
N95- 23761

Empirical Results on Scheduling and Dynamic Backtracking

Mark S. Boddy and Robert P. Goldman

Honeywell Technology Center, MN65-2200

3660 Technology Drive

Minneapolis, MN 55418

612-951-7403 612-951-7436 (FAX)

{boddy, goldman}@src.honeywell.com

KEY WORDS AND PHRASES

Constraint Satisfaction, Scheduling, Dynamic

Backtracking

INTRODUCTION

At the Honeywell Technology Center (HTC),

we have been working on a scheduling problem

related to commercial avionics. This applica-

tion is large, complex, and hard to solve. To

be a little more concrete: "large" means al-

most 20,000 activities, "complex" means sev-

eral activity types, periodic behavior, and

assorted types of temporal constraints, and
"hard to solve" means that we have been un-

able to eliminate backtracking through the use

of search heuristics. At this point, we can gen-

erate solutions, where solutions exist, or report

failure and sometimes why the system failed.

To the best of our knowledge, this is among

the largest and most complex scheduling prob-

lems to have been solved as a constraint satis-

faction problem, at least that has appeared in

the published literature.

This abstract is a preliminary report on

what we have done and how. In the next

section, we present our approach to treating

scheduling as a constraint satisfaction prob-

lem. The following sections present the ap-

plication in more detail and describe how

we solve scheduling problems in the applica-

tion domain. The implemented system makes

use of Ginsberg's Dynamic Backtracking al-

gorithm [2], with some minor extensions to

improve its utility for scheduling. We de-

scribe those extensions and the performance

of the resulting system. The paper concludes

with some general remarks, open questions

and plans for future work.

CONSTRAINT ENVELOPE

SCHEDULING

We are interested in the solution of large, com-

plex scheduling problems. A "solution" as

we use the term is not simply an implemen-

tation of an algorithm for solving a particu-

lar constraint satisfaction or constrained opti-

mization problem. For many domains, con-

structing schedules is an extended, iterated

process that may involve negotiation among

competing agents or organizations, schedul-

ing choices made for reasons not easily imple-

mentable in an automatic scheduler, and last-

minute changes when events do not go as ex-

pected. In such an environment, the process

by which a schedule is constructed must be

considered in any attempt to provide a useful

scheduler for a given domain.

In our approach, which we call constraint

envelope scheduling, schedules are constructed

by a process of "iterative refinement," in which

scheduling decisions correspond to constrain-

ing an activity either with respect to another

activity or with respect to some timeline. The

schedule becomes more detailed as activities

and constraints are added. Undoing a schedul-

ing decision means removing a constraint, not

removing an activity from a specified place on

the timeline.

The assumptions underlying our schedul-

ing work are as follows:

431

. Explicitly modelling the constraints re-

suiting from specific scheduling decisions
makes the schedule easier to construct

and modify.

. Representing only those relationships re-

quired by the current set of constraints

(the decisions made so far) provides a

more useful picture of the current state

of the scheduling effort.

The main consequence of this approach is that

the scheduler does not manipulate totally-
ordered timelines of activities and resource uti-

lization. Instead, the evolving schedule con-

sists of a partially ordered set of activities, be-

coming increasing ordered as additional con-

straints are added (or less so, as those decisions

are rescinded). This approach is common to a

number of scheduling systems, e.g., [1, 5, 4, 3]

Figure 1 depicts the process by which

a partially ordered schedule is gradually re-

fined into an executable, totally ordered sched-

ule. Although providing increased flexibility

(through delaying commitment), the explicit

representation of partially-ordered activities in

the time map makes reasoning about resource

usage and other state changes more compli-

cated. It is no longer possible to construct a

single time-line representing (e.g.) changing

resource availability over time. Instead, the

system computes bounds on the system's be-

havior.

Despite the approximate nature of this rea-

soning, we are still ahead of the game: where

the least-commitment approach to scheduling

can at least provide approximate answers in

support of scheduling decisions (e.g. what or-

der activities should occur in), timeline sched-

ulers make the same decisions arbitrarily--

putting an activity on the timeline is a

stronger commitment than constraining it to

occur (say) between two other activities, or

within a given time window.

STATIC SCHEDULING FOR

AVIONICS

P7

P$ P7

I I I I [p_ "- _"-_pPI P2 PS P4 P8 10

I)7

Figure 1: Gradual hardening of a partial order

I' '11" "11" 'll" 'l
i ! ! I I j

t t

Figure 2: System architecture

One of the applications to which we have ap-

plied constraint envelope scheduling is static

scheduling of processing time and bus com-
munications in a distributed environment.

This application involves safety-critical appli-

cations running on flight hardware on a com-

mercial airplane. Figure 2 is a simple diagram
of the architecture involved. The arrows at the

bottom of the picture indicate that commu-

nication also occurs into and out of the cab-

inet in which the bus and processors reside.

The schedule is static for reasons having to do

with verifiability and repeatability of behav-

ior, and ultimately with FAA certification for

flight safety.

As we have already suggested, this problem

is both large and complex. In a typical prob-

lem instance, there are approximately 6000 ac-

tivities representing slices of processor time,

and 14000 activites representing the transmis-

sion of data messages on the bus. There are six

processors, which are between 80% and 90%

loaded. The processes running on these pro-

432

cessors are periodic at rates between 5 Hz and

80 Hz. This makes the problem more com-

plicated, in that data communication is spec-

ified between processes, not between process
instances. One of the decisions to be made

in constructing a schedule is to determine the

mapping from instances of data producers to
instances of data consumers. To make matters

worse, we are constructing a schedule for a 200
mS "frame" which itself runs at 5 Hz. Com-

munication from one instance of this frame to

the next is entirely legal, and so we have in

some sense a circular model of time, in which

constraints on activites late in the frame may

affect activities early in the frame.

Processes are to a limited extent pre-

emptible, with minimum slice times and

context-dependent context-switch times (i.e.,

it matters who you were preempted by). Inter-

process constraints include jitter (bounds on

how far from perfectly periodic instances of

a process may be) and latency (limits on

the time between producer and consumer in-

stances for a given data message). There are

data cycles, where process A gives a message

to process B gives a message to process C,

which sends a message back to process A. The

interaction of these cycles with latency and jit-

ter has complex effects on schedule feasibility.

In fact, much of the work that we have done

on this application has been the definition and

derivation of conditions under which a given

set of constraints was or was not consistent.

SCHEDULING AND DYNAMIC

BACKTRACKING

The scheduler we have applied to this problem

uses Ginsberg's Dynamic Backtracking algo-

rithm [2], with some minor extensions. One of

these extensions was to enable the search en-

gine to report the set of inconsistent variables

involved, should it fail to find a solution. For

this application, knowing what constraints are

in conflict is crucial: it enables us to go back to

the system designers and tell them that their

requirements cannot be met.

The second extension that we made was

necessitated by the nature of the scheduling

problem, or at least of how we have repre-

sented it. Ginsberg's algorithm involves gen-

erating eliminations: explanations of why a

given value for some variable is ruled out given

the current partial assignment. The assump-

tion that eliminations are available by inspec-

tion does not work for complex temporal con-

straints: frequently we discover that a given

ordering is infeasible by trying it. Accordingly,

we have extended the algorithm to handle un-

successful attempts to assign a given value to

a variable. In this case, the search engine un-

does the assignment (including removing any

added constraints), records an elimination ex-

planation for that value, and reports failure
back to the scheduler.

Empirically, this extended implementa-

tion of Ginsberg's algorithm has been invalu-

able. A typical scheduling problem involves

some tens of thousands of variables represent-

ing choices on ordering, preemption or pro-

ducer/consumer pairing. Given the difficulty

of localizing variable interaction, sorting re-
lated variables to be close to each other is

impractical or impossible. Despite consider-

able effort, we have not managed to find vari-

able or value ordering heuristics that result in

backtrack-free solutions (we are currently us-

ing a variant of Smith's "slack" heuristic for

value ordering [6]).

For these reasons, having a search method

that leaves intact that part of a partial assign-

ment not involved in a given inconsistency is

crucial. One of the ways in which we might

have run into trouble using dynamic back-

tracking has not materialized, either: inconsis-

tencies typically involve less than 30 variables.

This means that the elimination bookkeeping

is kept within bounds, as well.

There is one feature of the current al-

gorithm which has been inconvenient, how-

ever. The requirement that it be the most

recently assigned variable that is re-assigned

first clashes with the fact that in scheduling

433
ORIGINAL F:::GE ;S

OF POOR QUALITY

applications there are frequently qualitative

differences between variable types. For exam-

ple, changing the ordering of an activity with

respect to other activities using the same vari-

able is in some sense a more local change to

the schedule than changing the resource as-

signed to that activity. In the latter case, the

activity must be ordered with respect to a dif-

ferent set of activities (those using the new re-

source). Any orderings remaining from the old

resource assignment may now be for no pur-

pose. For these reasons, we might like more

flexible choices about variable ordering when

backtracking.

cation.

References

[1] Fox, M.S. and

Smith, S.F., ISIS: A Knowledge-Based Sys-

tem for Factory Scheduling, Expert Systems,

1(1) (1984) 25-49.

[2] Ginsberg, Matthew L., Interpreting Proba-

bilistic Reasoning, Proceedings of the 1985

AAAI/IEEE Sponsored Workshop on Uncer-

tainty and Probability in Artificial Intelli-

gence, 1985.

[3]

CONCLUSIONS

The bottom line for this project is that we have
[4]had a successful impact on the solution of a

hard problem that is a critical part of a multi-

billion dollar investment. In the process of

solving that problem, we have provided some

empirical evidence that dynamic backtrack-

ing, suitably modified, is useful for nontriv-

ial scheduling problems. We have also gained [5]

some useful experience in how to exploit the

structure of the problem: heuristics are still

critical to generating solutions or finding fail-

ures in a reasonable amount of time. "Rea-

sonable" for this application currently means [6]
a small number of hours. Minutes would be

better, days would be unworkable.

There is a lot of work yet to be done on

this problem. For example, the problem is
[7]

currently being solved in phases, with proces-

sor schedules being generated before the bus

schedule. There are indications that heuristic

repair techniques as in [7] might be useful for

data scheduling.

One of the things we are hoping to arrange
in the next few months is to release an instance

or instances of this scheduling problem to the

research community. Generation or accumula-

tion of standard scheduling problems has been

difficult. This problem has the advantages of

being fairly challenging in both scale and com-

plexity, and of having its roots in a real appli-

Muscettola, N., HSTS: Integrating Planning

and Scheduling, Technical Report CMU-RI-

TR-93-05, The Robotics Institute, Carnegie

Mellon University, 1993.

Sadeh, N. and Fox, M.S., Variable and Value

Ordering Heuristics for Activity-based Job-

shop Scheduling, Proceedings of the Fourth

International Conference on Expert Systems

in Production and Operations Management,

Hilton Head Island, S.C., 1990.

Smith, S.F., Ow, P.S., Potvin, J.Y., Muscet-

tola, N., , and Matthys, D., An Integrated

Framework for Generating and Revising Fac-

tory Schedules, Journal of the Operational Re-

search Society, 41(6) (1990) 539-552.

Smith, Stephen F. and Cheng, Cheng-Chung,
Slack-Based Heuristics for Constraint Sat-

isfaction Scheduling, Proceedings AAAI-g&

Washington, DC, AAAI, 1993, 139-144.

Zweben, M., Deale, M., and Gargan, R., Any-

time Rescheduling, Proceedings of the DARPA

Workshop on Innovative Approaches to Plan-

ning, Scheduling, and Control, San Diego,

DARPA, 1990.

434

