PRECEDING ..~ -

Coordinating Complex Decision Support Activities Across Distributed Applications

Richard M. Adler
Symbiotics, Inc.

N95- 23749

725 Concord Avenue
Cambridge, MA 02138

Tel (617)876-3635

Fax (617)876-0157

rma@symbiotics.com

KEY WORDS AND PHRASES

distributed computing, distributed decision
support, intelligent coordination, work flow,
work groups

INTRODUCTION

Knowledge-based technologies have been
applied successfully to automate planning and
scheduling in many problem domains [1,2].
Automation of decision support can be
increased further by integrating task-specific
applications with supporting database systems,
and by coordinating interactions between such
tools to facilitate collaborative activities. For
example, end-to-end decision support for space
missions involves a succession of interactions to
transfer and manipulate data across diverse
tools: deriving mission task, resource, and
constraint networks via a planning engine,
storing these results in a database; retrieving the
mission plan for use as input to a scheduling
engine; comparing the resulting schedule against
current schedules for other missions to detect
resource conflicts; and replanning or
rescheduling to resolve problems. Ideally, no
human intervention should be required to carry
out such activity sequences, which, despite their
complex distributed implementation, are
otherwise well-defined and routine.

Unfortunately, the technical obstacles that
must be overcome to achieve this vision of
transparent, cooperative problem-solving are
daunting. Intelligent decision support tools are
typically developed for standalone use, rely on
incompatible, task-specific representational
models and application programming interfaces
(APIs), and run on heterogeneous computing
platforms. Getting such applications to interact
freely calls for platform independent capabilities
for distributed communication, as well as tools
for mapping information across disparate
representations [3]. Similarly, coordinating
interactions dynamically presupposes

S NQT FILMIe

capabilities for: identifying and locating
required resources and capabilities across a
network; capturing relationships between
decision support activities such as task
decomposition, data dependencies, and
synchronization constraints; and autonomously
controlling the execution of tasks across
applications to reflect such relationships. These
system engineering issues are largely orthogonal
to the interests and skills of developers and end-
users of decision support applications.
Symbiotics is developing a layered set of
software tools (called NetWorks!) for
integrating and coordinating heterogeneous
distributed applications. The top layer of tools
consists of an extensible set of generic,
programmable coordination services.
Developers access these services via high-level
APIs to implement the desired interactions
between distributed applications. Current API-
based services enable developers to: register
application services and information resources,
their locations, and calling interfaces; model the
decomposition or workflow sequence of
composite decision support activities in terms of
simpler units; and invoke automated control
engines that execute composite models to carry
out complex activities such as end-to-end
decision support for space missions. The high-
level coordination services are built on top of a
communication substrate layer, which utilizes
object-oriented technology to conceal the
complexity of platform dependencies, data
mapping, and network communication. The
remainder of this abstract describes these
various tools and how they interoperate as a
nonintrusive, extensible framework for
developing complex distributed applications.

DISTRIBUTED COMMUNICATION
SUBSTRATE

NetWorks! is a communication tool that is
based on object-oriented message-passing
technology [4]. Messaging systems typically

379



enable applications to interact by posting and
retrieving messages from local queues that are
connected transparently across network nodes.
This minimal architecture tends to push more
complex control behaviors (e.g., coordinating
sequences of interactions) into the applications
themselves, which impacts their modularity,
maintainability, and extensibility. The
NetWorks! Messaging Facility (NMF) provides
the customary messaging queues, queue
management and network transport services
across heterogeneous platforms. However,
NetWorks! also incorporates active objects
called Agents, which mediate interactions
between applications and local NMFs and
isolate any additional behaviors required for
integration or distributed control. *

Agents consist of object methods that
contain: conventional C or C++ code; calls to
the native APIs of local applications; and calls
to the NetWorks! API library for creating,
sending, and retrieving messages. The
messaging API provides both blocking and non-
blocking (asynchronous) communication
models. A supporting Data Management System
(DMS) provides an extensible, machine
independent "neutral exchange" representation
for translating messages across incompatible
application data models. Applications initiate
distributed interactions via simple messaging
API calls to Agents. Agents can: (1) manipulate
and forward messages from applications to other
Agents via NMFs; (2) interact with applications
by injecting or extracting data and commands;
and (3) provide other dedicated services. In
particular, Agents can integrate generic
distributed control models for coordinating
interactions among other Agents and
applications. The following sections review the
three Agent-based coordination services that are
already implemented [5].

BROKERING DISTRIBUTED
APPLICATION RESOURCES AND
SERVICES

A request broker is a dedicated control
mechanism that mediates interactions between
client applications needing particular resources
or problem-solving services and server
applications capable of providing them [6].
Brokers free individual applications from the
burden of maintaining information locally as to
where and how to obtain services that they may
require, such as database queries or particular

planning and scheduling engines. Instead, all
applications within a distributed system register
the services they support, their locations, and
their calling interfaces with the broker, which
typically maintains this information in a
directory or naming service. Client applications
can then query the broker to find and request the
desired interaction. The broker uses the naming
service to relay requests from clients to the
relevant server applications, retrieve responses,
and relay them back to the client.

The NetWorks! Service Request Manager
(SRM) consists of an Agent that integrates a
dedicated request broker application. The SRM
control model also incorporates a shared
memory bulletin board structure, which
applications can use to post or retrieve
information of common utility. The SRM
supports a high-level API that includes
functions for: dynamically registering
applications and services; requesting services;
adding and deleting information items from the
bulletin-board; and querying the services
directory and bulletin-board to search for
particular items of interest. The SRM API is
built on top of lower level NetWorks!
messaging and DMS APIs.

COORDINATING DISTRIBUTED
WORKFLOW

One approach to automating sequences of
activities such as end-to-end decision support
for space missions is to establish directed, data-
driven control links between the relevant
applications. Distributing control logic in this
manner is cumbersome to maintain and extend,
particularly in systems that support many
composite activities and that evolve through
incremental additions of applications and
services.

The NetWorks! Process Planner provides an
alternative process-oriented model for
distributed coordination, which consists of a
high-level scripting language and a control
Agent that executes scripts. This model
alleviates the difficulties of highly distributed
schemes by capturing the coordination logic for
workflows in centralized, compact scripts that
are easily maintained and extended. Individual
script steps take the form of "atomic" requests
for specific services or tasks, such as
transferring data between two applications or
scheduling ground operations for a Shuttle
mission. The scripting language also

380



incorporates control structures to represent data
dependencies, temporal ordering, and other
synchronization constraints across atomic script
steps, including binding variables to store input
arguments or results of script steps for later use,
conditional branching, and iteration. Mutually
independent tasks can be grouped explicitly for
concurrent execution. A nested invocation
primitive enables scripts to be embedded in -
other scripts.

Clients use a simple message-based API call
to invoke the Process Planner to initiate a
specified script. The Process Planner Agent
incorporates a script interpreter engine that
instantiates that script and executes its
constituent steps in the specified sequence. For
example, the mission support script would input
specified mission profile parameters to an
intelligent planning engine, transfer the results
to a database, and so on. Script steps are
executed by sending messages requesting the
specified services to an associated SRM. The
SRM forwards requests to the relevant servers,
and relays responses back to the Process
Planner, which then reiterates these behaviors,
updating interim variables, testing control
constraints, and requesting any script steps that
are ready to be executed. Upon completing the
script, the Agent returns results to the client,
such as a verified mission schedule. In essence,
the Process Planner functions as a workflow
driver to the SRM, which brokers individual
task requests. The two coordination engines act
in tandem to support process-oriented
interactions between applications.

BROKERING DECOMPOSABLE
SERVICES

The SRM mediates interactions between
clients and individual servers, while the Process
Planner coordinates the execution of multiple,
interdependent services. A third coordination
service, called the Server Group, coordinates
multiple, independent services, such as system-
level planning tasks that decompose into
subplanning tasks for independent subsystems,
or decision support queries that reduce to
subqueries to independent databases. The Server
Group is implemented as a specialized subclass
of the SRM Agent. The Server Group Agent
inherits most of the SRM's control behavior, but
selectively extends the SRM's service
registration and request services. The

381

registration extension enables developers to
register composite services in the Server Group
directory. A composite service entry contains
pointers to functions for (1) decomposing that
defined service into other concrete services that
are registered with the Server Group, and (2)
combining results for those services. In response
to requests for a composite service, the Server
Group uses these functions to transparently:
decompose that service into constituent tasks;
dispatch requests to the appropriate servers for
concurrent execution; and collect and combine
results from those servers into a single response
for the client. Examples of combination
functions to merge results include voting
algorithms, logical union, intersection, and
relational join operations.

CONCLUSIONS

The NetWorks! tool suite enables complex
coordination behaviors to be modeled and
executed external to independent decision
support applications, through a supporting
layered infrastructure for distributed computing.
Current generic control services include request
broker, workflow, and group-oriented
coordination models. The resulting partitioning
of application and distributed behaviors results
in improved modularity, maintainability, and
extensibility of individual applications, whether
intelligent or conventional. The infrastructure is
extensible at both the control service (i.e.,
Agent) and message-passing layers. Individual
control services are also interoperable, which
means that they can be combined much like
building blocks to match application-specific
coordination requirements. These tools are
directly applicable to domains other than
decision support, including operations support,
process control, concurrent engineering, and
office automation.

ACKNOWLEDGMENTS

NetWorks! technologies have been
developed in part with funding from the Small
Business Innovative Research Program by the
U.S. Army (contract DAAB10-87-C-0053) and
NASA (contracts NAS10-11606, NAS10-
11882, NAS5-31920, and NAS8-399905).
Kirsten Kissmeyer, Tom Trautz, and Craig
Hughes contributed to the development of the
Agent-based coordination models.



REFERENCES

[1] M. Fox and S. Smith. 1984. ISIS: A
Knowledge-Based System for Factory
Scheduling. Expert Systems. 1: 25-49.

[2] S. Minton. ed. 1993. Machine Learning
Methods for Planning. San Mateo, CA.; Morgan
Kaufmann.

[3] G. Coulouris and J. Dollimore. 1988.
Distributed Systems: Concepts and Design.
Reading, MA.; Addison-Wesley.

[4] R. M. Adler. 1992. Object-Oriented
Tools for Distributed Computing. NASA
Proceedings for Technology 2002 Conference,
NASA CP-3189.

[S] R. M. Adler. 1993. Distributed
Coordination Models for Client-Server
Computing. Technical Report, Symbiotics, Inc.
Cambridge, MA.

[6] Object Management Group and X/Open.
1991. The Common Object Request Broker:
Architecture and Specification. OMG Document
No. 91.12.1 (revision 1.1), OMG, Framingham,
MA.

382



Planning and Scheduling Workshop:
Mission Support

PS-MS.1 Modeling Actions and Operations to Support Mission Preparation
J. T. Malin, NASA Johnson Space Center, Houston, Texas, USA; D. P. Ryan and D. L.

Schreckenghost, Metrica, Inc., at NASA Johnson Space Center, ER2, Houston, Texas, USA

PS-MS.2 CRI Planning and Scheduling for Space

M. Aarup, CRI Space, Denmark

PS-MS.3 Benefits of Advanced Software Techniques for Mission Planning
Systems

A. Gasquet, Y. Parrod, and A. De Saint Vincent, Matra Marconi Space, Toulouse, France

PS-MS.4 A Scheduling and Diagnostic System for Scientific Satellite
“GEOTAIL” Using Expert System

I. Nakatani, M. Hashimoto, T. Mukai, and T. Obara, Institute of Space and Astronautical
Science, Sagamihara, Japan; N. Nishigori, Fujitsu Ltd., Chiba, Japan

PS-MS.5 Automatic Commanding of the Mars Observer Camera
M. Caplinger, Malin Space Science Systems, Inc., San Diego, California, USA

PS-MS.6 Artificial Intelligence Techniques for Scheduling Space Shuttle
Missions

A. L. Henke and R.. H. Stottler, Stottler Henke Associates, Inc., Belmont, California, USA

PS-MS.7 Design and Implementation of an Experiment Scheduling Systemn
for the ACTS Satellite

M. J. Ringer, NYMA, Inc,, at NASA Lewis Research Center, Cleveland, Ohio, USA

383

385

389

393

397

401

405

409

Support

$

[1ssion







