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PROBLEM STATEMENT

In scheduling a set of tasks, it is often not

known with certainty how long a given event

will take. We call this duration uncertainty.

For example, as part of the task of making a

telescope observation, the telescope must be

accurately centered on a star. The time

required to perform this subtask cannot be

accurately predicted, since it depends on

factors which vary from execution to

execution (e.g., the position of the telescope

at the start of the execution of this task).

Duration uncertainty is a primary obstacle

to the successful completion of a schedule. If

a duration of one task is longer than

expected, the remaining tasks are delayed.

The delay may result in the abandonment of

the schedule itself, a phenomenon known as

schedule breakage. One response to schedule

breakage is on-line, dynamic rescheduling. A

more recent alternative is called proactive

rescheduling [2]. This method uses
statistical data about the durations of events

in order to anticipate the locations in the

schedule where breakage is likely prior to

the execution of the schedule. It generates
alternative schedules at such sensitive

points, which can be then applied by the

scheduler at execution time, without the

delay incurred by dynamic rescheduling.

This paper proposes a technique for

making proactive error management more

effective. The technique is based on applying

a similarity-based method of clustering to the

problem of identifying similar events in a set

of events. The remainder of this paper

consists of a discussion of the following:

1. The intuitions underlying the technique;

2. The way in which clustering techniques

from the AI literature can be applied to

the problem of managing duration

uncertainty in scheduling;

3. The requisite assumptions about the

domain for applying the technique; and

4. An implementation strategy.

INTUITIONS

The set of events under consideration have

occurrences which need to be scheduled.

The goal is to find an ordering of these
occurrences which minimizes the amount of

expected duration uncertainty associated

with each. The knowledge used to find the

ordering comes from observations of

repeated past occurrences of the same

events. Figure 1 represents a repeated
occurrence of an event E. E recurs 4 times

over a stretch of time. Duration uncertainty

is depicted visually as the difference in the
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Figure 1: A repeating event

lengths of each line representing a single
occurrence. We assume that the events

under consideration all have the tendency to

exhibit duration uncertainty.

The heuristic being formalized here is that

duration uncertainty can often be reduced

by assigning an event in such a way that it

is in temporal proximity to a similar event.

A mundane example will illustrate. Suppose

I am scheduling my daily household chores.

I find that I must complete three tasks:

clean the kitchen (K), clean the bathroom

(B) and work in the garden (G). I can do

these in any order; my main constraint is to

finish all three within a certain time frame.

One is clearly led to a plan to perform K

and B together, either before or after G.

Why? The tasks are similar, either in that

they are both cleaning tasks, or perhaps also

because they are indoor tasks.

How does the act of scheduling similar

events in close temporal proximity lead to a

reduction of duration uncertainty?

Intuitively, actions are sometimes similar

because they share a number of stages. For

example, any cleaning room action consists

of a preparation stage consisting of getting

the mop or broom, getting floor cleaner,

water, bucket, etc. If I perform the cleaning

room actions together, say K _ B (clean

the kitchen followed by clean the bathroom),

the preparation stage of B will not be

required (or be simplified). Since the

duration of any action is the sum of the

durations of its stages, the duration

uncertainty of the whole will be a similar

function of the duration uncertainty of the

different stages. It follows that I should be

able to more accurately predict how long the

bathroom cleaning will take when preceded

by the kitchen cleaning action than I could

Figure 2: Pairing an event with a similar event

predict its duration in isolation, or when

preceded by a dissimilar event. This

conclusion is justified by noting that the

preparation stage, in such a situation, does

not exist; hence, trivially, there is no

uncertainty associated with it, which

reduces the uncertainty of the whole event.

Graphically, this can be represented as in

Figure 2. This figure represents the expected

durations of kitchen events when paired

with the similar, bathroom cleaning event.

On the other hand, if paired with a

dissimilar event (e.g. gardening), one would

expect K to behave as in Figure 1.

In ordering mundane events, we implicitly

bring to bear the ability to apply concepts

which cluster events into similarity classes.

This paper addresses the same problem

when such a priori conceptual knowledge

about a domain is lacking. For example, in

the telescope scheduling domain, it may be

difficult or impossible to classify a priori
whether two tasks to be scheduled are

similar or not. The main contribution of this

paper is to suggest that there is a posteriori

knowledge (knowledge gained from

experience) that can be used to infer the

similarity of events.

COMPUTATIONAL MODEL

The computational problem to be solved

can be stated as follows: given a set E of k

events, find an ordering

E1 _ E2 --* ... _ E_ of all the elements in

E which minimizes the expected duration

uncertainty over all members of E. The

previous section justified the intuition that

some orderings of events will exhibit less

duration uncertainty than others. In this
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section, a technique for finding these

preferred orderings will be presented.

Similarity Based On Relative

Durations of Events

Based on observations in the previous

section, the notion of similarity between two
events e and e_ can be induced from

observations of the durations of each event

when they are placed in close temporal

proximity.

Definition 1 The relative duration of e

with respect to e' (rd(e, e')) is the duration

of e when e immediately follows e'. The

relative average duration of an event e with

respect to an event e_ is the average duration

of e when immediately followed by e', over a

set of occurrences of e and e'.

rd(e, e') can be viewed as a discrete random

variable, associating a duration with the

outcome of pairing the two events. Let

aTd(e,e') denote the standard deviation of

rd(e, e'). It is then possible to define the

notion of relative similarity between triples

of events el, e2_ e3:

Definition 2 el is at least as similar to e2

as to e3 if O'rd(el,e2 ) _ ard(el,e3 ).

An absolute concept of similarity can be

defined when a similarity threshold is

postulated. Let 0 be such a threshold. Then:

Definition 3 Let e and e' be events. Then e

is similar to e' if ard(_x') <_ O.

Any similarity relation is reflexive,

symmetric, and intransitive. The claim here

is that comparing the value of aTa(el,e2) to a

threshold can be viewed as applying a

similarity relation. Clearly, reflexivity and

intransitivity are satisfied. By definition,

symmetry implies that if ard(_,_,) < O, then

ard(e,,e ) _ 0. Reflections from intuition

should make this assumption plausible.

Recall that the postulated reason for

reduction of duration uncertainty when

events are paired to similar events is that

they share a stage, which is eliminated or

)
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Figure 3: A a-Graph For Five Events

simplified when the events are paired

together, Clearly, the ordering of the pairing

is irrelevant. For example, whether K --* B

or B _ K, the duration uncertainty of the

later event will be reduced. Hence, it is

reasonable to assume that similarity, defined

in the previous definition, is symmetric.

Relation to Clustering Methods

In order to reduce duration uncertainty in

an error management system for scheduling,

events should be ordered in a way that

similar events are clustered. The

similarity-based clustering method [3] is a

weak AI method which can be employed to

generate efficient orderings. The

computational problem of interest here can
be viewed as an instance of one-dimensional

clustering. For such a problem, the goal is to
reduce the number of distinct values of a set

of variables by identifying near-equivalence

classes of values based on similarity. To

briefly illustrate the technique of clustering,
we introduce a data structure called a

a-graph:

Definition 4 A a-graph is a weighted

directed graph with the following

characteristics. Each vertex is labeled by one

of the elements in a set E. Each directed

edge (el, ej) between source ei and target

node ej is labeled with a value representing

the degree of similarity between ei and ej.

To illustrate, consider a slightly more

complex mundane example. Now there are
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five events, including K, B and G, as before,

but also including the tasks wash car (C)

and go to store ( S). An incomplete a-graph

for this set of events is found in Figure 3.

Here, the lower the value on an arc, the

greater the degree of similarity between the
two events.

Clustering techniques are traditionally

used for automating concept formation. One

clustering method (called agglomeration),

fuses entities to form groupings based on the

threshold of minimum similarity. The fusion

process stops when all values exceed the

threshold. For example, if the threshold is

assumed to be 2, the result of the

agglomerative process applied to the

example would fuse B and K into a cluster.

For our purposes, however, clustering is a

means to an end, viz., to generate an

ordering of events which reduces the amount

of duration uncertainty with which a

proactive scheduling error manager needs to

contend. The following section describes

how similarity-based clustering can be

implemented for this purpose.

Implementation and Intended Use

The procedure for generating efficient

orderings of events based on relative
durations is intended to be used as a

preprocessing stage in a proactive error

management system for scheduling. The

stage can be viewed as one that deletes from

the set of possible orderings those which

exhibit the most duration uncertainty.

Assume as input a set E of k events. The

set E has been executed up to m times in

some or all of the k! permutations of the

orderings of the events in E. Assume an

ordering of these permutations and

executions. Let rd(Ei, Ej)[p, q] represent the

duration of Ei when immediately followed

by Ej on the pth occurrence of the qth

permutation of E; thus 1 _< p _< m and

1 _< q _< k!. This yields a set of

O(k![m(k - 1)]) values of rd(E_,E_)[p,q] for

each pair Ei, Ej C E. From this data, an

ordering of a set E of events which

minimizes duration uncertainty is based on

the following steps:

1. For each Ei in E, compute the mean of

the set {rd(Ei,Ej)[p,q] • 1 <_ p < m,1 <

q _< k!}, and ard(E,,E_), for each pairing

of Ei with other Ej C E;

2. Form a a-graph with E the set of

vertices and for each pair Ei, Ej in E,
there is an arc labeled with the value of

ard(Ei,Ej); and

3. Apply an all-pairs shortest-path

algorithm [1], such as Floyd-Warshall, to

generate an ordering of the events.

For example, assume that Figure 3

represents the result of completing step 2 in

the procedure. Thus, the labels on the arcs

represent the standard deviations of the
relative durations of the event occurrences

connected by the arc. If the claims made in

this paper are plausible, then such values

would be the kind expected, since they

reflect the intuitive degree of similarity

among the events. Then, the result of

applying step three would yield

B---, K---, C---, S-_ G

as well as other orderings which are minimal

with respect to duration uncertainty.

An example of a proactive scheduling

system which might benefit from the

account presented here is the Just-In-Case

(JIC) error management technique

described in [2]. This technique analyzes a

schedule of telescope observations for

possible execution breaks. For the break

point with the highest probability of

occurrence, the system forms a contingent
alternative schedule. JIC utilizes duration

uncertainty measures to calculate the

possible schedule break points. As a

preprocessing stage to the error management

procedure, the three stage method presented

in this section could be applied to

discriminate among different orderings of the

events, selecting the ones which minimize
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duration uncertainty. This would reduce the

amount of anticipated break points with

which the error manager has to contend.

ASSUMPTIONS AND LIMITATIONS

To be of optimal benefit for its intended

use, the events to be analyzed by the method

should possess the following properties:

1. The events in E should be causally

independent; this means at least that:

• No occurrence Ei in E prohibits the

execution of any other Ej; and

• No occurrence Ei presupposes the

execution of some other Ej;

and

2. Each of the events in E has the

tendency to exhibit duration

uncertainty; this means that, considered

in isolation, the standard deviation of

the duration of each event is high.

Even with these minimum assumptions,

O'rd(E,,E_ ) is a coarse measure of event

similarity. For example, assume Ei consists

of the stages A, B and C, and Ej consists of
A,E, and F. Assume that the duration

uncertainty of Ej is caused completely by

stage F. Then, the approach proposed here

would fail to recognize that the two events

are similar (in the sense of sharing a

common stage A), since E3 would not
demonstrate a reduction of duration

uncertainty when paired with Ei. In such a

case, it would be useful to view the absolute

reduction in mean duration as evidence for

its similarity to Ei. That is, since Ej shares

a stage with Ei, its pairing with Ei should

result in a reduction of the time it takes to

execute. Hence, it may be the case that
both mean duration and standard deviation

should be viewed as the measure of

similarity. This could be easily added to the

implementation by including mean duration

as part of the labels on the arcs of the

a-graph. The addition would imply a two

dimensional description space for the events,

and a similarity concept based on a vector of
attributes.

There may be other forms of causal

interaction which would make the ordering

produced by this procedure less preferred

than others, a Consider for example events

Ei and Ej again. Perhaps the pairing

Ei _ Ej would result in a reduction of the

standard deviation of the duration of Ej,

and hence be preferred by the proposed

model. However, it is possible that this

pairing would increase the absolute duration

of Ej.

CONCLUSION

This paper has offered an approach for

aiding proactive error management

techniques for scheduling. The idea is to use

statistical temporal information about event

occurrences to induce similarities among

these occurrences, when conceptual
information about the same events is

unavailable. Pairing similar events in close

temporal proximity can often reduce the

uncertainty in the expected duration of the

events. This leads to the potential for a

reduction in the amount of rescheduling

required by the proactive error manager.
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