
Utilizing Inheritance in Requirements Engineering

Hermann Kaindl

Siem('ns A(; Osterreich, PSE

(',eusaugass(" 17, A 1030 Vienna, Austria

Tel: +13-l-71600-288 Fax: +,,13-1-71600-:{2:{

E-Mail: kaih(_,siemens.co.at

N95- 23677

KEY WORDS AND PHRASES

Hypertext, inheritance, requirements engineer-
ing, semiformal representation.

INTRODUCTION

Specifying the requirements of a new system to
be built is one of the most important parts of
the life cycle of any project. In the field called
requirements engineering many approaches have
been proposed [1]. However, few methods and
tools have been available for practical use. In fact,
for the early phase of defining the requirements,
nearly no support is available.

While from a theoretical point of view it
would be desirable to have formal representa-

tions of requirements, in practice unstructured
natural language is often used informally. Our
approach attempts to bridge the gap between
these extremes in providing semiformal hyper-
text representations. Therefore, our approach
and the tool supporting it are named RETH
(_Requirements Engineering T_hrough Hypertext).
Actually, RETH uses a combination of vari-
ous technologies, including object-oriented ap-

proaches and artificial mtelligelwe (in particular
frames). We do not attempt to exclude or replace

formal representations, but try to complement and
to provide means for gradually developing them.

The scope of this paper is the utilization of in-
heritance for requirements specification, i.e., the
tasks of analyzing and modeling the domain, as

well as forming and defining requirements.
Among others, RETH has been applied in

the CERN (Conseil Europden pour la Rechereche
Nucl6aire) Cortex project. While it would be im-

possible to explain this project in detail here, it
should be sufficient to know that it deals with

a generic distributed control system. Since this
project is not finished yet, it is difficult to state its
size precisely. In order to give an idea, its final

goal is to substitute the many existing similar con-
trol systems at CERN by this generic approach.
Currently, RETH is also tested using real-world
requirements for the Pastel Mission Planning Sys-
tem at ESOC in Darmstadt.

First, we outline how hypertext is integrated
into a flame system in our approach. Moreover,
we demonstrate the usefulness of inheritance as

performed by the tool RETH. We then summa-
rize our experiences of utilizing inheritance in the
Cortex project. Lastly, we relate RETH to exist-

ing work.

HYPERTEXT INTEGRATED INTO

A FRAME SYSTEM

A hypertext node is represented as a frame in
our approach. (The original notion of a frame
was coined by Minsky [21, but the frame sys-
tems implemented the original ideas only par-
tially. In the context of this paper, a frame can
be viewed as a data structure that combines data

stored in slots.) According to the differences be-
tween object-oriented languages and frame sys-
tems as discussed in [3, 4], we selected the frame

systern of PROKAPPA as the basis of our tool
RETH.

Our approach of integrating hypertext into a
frame system is similar to the one described and
used by Kaindl and Snaprud [5, 6] for knowledge

acquisition in the course of building knowledge-
based (expert) systems. One distinctive feature
lets the user define disjoint partitions of nodes
that together cover the whole node. Such a par-
tition of a hypertext node is comparable to a slot
of a frame. The idea is to support the user in

partitioning the textual content in a machine rec-
ognizable form, serving as an additional means of
introducing more formality.

In order to make the example below under-
standable, we shortly sketch the hypertext user

PRECE[,7.:./ ,- -- _LANK NOT F|LIVfFO

2_%

29



Figure 1: RETH windows showing object representa-
tion and inheritance.

interface of RETH (see Fig. 1 showing a screen
dump). The presentation level handles hypertext

links as follows: if the underlined string repre-
senting the link is clicked with the mouse, the

window of the target node is displayed by the
tool. The arrows in the figure are drawn to indi-
cate the effect of following links on the screen.
The windl_ws shown in the figure actually poped
up one at a time.

in contrast, the display of partitions of hy-
pertext nodes is implemented in our tool like ex-
pand buttons (cf. the hypertext system Guide [7]).
When the name t)fa partition (inverted in the dis-
play) is clicked, the content is expanded or shrunk
(implemented as a toggle). E.g., in the window at
the top of Fig. 1 the partition DDE: Service Re-
alization is currently shrunk, while Aggregation:

Consists of Action(s) is expanded. In contrast to
many hypertext systems, our approach lets users
mix browsing and editing _f nodes, thimgh one

node can either he edited or browsed at one point
in time.

INHERITANCE IN REQUIREMENTS
SPECIFICATION

Due to lack of space, we cannot describe here the
details of using RETH for domain analysis and
modeling, and for the formation and definition
of requirements. The key ideas are to represent
requirements as objects, and to organize these ob-
jects ;is well its the objects l)f the domain model
in a taxtmtm_y. Within this taxonomy, inheritance
can be used in several ways (see below). Hyper-
text links are used to interlink the hypertext nodes
representing the objects. For a detailed descrip-

thin, the interested reader is referred to [g].
Due to our tight integration of hypertext in a

frame system, inheritance can be used already in
the semiformal representation. There is ;l notable

difference between frame systems and object-
oriented languages relevant for our approach: in
contrast to the latter, the former also support in-
herit;Ince of values [3, 4]. Since classes (of the
domain model as well as (if requirements) ;ire de-
scrihed in hypertext nodes, and since these are
represented as frames, the text contained in them
is inherited.

Together with the concept of partitions of
nodes, inheritance support,; templates, e.g., for
requirements to be filled in. Whenever a node for

a requirement is created as an instance of a class of
requirements, the appropriate structure is already
given initially through inheriting a template. In-
herited partitions in the (requirements) instances
provide lbr the representation of information tin
requirements such as their source, reastm and pri-
t_rity.

Detailed information about requirements ises-
pecially impi)rtant for large projects, but without
sufficient tool support it is often omitted. Since all

the instances inherit all the respective partitions,
providing such information cannot be forgotten,
and the user of the system just has to fill in the
text.

When requirements are organized in classe&
all the requirements of a specific class can have

a special attribute in common -- represented as
at partition. Moreover, whole classes of require-
ments (defined hy the user) can have the same
value (text) of an attribute, and this value can be
defined once in the description of the class. The
suhclasses and instances inherit this value, but
inherited information can also be overridden.

An important point is that inheritance allows
one to define special attributes (including a value

3o



or not) once in the definition of the class, without
the necessity to copy. Even more irnportant is the

possibility of re-inheriting changed values.
In contrast to most current OOA tools, RETH

implements OOA inheritance already in the semi-
formal hypertext representation (see also Fig. 1).

EXPERIENCE WITH RETH IN THE

CORTEX PROJECT

According to our experience in the real-world

project Cortex, all the features of our method and
its supporting tool were useful to some extent.
In fact, some of them were worked out in detail

in the course of this application. Due to lack of

space, we will only focus here on the utilization
of inheritance.

The templates of requirements depending on
their class helped to point out missing informa-
tion. Actually, much of it was known by the

people involved, but we found it important to get
it written down.

Moreover, we would like to point out specif-

ically the usefulness of domain-specific require-
ments classes, and the use of inheritance within

the corresponding taxonomy. They allowed the
explicit ordering of the requirements according
to the classification principle. While this is of
course not a new principle for ordering require-
ments, our approach and the tool provide inheri-
tance. Therefore, it was possible and very useful

to specify information such as priorities once for
whole classes. When the priority of a class of re-

quirements changes, it is only necessary to specify
this once -- in the corresponding partition of the

node representing this class. The nodes repre-
senting requirements subclasses and instances of
this class re-inherit this changed value.

Another interesting example of the use of in-
heritance that we came across during the work

on Cortex is illustrated in Figs. 1 and 2 (in the
notation of [9]). An Action is part of a Ser-
vice_Realization. Since a Composite_Action, e.g.,

is an Action, it is also part of a Service_Realization.
This inference has to be drawn by the viewer of the
O-O diagram but is made automatically via inher-
itance in RETH. In the bottom window of Fig. 1,
the inherited partition Aggregation: Part of Ser-
vice Realization (i) shows this. Moreover, inher-
itance points to the fact that a Composite_Action
is (potentially) also part of a Composite_Action
(see the inherited partition Aggregation: Part of
Composite Action (i) in the bottom window of
Fig. 1). Especially this kind of inference may
be difficult for people not so familiar with recur-
sive structures in O-O diagrams. Of course, the

Service ReatlzaNc_n I

r- ,

i Action,

L j A
• L L ! :

Figure 2 An object lil()(t('l diagram.

diagram has its advantages, too. Therefore, both
forms of representation are complementary in our
view.

RELATED WORK

Due to lack of space we cannot give here a
comprehensive overview of all the proposed ap-

proaches to requirements engineering. Especially
for the traditional ones, the interested reader is

referred to [i]. Recent OOA approaches (for
an overview see [10]) challenge the traditional
ones. RETH heavily builds on object-oriented
ideas. However, most of today's OOA methods

still ignore early development phases where im-

portant clarifications have to be made. It may
even be argued that they are designed for a dif-
ferent phase. RETH specifically focuses on the
early phase, and we propose to combine RETH
with object-oriented analysis approaches.

The method by Jacobson et al. [11] and the

tool supporting it (Objectoly) bear some similar-
ity to our approach. However, it does not apply
object-oriented principles to the organization of
the requirements, and consequently inheritance
cannot be utilized (e.g., for templates).

Since RETH's internal representation is based

on frames, it may be interesting to compare it with
other approaches to requirements engineering us-
ing artificial intelligence (AI) technology. GIST
[12] is an important early approach. RML [13]
emphasizes the use of knowledge representation
techniques of AI and domain modeling. Telos
[ 14] is a derivative of RML. RA [ 15] shares with
RETH the focus on a transition between infor-

mal and formal representations. The approach
of ARIES [16] is quite similar to RA in being

very knowledge-intensive. KBRA [17] utilizes
hypertext ideas internally. While RETH's user
interface for structuring text appears to be more

31



developed, some of KBRA's features of machine
support could be very useful in RETH. However,
KBRA lacks several important features of RETH.

CONCLUSION

In summary, our tool-supported method named
RETH supports several activities in the course
of requirements specification. Our approach of
organizing the hypertext according to object-
oriented principles has several advantages. Rep-
resenting requirements as objects helps when
structuring them via classification. Inheritance is
provided by our tool already in the early phase of
requirements specification, which helps to avoid
redundant representation of information. In par-
ticular, it provides users automatically with tem-
plates of the internal structure of requirements,
that depends on the kind of requirement. This
way, the users are guided to fill in important in-
formation like the reason and priority of each re-
quirement. While RETH is not intended to substi-
tute useful existing techniques emphasizing more
formal representations, it can be combined with
them.

Since the advantages of such an approach to
requirements engineering cannot be fully utilized
without more elaborate traceability of the require-
ments, we also investigate how to best link re-
quirements objects with design objects.

The usefulness of RETH to space projects is
currently assessed using real-world requirements
for the Pastel Mission Planning System at ESOC
in Darmstadt. While it is too early for a final
statement at the time of this writing, the prelimi-
nary results are encouraging. Since RETH is very
general in terms of application areas, we could
not find any reason why the application to space
projects should be a problem.

ACKNOWLEDGMENTS

St,.fan Kranmr and Stefan l,Zorner did very important work

in building the tool. Peter Tippold gave useful comments

on earlier drafts of this paper, and his willingness for in-

depth discussion of practical issues ill requirements engi-

neering is highly appreciated. Also Holger Ziegeler partici-

pated in earlier discussions. Moreover, the partial funding

of this work by ESA and the ITF (Innovation- und Tech-

nologiefondsl is acknowledged. Finally, we would like to

thank CERN for giving us the opportunity to apply our

new approach in one of their real-world projects.

References

[1] A. M. Davis. Software Requirements: Objects, Func-

tions. _md State's. Prentice Hall, Englewood (',lifts, NJ,

1993.

[2] M. Minsky. A framework for representing knowledge.

In P. Winston, editor, The Psychology of Computer

Vision, pages 211-277. McGraw-Hill, New York, 1975.

[3] H. Kaindl. Object-oriented approaches in software en-

gineering and artificial intelligence. Journal o] Object-

Oriented Programming, 6(8):38-45, January 1994.

[4] H. Kaindl and S. Korner. Object-oriented languages

supplemented with features of frame systems. In Pro-

ceedings of the OOPSLA '92 Workshop on Object-

Oriented Languages: The Next Generation, Vancou-

ver, Canada, October 1992.

[5] M. Snaprud and H. Kalndl. Knowledge acquisition

using hypertext. Expert Systems with Applications:

An International Journal, 5(3/4):369-375, 1992.

[6] M. Snaprud and H. Kaindl. Types and inheritance in

hypertext. International Journal of Human-Computer

Studies (IJHCS), 1994. To appear.

[7] P. J. Brown. Do we need maps to navigate round

hypertext documents? Electronic Publishing--

Origination, Dissemination, and Design, 2(2}:91-100,

July 1989.

[8] H. Kaindl. The missing link in requirements engi-

neering. A CM Software Engineering Notes (SEN),

18(2):30-39, 1993.

[9] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy. and

W. Lorensen. Object-Oriented Modeling and Design.

Prentice Hall, Englewood Cliffs, N J, 1991.

[10] D. de Champeaux and P. Faure. A comparative

study of object-oriented analysis methods. Jour-

nal of Object-Oriented Programming, pages 21 33,

March/April 1992.

[11] I. Jacobson, M. Christerson, P. Jonsson, and

G. Overgaard. Object-Oriented Software Engineering:

A Use Case Driven Approach. Addison-Wesley, Read-

ing, MA, 1992.

[12] R. Balzer. Final report on GIST. Technical report,

USC/ISI, Marina del Rey, CA, 1981.

[13] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowl-

edge representation as the basis for requirements spec-

ification. IEEE Computer, 18(4):82-91, 1985.

[14] J. Mylopoulos, A. Borgida,

M. Jarke, and M. Koubarakis. Telos: Representing

knowledge about information systems. ACM Trans.

actions on Information Systems, 8(4):325-362, 1990.

[15] H. B. Reubenstein and R. C. Waters. The require-

ments apprentice: automated assistance for require-

ments acquisition. IEEE Transactions on Software

Engineering, 17(3):226-240, 1991.

[16] W. L. Johnson, M. S. Feather, and D. R. Harris. In-

tegrating domain knowledge, requirements, and spec-

ifications. Journal of Systems Integration, 1:283-320,
1991.

[17] A. J. Czuchry and D. R. Harris. KBRA: a new

paradigm for requirements engineering. IEEE Expert,

pages 21-35, Winter 1988.

°PROKAPPA is a trademark of IntelliCorp, Inc.

32


