A Data Analysis Assistant

Amy L. Lansky

Recom/NASA Ames Research Center MS 269-2, Moffett Field, CA 94035-1000 tel:(415)604-4431 fax:(415)604-3594 LANSKY OPTOLEMY. ARC. NASA. GOV

Keywords and Phrases: constraint satisfaction, data analysis, planning, software agent.

1 Introduction

This paper discusses the use of a domain-independent planner, COLLAGE, as a software assistant to Earth scientists working with remotely-sensed and groundbased data sets. The planner can be viewed as an *advisory agent* that helps scientists select appropriate data and create a suitable plan for data-processing that meets stated scientific requirements [4].

Though we have worked on this domain for some time, only recently have we come to view it as an instance of a much broader class of potential planning applications: helping humans to navigate through seas of software- and data-selection possibilities. In general, tasks that involve human interaction with visualization tools often manifest this particular kind of challenge. The human has very deep knowledge of their domain (e.g., the scientist knows about Earth science; the graphic artist knows what kind of image they are trying to produce). However, the tools available may be too vast or complex (e.g., there may be hundreds of possible data set options; there may be hundreds of data transform or image processing algorithms available). Thus, the human knows what they want to accomplish, but doesn't know how to use the software to accomplish it.

We believe there is great potential payoff in the development of planning applications of this kind. Human experts desperately want the kind of help such systems could provide, and there is a high likelihood that they can successfully implemented. Besides our own work, a few other planning applications in this class are being developed [1, 2].

This kind of domain has two other interesting characteristics:

• It would be almost impossible to imbue a planning system with enough deep knowledge about the domain to accomplish the desired task autonomously. • It is feasible to imbue a planner with the kind knowledge that a user doesn't have or doesn't want to be bothered with: what data and data manipulations algorithms are available; what functions these algorithms perform (at a high level of abstraction); and what usage constraints and requirements are attached to algorithms and data sets. For example, our Earth scientist experts currently make use of numerous data bases and at least two or three data analysis packages, each providing tens to hundreds of functions, with a variety of constraints on their use. The size and complexity of these data bases and packages, as well as their interactions, can make the data analysis task a logistical nightmare.

These two factors lead to a natural functional role for the kind of application we are developing. The planner will provide advice to the scientist about what data sets are available and what sequence of processing algorithms may be appropriate for their task. However, it does not try to make data or algorithm choices that require deep scientific knowledge of the problem. Instead, the planner has a *dialogue* with the user, presenting useful information and plan options, interactively refining choices with the user, and performing constraint checking as appropriate, given its knowledge about domain requirements.

Thus, the role of our data analysis system is to give the of level advice a user wants and to stay well informed in order to provide that advice. Our planner must "sense" available data and algorithms, as well as feedback from the scientist. The system "affects" its environment by providing advice to the scientist. Notice that this role is much deeper than that provided by a smart interface. The kind of planning required is quite complex; scientists currently utilize human technicians to do much of what our system is being designed to provide.

The rest of this paper begins with a quick description of the data analysis task. Then, we provide a summary of the COLLAGE architecture and current project status. Finally, we discuss two issues relevant to this application: planning vs. execution and system utility.

2 The Data Analysis Task

The development and validation of Earth-system models and change-detection analyses require several kinds of inputs, including remotely-sensed images (taken by satellite instruments) and ground data (e.g., meteorological readings, soil maps, and vegetation surveys). After data sets are retrieved and before they can be used, they must all be *registered* so that they lie within the same coordinate system and scale – i.e., all coordinate values must accurately correspond to one another. Unfortunately, the scientist's task of selecting suitable data and acceptably registering them is more difficult than it might seem. This process is often a burdensome and tedious portion of the scientific cycle that can consume over half of a scientist's time.

One reason is that required data is often resident in several physically distributed data bases and is encoded in a variety of formats, densities, scales, and projections onto Earth's surface. In addition, the same kind of information may exist in several different forms, may have been sampled in different ways, or may be derived through models. Thus, a scientist has many possible information sources to choose from, each associated with its own tradeoffs.

Once sources of information have been determined and data sets have been retrieved, scientists must register them. Unfortunately, heterogenous data types are often not directly comparable. For example, sparse vegetation data collected on the ground is usually not directly correlatable to satellite image data. Thus, a methodology is utilized that registers all data sets for a particular application to a common base map. Figure 1 depicts a high-level view of this process. First, a target coordinate system and scale is chosen. This target system is typically one that is similar to a majority of the data sets to be registered and that meets scientific and data-related constraints. Next, a base map of the study area is chosen that conforms to the target system. Then, all data sets are registered to this map. Depending upon the base map and the original form of a data set, required preprocessing steps may include geometric corrections, projection and scale transforms, radiometric corrections, atmospheric corrections, data restoration, interpolation, image enhancement, and ground control point selection (points that are used to achieve a correspondence between a data set and base map). Each of the steps depicted in Figure 1 would typically be composed of several substeps or processes. For each step, there are often a variety of possible algorithms, programs, and computational platforms. The choices made for each step must meet a variety of constraints that encode dependencies on and between registration steps. If poor choices are made, the registration process may introduce unacceptable distortions into the data. In some cases, registration may be impossible.

Consider the (simplified) registration plan depicted in Figure 2. Suppose that we have already selected and must now register two data sets – Thematic Mapper (Landsat) image data of Oregon and ground vegetation data for Oregon supplied by the US Forest Service in latitude/longitude coordinates. Our goal is to filter the image data through an equation that computes a vegetation index value for each image pixel and then plot these values against the ground-based vegetation values. First we select a target projection system of Universal Transverse Mercator (UTM) coordinates at a 30 meter scale and retrieve a suitable base map. Because latitude/longitude and UTM are both universal coordinate systems, the meteorological data is fairly readily registered using existing programs.

Registering the Thematic Mapper data, however, requires the use of ground control points. Each ground control point is a physical location for which coordinate information is supplied from both the original data set and the base map. Using these coordinates, a transformation matrix can be computed that accurately translates all data set values into the target base map system. The challenge is finding adequate ground control point coordinates (both in number and accuracy) that are also uniformly distributed. If the points are skewed towards a certain portion of the study area, the transform matrix will yield unsuitably skewed results. Indeed, if the original data set or base map does not contain enough discernable features, ground control point selection may be impossible and other options must be considered. For example, an alternate base map may exist for which adequate ground control points can be found. Or, a useable base map may exist in some other coordinate system that is then easily registered to the target system. One might also decide to choose an alternate target system or an alternate data source that has more identifiable features.

The data selection and registration process we have just described is full of compromises and tradeoffs, which also make it time-consuming and error-prone. There is intrinsic conditionality and interdependency between steps, often resulting in backtracking and replanning. In some cases, failures or errors during execution may require portions of the plan to be modified "on the fly" (e.g., after data visualization, the scientist may realize that additional corrective transforms must be applied). Currently, scientists cope with the difficulties of this task by falling back on particular approaches they are familiar with, rather than those that are most suitable for a particular problem. As a result, they often end up using unsuitably flawed data sets. And because this process is rarely documented, it is quite difficult to diagnose the source of data distortions or to reuse previously successful plans.

However, these characteristics also make this domain amenable to automation. Besides helping to speed up an otherwise tedious and time-consuming task, automation enables the exploration of a much

Figure 1: The Data Selection and Registration Process

Figure 2: A Data Selection and Registration Plan

more complete range of data selection and registration possibilities and much more thorough constraint and integrity testing. Using an automated tool also enables documentation and justification of data selection and registration choices, thereby allowing for the possibility of diagnosis and plan reuse.

3 Current Status

 $COLLAGE^1$ is a non-traditional domain-independent planner that may be viewed as a general-purpose constraint-satisfaction engine [3]. In the COLLAGE framework, the term "constraint" is used very broadly -- it is any type of requirement that the planner knows how to test and fulfill. Unlike the state-based encodings utilized by traditional planners, COLLAGE describes all domain requirements in terms of actionbased constraints. Such constraints define domain characteristics strictly in terms of desired action interrelationships and action-parameter bindings requirements. The planner encompasses a wide variety of action-based constraint forms, each associated with constraint satisfaction algorithms that add new actions into a plan, decompose actions into subactions, impose ordering constraints, and constrain action-parameter bindings.

Instead of searching one large constraint-satisfaction search space, COLLAGE conducts its planning in a partitioned or *localized* fashion, searching a set of smaller (though possibly interacting) search spaces, each focusing on a subplan and a subset of the domain constraints. In the data analysis domain, these planning subproblems roughly correspond to the different data analysis subprocesses.

Over the past year, we have encoded the data analysis task in our constraint language and have extended the underlying COLLAGE planning framework and constraint library to meet the needs of this specification. We have also extended the system to include a static domain knowledge base that can drive and control aspects of the planning process. For this domain, the knowledge base includes facts about Earth's projection systems as well as information regarding available data processing algorithms. We are currently working our scientist experts to extend the domain knowledge base and create sufficient problem data to yield a set of planning problems for choosing and registering data for ecosystem models. We are also hooking COLLAGE up to the KHOROS image processing framework [5]. As part of this effort, we are developing mechanisms for automatically downloading information about the KHOROS algorithms into COLLAGE and for automatically visualizing and executing COLLAGE's plans in KHOROS'S Cantata programming environment.

4 Discussion

Planning, Execution, and the User

This domain poses several interesting questions about planning vs. execution as well as the role of the user in the planning process. As we began to write the constraints for this application and deepen our understanding of the role of our planner vis-a-vis the user, we began to see traditional distinctions and roles becoming blurred. For example, in this domain, "execution" may be viewed in terms of data-retrieval and data-processing actions. Sometimes, the planner can autonomously execute these actions. In other cases, these actions must be performed by the scientist. This is because many image processing steps often require human interaction – for instance, to select image points with the naked eye.

As far as *when* planning occurs, much of the data analysis process must be planned in advance of execution; for example, scientists would be loathe to order expensive data sets or perform tedious manually intensive transforms unless they have created a data analysis plan that they are fairly sure will succeed. However, some forms of execution must take place during the planning process. For example, some preliminary information about data sets must be retrieved during "pre-planning" in order to enable reasoning about which algorithms are most appropriate to use.

However, some parts of the plan must also be filled out or modified during actual data processing. For example, the ground-control-point selection process is often iterative – new points must sometimes be added, others deleted in order to yield the best registered image. These plan extensions can't be determined until execution time, when an actual transform matrix is built and tried. Similarly, the most appropriate image enhancements for a data set often can't be fully determined until execution time, when the scientist can dynamically visualize those enhancements.

In summary, the domain requirements we have just described don't neatly fit traditional notions of reactive planning nor classical search-based pre-planning. Instead, the desired planning behavior can be viewed as a dialogue between the planner and the user, who are involved in a *collaborative* effort. The planner must be able to flow between classical deliberative reasoning, more dynamic forms of user-interaction and control over the planning process, and dynamic plan modification in response to the execution environment or user-directives.

For this reason, we have designed COLLAGE to enable a more fluid form of reasoning that we call *flexitime planning*. The system already allows for some forms of actions (e.g., choices, data retrievals, interactions with the user) to be performed durin "preplanning." Soon, we hope to extend COLLAGE so that constraints can be triggered at any time relative

 $^{^1 \}text{Coordinated Localized aLgorithms for Action Generation}$ and Execution.

to "execution." The COLLAGE constraint-triggering mechanism was intentionally designed to enable this kind of extension.

Utility

Given the advisory role of our data analysis planner, utility is critical. Does it provide good, up-to-date advice? Is it easy to use? We are addressing these issues in at least two ways. First, we are placing all forms of domain knowledge that are relevant and understandable to the scientist in a domain knowledge base that is distinct from the planning engine and domain constraint specification. Unlike domain constraints, the knowledge base may be viewed as static domain- and problem-specific factual information. For this domain, the knowledge base consists of information about Earth projection systems, constraints on usage of specific data types, projections, and scales, information about available data transform algorithms, and problem-specific data analysis goals. It also includes some domain-specific function definitions. The planner uses the knowledge base by conditioning the constraint-satisfaction process on knowledge-base contents and by using the domain-specific facts and functions to define binding requirements on plan variables.

Keeping the knowledge base distinct from the COL-LAGE domain constraint specification and planning engine has several features that enhance utility:

- Planning functionality can be increased by extending the knowledge base rather than by extending the domain constraint specification.
- The same constraint specification can be used in numerous contexts with different knowledge bases.
- The knowledge base can be represented in a form amenable to viewing and extension.

The last feature is critical since we cannot possibly gather all domain-relevant information for this application. New data bases and algorithms are always being developed within the scientific community. To be truly useful, the system must be easily extendible by the user or via some other mechanism (such as automatically downloading information from KHOROS). Thus, a critical aspect of the utility problem is domain knowledge capture, which we hope to facilitate by making incremental knowledge easy to add and use.

A second aspect of utility is ease of use. We hope to foster this through our development of COLLAGE's integrated user interface, COLLIE. The COLLIE user can visualize the growing plan, inspect properties of each action, relation, and binding, and understand the relationship between plan structure and domain constraints. Features are provided for viewing a graphical representation of the domain structure and editing the domain specification and knowledge base. Eventually, we will extend COLLIE to include an improved interface to the knowledge base and allow users to modify the plan itself as well as interact more directly with the constraint search control mechanism.

Acknowledgements

We would like to thank our domain expert, Jennifer Dungan, and our NASA Goddard collaborator, Nick Short Jr. We would also like to acknowledge the contributions of past and present members of the COL-LAGE project team: Lise Getoor, Andrew Philpot, Scott Schmidler, and Phil Chu.

References

- Boddy, M., J. White, R. Goldman, and N. Short, Jr. "Planning Applications in Image Analysis," Proceedings of the 1994 Goddard Conference on Space Applications of AI, pp. 17-28 (1994).
- [2] Chien, S. "Using AI Planning Techniques to Automatically Generate Image Processing Procedures: A Preliminary Report," *Proceedings of the* Second International Conference on AI Planning Systems, Chicago, Illinois pp. 219-224 (1994).
- [3] Lansky, A. "Localized Planning with Diverse Plan Construction Methods," NASA Ames Research Center, Artificial Intelligence Research Branch, Technical Report FIA-94-05 (1994). Submitted to AIJ, Special Issue on Planning.
- [4] Lansky, A. and A. Philpot, "AI-Based Planning for Data Analysis Tasks," Proceedings of the Ninth Conference on Artificial Intelligence for Applications (CAIA-93), Orlando, Florida, pp. 390– 398 (March 1993). Also appeared in *IEEE Expert Magazine*, Volume 9, Number 1, February 1994.
- [5] Rasure, J.R. and C.S. Williams, "An Integrated Data Flow Visual Language and Software Development Environment," *Journal of Visual Lan*guages and Computing, Volume 2, pp. 217-246 (1991).