	3.0	900	0.00326	N_{2}

Comparison of penetration length ver. time for burning and evaporating sprays

\square

Liquid Column Jet Breakup Problem
Time $=2.501 \times 10^{-2} \mathrm{sec}$ Cycle $=1114$
(a) Surface
(b) Velocity vector

Liquid Column Jet Breakup Problem
Time $=3.700 \times 10^{-2} \mathrm{sec}$ Cycle $=1647$
(a) Surface
(b) Velocity vector

o Liquid Droplet Breakup
 o Gas (air)
\quad - density $: 1 \mathrm{~g} / \mathrm{cm}^{3}$

- viscosity $: 0.0018$ poise
- initial velocity $: 10000 \mathrm{~cm} / \mathrm{sec}$
o Physical domain $: 1.25 \mathrm{~cm} \times 0.15 \mathrm{~cm}$

Liquid Droplet Breakup Problem (a) Time $=4.078 \times 10^{-6} \mathrm{sec}$ Cycle $=26$ (b) Time $=1.909 \times 10^{-5} \mathrm{sec}$ Cycle $=123$

Liquid Droplet Breakup Problem
(a) Time $=3.410 \times 10^{-5} \mathrm{sec} \quad$ Cycle $=219$
(b) Time $=4.401 \times 10^{-5} \mathrm{sec}$ Cycle $=284$

Liquid Droplet Breakup Problem
(a) Time $=5.409 \times 10^{-5} \mathrm{sec}$ Cycle $=351$
(b) Time $=5.911 \times 10^{-5} \mathrm{sec}$ Cycle $=385$
\# CONCLUSION AND WORK IN PROGRESS
o Preliminary Implementation of VOF in successful.
o Turbulence Effects will be included soon.
o Compressibility Effects is currently incorporated in the
o Incorporation of other physical Submodels.

